JPH02173959A - Production of magneto-optical recording medium - Google Patents

Production of magneto-optical recording medium

Info

Publication number
JPH02173959A
JPH02173959A JP32866788A JP32866788A JPH02173959A JP H02173959 A JPH02173959 A JP H02173959A JP 32866788 A JP32866788 A JP 32866788A JP 32866788 A JP32866788 A JP 32866788A JP H02173959 A JPH02173959 A JP H02173959A
Authority
JP
Japan
Prior art keywords
substrate
magneto
optical recording
temperature
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32866788A
Other languages
Japanese (ja)
Inventor
Tadashi Sugiyama
杉山 直史
Masaaki Nomura
正明 野村
Takashi Yamada
隆 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP32866788A priority Critical patent/JPH02173959A/en
Publication of JPH02173959A publication Critical patent/JPH02173959A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the recording medium which is small in optical strain, is high in C/N, is free from camber and local deformation and is stable in mechanical characteristics by providing a magneto-optical recording layer on a polycarbonate substrate after subjecting the substrate to a heat treatment. CONSTITUTION:The polycarbonate substrate formed to a disk shape is placed in a heat treatment atmosphere and is heated up to the (thermal softening temp. of the polycarbonate substrate +10)+ or -2 deg.C at <=300 deg.C/hour heating up rate of the heat treatment atmosphere. After the substrate is heat-treated for 30 minutes to 24 hours at this temp., the magneto-optical recording layer is provided on the polycarbonate substrate. Namely, the polycarbonate substrate is subjected to the heat treatment before the magneto-optical recording layer is provided on the substrate and, therefore, the increase of a noise level by the double refraction of the substrate is obviated. Since the generation of the warpage of the substrate is suppressed, the C/N is high. The magneto-optical recording medium having stable mechanical characteristics is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光磁気記録媒体の製造方法に関し、特に基板
の熱処理の改良によシ特性の向上し九九磁気記録媒体の
提供を可能にする方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a magneto-optical recording medium, and in particular, to a method for manufacturing a magneto-optical recording medium, which improves characteristics by improving heat treatment of a substrate, thereby making it possible to provide a multi-magnetic recording medium. It's about how to do it.

〔従来技術及びその問題点〕[Prior art and its problems]

光磁気記録方式は、高密度で大容量であることまた記録
再生ヘッドと非接触であること消去、再記録が容易であ
ること等多くの特徴を有するので、光磁気記録媒体は高
速データファイルや映像記録の記録媒体として、近年そ
の開発実用化が活発に進められている。
The magneto-optical recording method has many features such as high density and large capacity, no contact with the recording/reproducing head, and easy erasing and rewriting. Therefore, the magneto-optical recording medium is suitable for high-speed data files and As a recording medium for video recording, its development and practical application have been actively promoted in recent years.

そしてその形態は、基板上に訪電体保護層等の薄膜や希
土類金属及び遷移金属等を主体とする薄膜等からなる光
磁気記録層を設けたものが一般的である。
The general form is that a magneto-optical recording layer made of a thin film such as a protective layer for a visiting body or a thin film mainly made of rare earth metals, transition metals, etc. is provided on a substrate.

光磁気記録媒体の基板としては、ガラスあるいはポリカ
ーボネート、ポリメチルメタクリレート、エポキシ等の
樹脂が使用される。
As the substrate of the magneto-optical recording medium, glass or resin such as polycarbonate, polymethyl methacrylate, or epoxy is used.

ガラス基板は、光学的特性、表面性、化学的安定性に優
れる反面、量産加工性が低いこと、壊れ易く取り扱いが
難しいこと、高価であること等の問題がある。
Although glass substrates have excellent optical properties, surface properties, and chemical stability, they have problems such as low mass production processability, being easily broken and difficult to handle, and being expensive.

それに対し、樹脂基板は、量産加工性が高く取#)扱い
が容易であること、比較的安価であること等の利点を有
しており現在樹脂基板を主体に開発が進められている。
On the other hand, resin substrates have advantages such as high mass production processability, easy handling, and relatively low cost, and currently, resin substrates are being mainly developed.

樹脂基板の中でも、ポリメチルメタクリレートは、吸収
率が大きく経時で反)がでてくること、また耐熱温度が
比較的低く熱変形が起こシ易い等の幾つかの問題点があ
った。
Among resin substrates, polymethyl methacrylate has several problems, such as its high absorption rate, which causes it to warp over time, and its heat resistance temperature, which is relatively low, which makes it susceptible to thermal deformation.

