JPH0217362A - Cooling device - Google Patents

Cooling device

Info

Publication number
JPH0217362A
JPH0217362A JP16506288A JP16506288A JPH0217362A JP H0217362 A JPH0217362 A JP H0217362A JP 16506288 A JP16506288 A JP 16506288A JP 16506288 A JP16506288 A JP 16506288A JP H0217362 A JPH0217362 A JP H0217362A
Authority
JP
Japan
Prior art keywords
cooling
flow rate
refrigerant
cooling water
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16506288A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ohira
義博 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Elevator Engineering and Service Co Ltd
Original Assignee
Hitachi Elevator Engineering and Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Elevator Engineering and Service Co Ltd filed Critical Hitachi Elevator Engineering and Service Co Ltd
Priority to JP16506288A priority Critical patent/JPH0217362A/en
Publication of JPH0217362A publication Critical patent/JPH0217362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To prevent waste of the power of a pump by a method wherein a flow rate control valve is controlled according to a signal from a detecting means to detect the state of a refrigerant in a condenser and output an output signal, responding to the state of the refrigerant, to each of cooling bodies. CONSTITUTION:The state of a refrigerant in condensers 3a to 3n changed in linkage with operation of freezers (cooling bodies) 1a to 1n is detected by pressure detectors (detecting means) 11a to 11n, and an output signal responding to the state of the refrigerant is outputted. According to the output signal, valve controllers (control means) 12a to 12n control flow rate regulating valve 13a to 13n mounted to the freezers 1a to 1n, respectively. The valve controllers control a flow rate of cooling water fed to condensers 3a to 3n of the freezers 1a to 1n, respectively. This constitution prevents the feed of unnecessary cooling water and reduces a consumption amount of a power by means of which a pump 9 is operated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、複数の冷凍機などの冷却体を有する冷却装置
に係り、特に電力消費量を低減するのに好適な冷却装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling device having a plurality of cooling bodies such as refrigerators, and particularly to a cooling device suitable for reducing power consumption.

[従来の技術] 従来、冷凍機などを有する冷却装置において、例えば特
開昭60−134165号公報に示されるように、冷却
水の温度を計測し、この温度に応じてポンプの回転数を
変更するポンプ回転数可変装置を備えて、このポンプ回
転数可変装置の作動により凝縮器に供給される冷却水の
流量を制御するものが提案されている。
[Prior Art] Conventionally, in a cooling device having a refrigerator or the like, the temperature of cooling water is measured and the rotation speed of a pump is changed according to this temperature, as shown in Japanese Patent Laid-Open No. 60-134165, for example. A system has been proposed that includes a variable pump rotation speed device and controls the flow rate of cooling water supplied to the condenser by operating the variable pump rotation speed device.

また、複数の冷凍機などの冷却体を有する冷却装置にあ
っては、設備費を低減するために、冷却塔、ポンプを1
組だけ設けて、これらの冷却塔、ポンプが介在する配管
を冷却体の凝縮器のそれぞれに接続するようにしたもの
がある。
In addition, for cooling systems that have multiple cooling bodies such as refrigerators, in order to reduce equipment costs, cooling towers and pumps may be installed in one
There is one in which only one set is provided, and the piping in which these cooling towers and pumps are interposed is connected to each of the condensers of the cooling body.

[発明が解決しようとする課題] ところで、上記のような従来の複数の冷却体を有する冷
却装置にあっては、1台のポンプから送り出される冷却
水が配管を介し複数の冷却体の凝縮器にそれぞれ供給さ
れるので、作動していない冷却体の凝縮器に不要な冷却
水が供給されて、その分、冷却水を送り出すポンプが動
力を浪費するという問題があった。なお、上述したポン
プ回転数可変装置を備えるものでは、ポンプから送り出
す冷却水の流量は制御可能であるが、複数の凝縮器のそ
れぞれへの流量は制御できず、やはり、ポンプの動力を
浪費することになる。
[Problems to be Solved by the Invention] By the way, in the conventional cooling device having a plurality of cooling bodies as described above, the cooling water sent out from one pump passes through the condensers of the plurality of cooling bodies. As a result, there is a problem in that unnecessary cooling water is supplied to the condenser of the cooling body that is not in operation, and the pump that pumps out the cooling water wastes power accordingly. In addition, in the device equipped with the above-mentioned pump rotation speed variable device, the flow rate of cooling water sent out from the pump can be controlled, but the flow rate to each of the plurality of condensers cannot be controlled, and the power of the pump is still wasted. It turns out.