それに対して、特開昭42−2jコ!弘乙号公報、特開
昭乙λ−2Alt4tt3号公報、特開昭63−27t
27号公報等に開示されているポリカーボネート基板は
、光透過率に優れ、吸湿性も小さく耐熱性も良好であり
且つコストも安く光磁気記録媒体用の基板として有望視
されている。
On the other hand, JP-A-42-2J Ko! Hirotsu Publication, JP-A No. 1986-27T, JP-A-63-27T
The polycarbonate substrate disclosed in Publication No. 27 and the like has excellent light transmittance, low hygroscopicity, good heat resistance, and low cost, and is considered to be a promising substrate for magneto-optical recording media.

上記の光磁気記録媒体用の樹脂基板は、樹脂素材を射出
成形法等で規定の寸法のディスクに成形することによシ
裂遺されるのが一般的である。ところが、ポリカーボネ
ート基板には成形工程に伴う固有の光学歪みがあシ、こ
れがいわゆる複屈折として挙動して、しばしば光磁気記
録媒体のC/Nを低下させることがあった。
The resin substrate for the magneto-optical recording medium described above is generally split by molding a resin material into a disk of specified dimensions by injection molding or the like. However, polycarbonate substrates have inherent optical distortion caused by the molding process, which behaves as so-called birefringence and often lowers the C/N of the magneto-optical recording medium.

この光学歪みを除去する丸めに例えば特開昭62一/3
77≠7号公報に開示されているように高分子基板の熱
変形温度以下の温度で熱処理する方法、特開昭42−2
62λ≠j号公報に開示されているようにポリカーボネ
ート基板Q / 30℃以下の温度で熱処理する方法、
さらに、「プラスチック材料講座!」(松金幹夫 著 
日刊工業新聞社 昭和4L≠年2月3Q日初版発行)に
は、ポリカーボネートf/30°Cでλ0日間熱処理す
ることによって集中応力を除去する方法等が提案されて
いる。
For example, Japanese Patent Application Laid-Open No. 62-1/3 is used for rounding to remove this optical distortion.
A method of heat treatment at a temperature below the thermal deformation temperature of a polymer substrate as disclosed in Publication No. 77≠7, JP-A-42-2
A method of heat treating a polycarbonate substrate Q/at a temperature of 30°C or less as disclosed in Publication No. 62λ≠j,
In addition, “Plastic Materials Course!” (written by Mikio Matsugane)
Nikkan Kogyo Shimbun, Showa 4L≠First edition published on February 3Q, 2013) proposes a method of removing concentrated stress by heat treating polycarbonate at f/30°C for λ0 days.

しかしながら、ポリカーボネート基板の製造に伴う付随
的な問題として、熱処理によって基板に反りが生じ基板
の機械特性が不安定となってこの基板を用いた光磁気記
録媒体を記録再生用ドライブにかけた際、特に高速回転
(/I0Orpm、JAOOrpm等)時、トラッキン
グの安定性が損なわれ、いわゆる面振れ加速度が大きく
なって再生が不能になることさえある。
However, an incidental problem associated with the manufacture of polycarbonate substrates is that the substrate warps due to heat treatment, making the mechanical properties of the substrate unstable. During high-speed rotation (/I0Orpm, JAOOrpm, etc.), tracking stability is impaired, so-called surface runout acceleration increases, and reproduction may even become impossible.

この問題全軽減するために、予め基板に逆の反りをつけ
て成形すること等の方法が提案されている。
In order to completely alleviate this problem, methods have been proposed, such as forming the substrate with a reverse warp in advance.

しかしながら、前述した従来の方法では光学歪みを光分
に除去し、C/Hの高い光磁気記録媒体を得ることと基
板の反シをなくし機械的特性が安定した光磁気記録媒体
を得ることを両立させることが困難であった。
However, in the conventional method described above, it is difficult to remove optical distortion into optical components to obtain a magneto-optical recording medium with a high C/H, and to obtain a magneto-optical recording medium with stable mechanical properties by eliminating warping of the substrate. It was difficult to achieve both.

すなわち、熱処理温度が低すぎると基板の反勺は発生し
ないが、光学歪みは充分に除去することができず、また
、熱処理温度が高すぎると光学歪みは除去できても基板
の反りを発生させてしまっていた。更に、基板の局部的
な変形すなわち基板全体としては反シはないが部分的に
凹凸が発生することに対しては従来の方法では殆ど考慮
されておらず特に昇温速度を大きくした場合基板に局部
的な変形が生じ易く、基板の上下方向における画振れ加
速度(ピック・アップの上下移動の加速度として徂11
足される。)の増加を招く等忠実な記録再生に支障をき
たすような問題が生じたりした。
In other words, if the heat treatment temperature is too low, the substrate will not warp, but the optical distortion will not be sufficiently removed, and if the heat treatment temperature is too high, even if the optical distortion can be removed, the substrate will warp. I had left it behind. Furthermore, the conventional method hardly takes into account the local deformation of the substrate, that is, the occurrence of unevenness locally even though the substrate as a whole is not distorted, and especially when the heating rate is increased, Local deformation is likely to occur, and the image blur acceleration in the vertical direction of the board (the acceleration of the vertical movement of the pickup is
It is added. ), problems that impede faithful recording and playback have arisen.

基板に予め反シをつけておく方法においても、その反シ
の度合い(反シ角)の調節が難しく上記の課題を達成す
ることが容易でなかった。
Even in a method in which the substrate is pre-scored, it is difficult to adjust the degree of the warp (reverse angle), making it difficult to achieve the above-mentioned problem.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記の従来技術の問題点に鑑みなされたもの
であり、特にポリカーボネート基板の熱処理方法を改良
することによって光学歪みが小さくC/Nが高い且つ反
シや局部的な変形のないがなく機械特性の安定した光磁
気記録媒体を提供することを目的としている。
The present invention has been made in view of the above-mentioned problems of the prior art, and in particular improves the heat treatment method for polycarbonate substrates to achieve low optical distortion, high C/N, and no distortion or local deformation. The purpose of the present invention is to provide a magneto-optical recording medium with stable mechanical properties.

〔問題点を解決するための手段〕[Means for solving problems]

上記本発明の目的は、ディスク状に成形されたポリカー
ボネート基板を、熱処理雰囲気下に置き該熱処理雰囲気
の温度を300 ’C/時間の昇温速度で該ポリカーボ
ネート基板の熱軟化温度十10±λ度(℃)まで昇温さ
せ、その温度で30分乃至、2弘時間熱処理してから、
該ポリカーボネート基板上に光磁気記録層を設けること
を特徴とする光磁気記録媒体の製造方法により達成され
る。
The object of the present invention is to place a polycarbonate substrate molded into a disk shape in a heat treatment atmosphere, and increase the temperature of the heat treatment atmosphere at a heating rate of 300'C/hour so that the polycarbonate substrate has a thermal softening temperature of 110±λ degrees. After raising the temperature to (℃) and heat-treating at that temperature for 30 minutes to 2 hours,
This is achieved by a method for manufacturing a magneto-optical recording medium characterized by providing a magneto-optical recording layer on the polycarbonate substrate.

〔発明の実施態様〕 本発明においては、射出成形法等によってポリカーボネ
ートを光磁気記録媒体用に規定された所定の寸法にディ
スク状に成形されたポリカーボネート基板を、3009
67時間という比較的緩やかな昇温速度で室温からポリ
カーボネートの熱軟化温度(lコ/乃至/、2コ’c)
よシもほぼ10℃高い/3λ ℃に設定しかつ13コ℃
を中心に±2℃の精度で調整された温度で特定の範囲内
の時間熱処理することによって、光学歪みを除去すると
同時に反シや局部的な変形のないポリカーボネート基板
を得ることができる。
[Embodiments of the Invention] In the present invention, a polycarbonate substrate formed by injection molding or the like into a disk shape having predetermined dimensions prescribed for a magneto-optical recording medium is made of 3009.
Thermal softening temperature of polycarbonate from room temperature to the temperature (1/2 to 2/2) at a relatively slow heating rate of 67 hours.
It is also almost 10℃ higher/3λ℃ and 13℃ higher.
By performing heat treatment within a specific range at a temperature adjusted with an accuracy of ±2°C around , it is possible to remove optical distortion and at the same time obtain a polycarbonate substrate free from warping and local deformation.

すなわち、熱処理により基板に局部的な変形が生じるの
は基板を熱処理雰囲気に置いてからの昇温速度に問題が
おシ、おる特定の範囲内に昇温速度を押さえる必較がお
ること、また光学歪みを充分に除去するための熱処理温
度には閾値があり、ある温度を越えると急速に基板に反
シが発生し、ついにはグループが消失することが分かっ
た。
In other words, local deformation of the substrate due to heat treatment is due to a problem with the temperature increase rate after the substrate is placed in the heat treatment atmosphere, and it is necessary to keep the temperature increase rate within a certain range. It was found that there is a threshold temperature for heat treatment to sufficiently remove optical distortion, and that when a certain temperature is exceeded, warping rapidly occurs on the substrate, and eventually the groups disappear.

さらに、この閾値の温度での熱処理によυ光学歪みを除
去するためには適正な処理時間があり、長ずざると基板
に反シが発生することが分かった。
Furthermore, it was found that there is an appropriate processing time to remove the υ optical distortion by heat treatment at this threshold temperature, and if the processing time is not long, warping will occur on the substrate.

以上の検討結果に基づき上記の熱処理条件が本発明の目
的を達成する上で最も好ましいものであることが分かっ
た。
Based on the above study results, it was found that the above heat treatment conditions are the most preferable for achieving the object of the present invention.

本発明における前記ポリカーボネート基板の熱処理にお
いて雰囲気の昇温速度を3oo0c/時間以下の比較的
緩やかなできるだけ一定の速度で昇温することが望まし
く、更に望ましくはJOO乃至/!0°C/時間の範囲
内から選択された一定の昇温速度で昇温することが望ま
しい。
In the heat treatment of the polycarbonate substrate in the present invention, it is desirable to raise the temperature of the atmosphere at a relatively slow rate of 3oo0c/hour or less and as constant as possible, and more preferably at a rate of JOO~/! It is desirable to increase the temperature at a constant temperature increase rate selected within the range of 0°C/hour.

昇温速度が300℃/時間を越えると基板に局部的な変
形が生じたシ得られた光磁気記録媒体の回転時に面振れ
加速度が増加したりして忠実な記録再生に支障を来すの
で好ましくない。
If the temperature increase rate exceeds 300°C/hour, local deformation will occur in the substrate and surface runout acceleration will increase during rotation of the obtained magneto-optical recording medium, which will impede faithful recording and reproduction. Undesirable.

また、昇温速度が1ro0c7時間未満では熱処理が長
時間となり製造コスト上好ましくない。
Moreover, if the temperature increase rate is less than 1ro0c7 hours, the heat treatment will take a long time, which is not preferable in terms of manufacturing cost.

前記熱処理の設定温度が/3≠℃よシも高くなると、温
度上昇とともに急激に反υが発生し易くなり、また/3
0℃よυも低くなると光学歪みが除去が充分にできなく
なるので好ましくない。
When the set temperature for the heat treatment is higher than /3≠℃, reaction υ tends to occur rapidly as the temperature rises, and /3
If the temperature is lower than 0°C, optical distortion cannot be removed sufficiently, which is not preferable.

温度制御中が±2″Cよりも大きくなると、反りの防止
と光学歪みの除去が両立しなくなるので好ましくない。
If the temperature during the temperature control exceeds ±2''C, it is not preferable because prevention of warpage and removal of optical distortion are not compatible with each other.

また、前記ポリカーボネート基板の熱処理の時間は少な
くとも30分以上で2弘時間以下行うことが好ましく、
望ましくは、30分乃至を時間である。前記熱処理の時
間が短いと光学歪みの除去が充分に行えずまた長すぎる
と機械的反シの発生が起こるようになる。
Further, the heat treatment time of the polycarbonate substrate is preferably at least 30 minutes or more and 2 hours or less,
Preferably, the time is 30 minutes to 30 minutes. If the heat treatment time is too short, optical distortion cannot be removed sufficiently, and if it is too long, mechanical cracks may occur.

本発明の方法における前記ポリカーボネート基板の熱処
理は通常恒温槽の中に放置することによって行う。
The heat treatment of the polycarbonate substrate in the method of the present invention is usually carried out by leaving it in a constant temperature bath.

本発明においては前述のようにポリカーボネート基板を
熱処理した後にその上に光磁気記録層が形成される。
In the present invention, after the polycarbonate substrate is heat treated as described above, a magneto-optical recording layer is formed thereon.

光磁気記録層は通常遷移金属、希土類金属を主体とする
記録層の薄膜と該記録層をサンドイッチした形でその上
下に例えばS iOx 、 S iNx 。
The magneto-optical recording layer is usually sandwiched between a thin film of a recording layer mainly composed of transition metals or rare earth metals, and layers of, for example, SiOx or SiNx are placed above and below the recording layer.

A I N x及びZnS等の酸化物、窒化物及び硫化
物等訪電体保護層の薄膜が積層されて設けられることに
より前記ポリカーボネート基板上に光磁気記録層が形成
される。
A magneto-optical recording layer is formed on the polycarbonate substrate by laminating and providing thin films of a protective layer for a current visiting body made of oxides such as A I N x and ZnS, nitrides, and sulfides.

これらの薄膜の成膜方法は、スパッタリング法で行うの
が一般的である。
A sputtering method is generally used to form these thin films.

本発明においては、前記光磁気記録層を前記ポリカーボ
ネート基板上に設ける前に、前述したような条件でポリ
カーボネート基板に熱処理を施しているので基板の複屈
折によるノイズレベルの増大がなくまた基板の反シの発
生も抑えられているのでC/Nが高く、且つ機械特性も
安定した光磁気記録媒体を得ることができる。
In the present invention, before the magneto-optical recording layer is provided on the polycarbonate substrate, the polycarbonate substrate is heat-treated under the conditions described above, so that there is no increase in noise level due to birefringence of the substrate, and there is no increase in the noise level due to the birefringence of the substrate. Since the occurrence of scratches is also suppressed, a magneto-optical recording medium with a high C/N and stable mechanical properties can be obtained.

本発明の方法において使用されるディスク状の前記ポリ
カーボネート基板の大きさ寸法には特に制限はない。
There are no particular limitations on the size of the disk-shaped polycarbonate substrate used in the method of the present invention.

また、本発明の方法の効果はポリカーボネート基板に限
定されるものでもなく他の透明樹脂基板であっても複屈
折の大きいものについては同様な効果を得ることができ
る。すなわち、その樹脂の熱軟化温度よりもほぼ10℃
J、い設定温度で熱処理することによシ同様な効果が期
待される。
Further, the effects of the method of the present invention are not limited to polycarbonate substrates, and similar effects can be obtained with other transparent resin substrates with large birefringence. That is, approximately 10°C lower than the thermal softening temperature of the resin.
A similar effect is expected by heat treatment at a set temperature.

本発明の方法が適用される前記光磁気記録媒体の前記光
磁気記録層の厚さは、遷移金属及び希土類金属を主体と
した薄膜に代表される記録層の薄膜の厚さとしては、2
00乃至2000^であることが好ましい。前記誘導体
保護層の薄膜の厚さとしては、!00乃至2000^で
おることが好ましい。
The thickness of the magneto-optical recording layer of the magneto-optical recording medium to which the method of the present invention is applied is as follows:
It is preferably from 00 to 2000^. The thickness of the thin film of the dielectric protective layer is ! It is preferably between 00 and 2000^.

本発明において適用される前記光磁気記録媒体の光磁気
記録層の記録層の素材としては前述した遷移金属及び希
土類金属を含めて各種の酸化物及び金属の磁性体の薄膜
が使用できる。例えば、MnB i 、MnAlGe 
、MnCuB i等の結晶性材料、GdIG、I3iS
mFrGaIG、BiSmYbCoGeIG、等の単結
晶材料、さらに、GdCo 、GdFe 、TbFe 
、DYFe 、GdFeB i 、GdTbFe 、G
dTbCo 、TbFeCo 、Tb)’eN i等の
非晶質材料を用いた薄膜である。中でも感度、C/N等
の点で希土類金属、遷移金属を主体とする記録層が最も
好ましい。
As the material for the recording layer of the magneto-optical recording layer of the magneto-optical recording medium applied in the present invention, thin films of magnetic substances of various oxides and metals including the aforementioned transition metals and rare earth metals can be used. For example, MnB i , MnAlGe
, crystalline materials such as MnCuBi, GdIG, I3iS
Single crystal materials such as mFrGaIG, BiSmYbCoGeIG, and also GdCo, GdFe, TbFe
, DYFe , GdFeB i , GdTbFe , G
It is a thin film using an amorphous material such as dTbCo, TbFeCo, or Tb)'eNi. Among these, a recording layer mainly composed of rare earth metals or transition metals is most preferable in terms of sensitivity, C/N, etc.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によって、熱処理することによって、複屈
折が小さくかり反シも小さいポリカーボネート基板を得
ることができ、さらに表面の局部変形を軽減することが
できる。
By heat treatment according to the method of the present invention, it is possible to obtain a polycarbonate substrate with low birefringence and low antireflection, and furthermore, local deformation of the surface can be reduced.

そして、本発明の方法によって熱処理されたポリカーボ
ネート基板を用いた光磁気記録媒体の機械特性を向上さ
せることができる。
Furthermore, the mechanical properties of a magneto-optical recording medium using a polycarbonate substrate heat-treated by the method of the present invention can be improved.

本発明の新規な効果を以下の実施例及び比較例に基づい
て説明する。
The novel effects of the present invention will be explained based on the following examples and comparative examples.

〔実施例−7〕 /30φ、厚さ/、、2m771に射出成形されたポリ
カーボネート基板を、恒温槽(ヤマト科学(株)製 ク
リーンオーブン)中に室温(23°C)で入れた後、2
20067時間の昇温速度で昇温し、所定温度に到達し
てから2時間放置して、前記ポリカーボネート基板の熱
処理を終了した。
[Example-7] A polycarbonate substrate injection-molded to a size of /30φ, thickness /, 2m771 was placed in a constant temperature oven (clean oven manufactured by Yamato Scientific Co., Ltd.) at room temperature (23°C), and then
The temperature was raised at a temperature increase rate of 20,067 hours, and after reaching a predetermined temperature, it was left for 2 hours to complete the heat treatment of the polycarbonate substrate.

その際の設定温度、温度の制御中を第1表のように変え
て試料aからetでの4種類のポリカーボネート基板の
試料を作成した。
At that time, four types of polycarbonate substrate samples from sample a to et were prepared by changing the temperature setting and temperature control as shown in Table 1.

〔比較例−7〕 熱処理せずに室温下に放置したポリカーボネート基板の
試料として試料fを作成した。
[Comparative Example-7] Sample f was prepared as a sample of a polycarbonate substrate that was left at room temperature without being heat-treated.

上記の実施例−/および比較例−/で得られたポリカー
ボネート基板の上にマグネトロンスパッタリング法によ
って、厚さ200にのS iNxの誘電体保護層の薄膜
、厚さ1ooo^のTbFeCoの記録層の薄膜、厚さ
7000にのS iNxの誘電体保護層の薄膜を順次こ
の順番で成膜して、試料aから試料fまでの前記ポリカ
ーボネート基板上に3層構成の光磁気記録層を設けた光
磁気記録媒体の試料AからFまでを得た。
A thin film of a dielectric protective layer of SiNx with a thickness of 200 mm and a recording layer of TbFeCo with a thickness of 1 mm were deposited on the polycarbonate substrates obtained in the above Examples and Comparative Examples by magnetron sputtering. A thin film of a dielectric protective layer of SiNx with a thickness of 7000 mm was sequentially formed in this order, and a three-layer magneto-optical recording layer was provided on the polycarbonate substrates from sample a to sample f. Samples A to F of magnetic recording media were obtained.

以上のようにして得た前記ポリカーボネート基板の各試
料の複屈折及び反りを以下のような条件で測定した。ま
た、光磁気記録媒体の各試料のC/Nを以下のような条
件で測定した。
The birefringence and warpage of each sample of the polycarbonate substrate obtained as described above were measured under the following conditions. Further, the C/N of each sample of the magneto-optical recording medium was measured under the following conditions.

複屈折の測定方法:He−Neレーザーの平行光を用い
てディスクの反射光から測定した。
Birefringence measurement method: Birefringence was measured from the reflected light of the disk using parallel light from a He-Ne laser.

反シの測定方法:  N、に、=OM、λ=t30nm
のフォーカスビームによるピック・アップ移動量を静電
容量として測定した。
Measurement method of anti-shi: N, Ni, = OM, λ = t30nm
The amount of pickup movement by the focused beam was measured as capacitance.

半径4Qrnm位置の半径方向の反シと周方向の反9の
λ乗和の平方根を反υの値とした。
The square root of the λ-th power sum of the radial direction and the circumferential direction at a position of 4Qrnm radius was taken as the value of the inverse.

C/Nの測定方法: 差動方式の光学系を備えた光磁気
ディスクテスター(N、A、=0.!j。
C/N measurement method: Magneto-optical disk tester equipped with a differential optical system (N, A, = 0.!j.

λ= r j On m )を用い念。Remember to use λ = r j On m).

なお、前記ポリカーボネート基板の熱軟化温度をAST
M−f)6111により荷重/ r 、A Kg / 
cm2を印加して測定したところ722°Cであった。
Note that the thermal softening temperature of the polycarbonate substrate is AST
M-f)6111 load/r, A Kg/
When measured by applying cm2, the temperature was 722°C.

それらの測定結果は第2表のとうりであった。The measurement results were as shown in Table 2.

第1表 第λ表 第2表から明らかなように、ポリカーボネート基板の熱
軟化温度(122°C)+/(7’Cである132°C
の設定温度で熱処理した場合温度制御幅が±2°Cであ
る試料Cの基板では他の場合に比べ複屈折、反シともに
小さく、その基板を用いて作成した光磁気記録媒体のC
/Nも良好な値であった。
As is clear from Table 1 and λ Table 2, the thermal softening temperature of the polycarbonate substrate (122°C) +/(132°C which is 7'C)
The substrate of sample C, which has a temperature control width of ±2°C when heat treated at a set temperature of
/N was also a good value.

一方、設定温度が試料Cと同じ/3λ℃であっても制御
温度の幅が±2°Cよシも大きく士!℃である試料りの
基板では複屈折は比較的小さいが反シが大きくなってし
まった。
On the other hand, even if the set temperature is the same as sample C/3λ℃, the control temperature range is still as large as ±2℃! Although the birefringence of the sample substrate at ℃ was relatively small, the anti-reflection became large.

また、設備温度が132°Cよりも低いlコ−00(試
料A)、727°C(試料B)においては、温度制御幅
を±2°Cとしても反りは小さかったが複屈折の値が大
きくなってしまいそれを用いて得られた光磁気記録媒体
のC/Nがあまシ高くならなかった。
In addition, for lco-00 (sample A) and 727°C (sample B) where the equipment temperature was lower than 132°C, the warpage was small even when the temperature control width was ±2°C, but the birefringence value was As a result, the C/N of the magneto-optical recording medium obtained using it was not very high.

更にまた、設定温度が132°Cよりも高い737°C
の場合(試料E)では、温度制御幅を2°Cで熱処理し
ても複屈折は小さくできたが反シが大きくなってしまっ
た。
Furthermore, the set temperature is 737°C higher than 132°C.
In the case of (sample E), even if the heat treatment was performed with a temperature control width of 2°C, the birefringence could be reduced, but the reciprocity became large.

熱処理を行わなかった試料Fの基板は複屈折が大きくそ
れを用いて作成した光磁気記録媒体のC/Nはあまシ大
きくならなかった。
The substrate of Sample F, which was not subjected to heat treatment, had a large birefringence, and the C/N of the magneto-optical recording medium prepared using it did not increase significantly.

〔実施例−2〕 熱軟化温度が121℃のポリカーボネート基板を第3表
に示す設定温度、制御温度幅で熱処理した以外実施例−
/と同一の条件で熱処理及び光磁気記録媒体を作成した
[Example 2] Example except that a polycarbonate substrate with a heat softening temperature of 121°C was heat treated at the set temperature and control temperature range shown in Table 3.
The heat treatment and magneto-optical recording medium were produced under the same conditions as /.

得られ九結果を第V表に示す。The results obtained are shown in Table V.

第3表 第弘表 熱軟化温度/2j’+10℃よシも設定温度が低くても
また高くても複屈折も反シも共に好ましいポリカーボネ
ート基板とならなかった。
Table 3: Thermal Softening Temperature/2j'+10°C Even if the set temperature was low or high, a polycarbonate substrate with neither birefringence nor anti-reflection was obtained.

〔実施例−3〕 熱軟化温度722°Cのポリカーボネート基板を投写温
度1&:/32°C1制御温度幅を±λ℃とし、設定温
度下での処理時間を第5表に示す条件にした以外実施例
−ノと同一の条件で熱処理を行って試料jから試料rま
でのポリカーボネート基板を得、それらの基板を用いた
光磁気記録媒体の作成を行った。(試料J−It) 得られた結果を同じく第3表に示す。
[Example 3] A polycarbonate substrate with a thermal softening temperature of 722°C was projected at a temperature of 1 &:/32°C, a controlled temperature range of ±λ°C, and a processing time under the set temperature under the conditions shown in Table 5. Polycarbonate substrates from sample j to sample r were obtained by heat treatment under the same conditions as in Example No. 2, and magneto-optical recording media were produced using these substrates. (Sample J-It) The obtained results are also shown in Table 3.

第5表 設定温度に達してからの基板の処理時間が3Q分に達し
ない試料J及びRでは、複屈折の値が大きくそれらの基
板を用いて作成した光磁気記録媒体のC/Nがあまシ高
くならなかった。
Table 5 Samples J and R whose substrate processing time does not reach 3Q minutes after reaching the set temperature have large birefringence values, and the C/N of magneto-optical recording media made using these substrates is small. It didn't get high.

また、処理時間が2≠時間を越えた試料Q及びRでは基
板の反シが大きくなってしまった。
In addition, in samples Q and R for which the processing time exceeded 2≠ hours, the warp of the substrate became large.

〔実施例−弘〕[Example-Hiroshi]

ポリカーボネート基板を恒温槽(ヤマト科学(株)製 
クリーンオーブン)中に室温(23°C)で入れた後、
第6表に示した昇温速度で132°Cまで昇温してその
温度を設定温度として制御温度±2°Cで処理した以外
は実施例−/と同一の条件にして基板の熱処理を行って
試料Sからyまでの基板を得、それらの基板を用いて光
磁気記録媒体の作成を行った。(試料5−X) なお、比較のために所定の昇温過程を通さずに13λ℃
の設定温度に恒温槽内の温度が達したところでポリカー
ボネート基板をいきな9人れて熱処理を行った試料Zを
作成した。
The polycarbonate substrate was placed in a constant temperature oven (manufactured by Yamato Scientific Co., Ltd.)
After placing it in a clean oven at room temperature (23°C),
The substrate was heat-treated under the same conditions as in Example-/, except that the temperature was raised to 132 °C at the temperature increase rate shown in Table 6, and the temperature was set as the control temperature ±2 °C. Substrates of samples S to y were obtained by using these substrates, and a magneto-optical recording medium was created using these substrates. (Sample 5-X) For comparison, the sample was heated to 13λ℃ without going through the specified heating process.
When the temperature in the thermostatic oven reached the set temperature, a polycarbonate substrate was suddenly heated by nine people to prepare Sample Z.

また、光磁気記録媒体の各試料の面振れ加速度を以下の
条件で作成した。
In addition, the surface runout acceleration of each sample of the magneto-optical recording medium was prepared under the following conditions.

面振れ加速度の測定法 : 光磁気記録媒体の回転数を
/I0Orpmとし基板の中心から外周に向けて半径J
Qmmから4Qrnmの間をr等分した位置における向
撮れ加速度のうち最大値をその光磁気記録媒体の面撮れ
加速度(基板の上下方向の寸度安定性)とした。
Measuring method of surface runout acceleration: The rotation speed of the magneto-optical recording medium is /I0Orpm, and the radius J is measured from the center of the substrate to the outer circumference.
The maximum value of the direction acceleration at a position r equally divided between Qmm and 4Qrnm was taken as the plane acceleration (dimensional stability of the substrate in the vertical direction) of the magneto-optical recording medium.

熱処理したのを基板の測定結果及びその基板を用いて作
成した光磁気記録媒体の面振れ加速度の測定結果を第を
表に示す。
Table 1 shows the measurement results of the heat-treated substrate and the measurement results of the surface runout acceleration of the magneto-optical recording medium prepared using the substrate.

第6表 昇温速度が3006C/時間以内の比較的縁やかな条件
では面掘れ加速度はλ、Qm/sec 以下と比較的小
さい値を示したが、3o o ’C/時間を越えるとか
なり大きくなってしまった。
Table 6 Under relatively moderate conditions where the temperature increase rate is within 3006C/hour, the surface excavation acceleration showed a relatively small value of less than λ,Qm/sec, but when it exceeded 3006C/hour, it became quite large. It is had.

また、昇温過程を経ない試料Yでは、面去れ加速度は相
当大きくなり基板表面が局部的に変形しているのが肉眼
でも観察できた。
In addition, in sample Y which did not undergo the temperature raising process, the flaking acceleration was considerably large, and local deformation of the substrate surface could be observed with the naked eye.

特許出願人 富士写Xフィルム株式会社1、事件の表示 昭和63年特願第321667号 2、発明の名称 光磁気記録媒体の製造方法 3、補正をする者 事件との関係Patent Applicant: Fujisha X Film Co., Ltd. 1, Incident Display 1988 Patent Application No. 321667 2. Name of the invention Manufacturing method of magneto-optical recording medium 3. Person who makes corrections Relationship with the incident

Claims (1)

【特許請求の範囲】[Claims]  ディスク状に成形されたポリカーボネート基板を、熱
処理雰囲気下に置き該熱処理雰囲気の温度を300℃/
時間の昇温速度で該ポリカーボネート基板の熱軟化温度
+10±2度(℃)まで昇温させ、その温度で30分乃
至24時間熱処理してから、該ポリカーボネート基板上
に光磁気記録層を設けることを特徴とする光磁気記録媒
体の製造方法。
A polycarbonate substrate formed into a disk shape is placed in a heat treatment atmosphere and the temperature of the heat treatment atmosphere is increased to 300°C/
After increasing the temperature to the thermal softening temperature of the polycarbonate substrate +10±2 degrees (°C) at a heating rate of 1 hour, and heat-treating at that temperature for 30 minutes to 24 hours, a magneto-optical recording layer is provided on the polycarbonate substrate. A method for manufacturing a magneto-optical recording medium characterized by:
JP32866788A 1988-12-26 1988-12-26 Production of magneto-optical recording medium Pending JPH02173959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32866788A JPH02173959A (en) 1988-12-26 1988-12-26 Production of magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32866788A JPH02173959A (en) 1988-12-26 1988-12-26 Production of magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH02173959A true JPH02173959A (en) 1990-07-05

Family

ID=18212820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32866788A Pending JPH02173959A (en) 1988-12-26 1988-12-26 Production of magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH02173959A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998049678A1 (en) * 1997-04-25 1998-11-05 Iomega Corporation Temperature treatment of flexible media for their dimensional stability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998049678A1 (en) * 1997-04-25 1998-11-05 Iomega Corporation Temperature treatment of flexible media for their dimensional stability

Similar Documents

Publication Publication Date Title
JPH02173959A (en) Production of magneto-optical recording medium
JPH0533137B2 (en)
JPH0582723B2 (en)
JPS61184743A (en) Optical recording medium
JPH0330136A (en) Production of magneto-optical recording medium
JPH02101655A (en) Production of magneto-optical recording medium
JPS63188013A (en) Manufacture of optical disk base
JPH023131A (en) Production of optical disk
JPS63220439A (en) Production of magneto-optical disk
JP3022642B2 (en) Method for manufacturing magneto-optical recording medium
JP2539401B2 (en) Magneto-optical recording medium and manufacturing method thereof
JPS6360739A (en) Processor for base of data recording medium
JPS5923016B2 (en) optical recording medium
JPS6310353A (en) Magneto-optical recording medium
JPS61182652A (en) Production of photomagnetic recording medium
JP2763913B2 (en) Magnetic film and method of manufacturing the same
JPS61172236A (en) Photomagnetic recording element
JPS62202346A (en) Optical recording medium
JP2000187892A (en) Silicon dioxide film, phase change type disk medium and its production
JPS60231936A (en) Photomagnetic recording medium
JPH01107347A (en) Production of magneto-optical recording medium
JPS62215201A (en) Optical disk for information
JPS62162260A (en) Photomagnetic recording element and its production
JPS61210549A (en) Production of magnetooptic recording medium
JPH03268249A (en) Magneto-optical recording medium