本発明はこのような従来技術における実情に鑑みてなさ
れたもので、その目的は、それぞれの冷却体の作動状態
に応じて、これらの冷却体の凝縮器への冷却水の流量を
それぞれ制御することのできる冷却装置を提供すること
にある。
The present invention has been made in view of the actual situation in the prior art, and its purpose is to control the flow rate of cooling water to the condenser of each cooling body according to the operating state of each cooling body. The objective is to provide a cooling device that can

[課題を解決するための手段] この目的を達成するために本発明は、冷却水の冷却によ
り冷媒を凝縮する凝縮器を含み、前記冷媒を介して周囲
の冷却を行なう少なくとも1つの冷却体と、この冷却体
の凝縮器の入口および出口に接続され前記冷却水が循環
する配管と、この配管に介設され前記出口からの冷却水
を冷却する冷却塔と、この冷却塔に接続され前記配管を
介し前記入口に冷却水を送り出すポンプとを有する冷却
装置において、前記冷却体のそれぞれに対応して設けら
れ、該冷却体の凝縮器に流入出する冷却水の流量を調節
可能な流量調節弁を設けるとともに。
[Means for Solving the Problems] In order to achieve this object, the present invention includes a condenser that condenses a refrigerant by cooling cooling water, and at least one cooling body that cools the surroundings via the refrigerant. , a pipe connected to the inlet and outlet of the condenser of the cooling body and through which the cooling water circulates, a cooling tower interposed in the pipe to cool the cooling water from the outlet, and a pipe connected to the cooling tower. and a pump that sends cooling water to the inlet through the cooling device, the flow rate control valve being provided corresponding to each of the cooling bodies and capable of adjusting the flow rate of the cooling water flowing into and out of the condenser of the cooling body. Along with establishing.

前記冷却体のそれぞれに、前記凝縮器内の冷媒の状態を
検知し、この冷媒の状態に対応する出力信号を発する検
知手段と、この検知手段からの出力信号に応じて前記流
量調節弁を制御する制御手段とを設けた構成にしである
Each of the cooling bodies includes a detection means for detecting the state of the refrigerant in the condenser and generating an output signal corresponding to the state of the refrigerant, and controlling the flow rate adjustment valve in accordance with the output signal from the detection means. The configuration is provided with a control means for controlling.

[作用] 本発明は上記のように構成したので、冷却体の作動に伴
って変化する凝縮器内の冷媒の状態が検知手段により検
知され、この冷媒の状態に対応する出力信号が発せられ
る。そして、この出力信号に応じて、制御手段がそれぞ
れの冷却体ごとに設けられている流量調節弁を制御し、
これによりそれぞれの冷却体の凝縮器に供給される冷却
水の流量が制御される。すなわち、それぞれの冷却体の
作動状態に応じて、これらの冷却体の凝縮器への冷却水
の流量をそれぞれ制御することができる。
[Function] Since the present invention is configured as described above, the detection means detects the state of the refrigerant in the condenser that changes with the operation of the cooling body, and an output signal corresponding to the state of the refrigerant is generated. Then, in accordance with this output signal, the control means controls the flow rate regulating valve provided for each cooling body,
This controls the flow rate of cooling water supplied to the condenser of each cooling body. That is, the flow rate of cooling water to the condenser of each cooling body can be controlled depending on the operating state of each cooling body.

[実施例コ 以下、本発明の冷却装置を図に基づいて説明する。[Example code] Hereinafter, the cooling device of the present invention will be explained based on the drawings.

第1図は本発明の冷却装置の一実施例の構成を示すブロ
ック図、第2図は第1図の冷却装置に備えられる圧力検
知器の出力信号と流量調節弁の弁開度との相関関係を示
す特性図である。
Fig. 1 is a block diagram showing the configuration of an embodiment of the cooling device of the present invention, and Fig. 2 shows the correlation between the output signal of the pressure detector provided in the cooling device of Fig. 1 and the valve opening of the flow rate control valve. It is a characteristic diagram showing a relationship.

第1図において、18〜1nは循環する冷媒を介し周囲
の冷却を行なう冷却体1例えば図示しない冷蔵庫の冷凍
機である。そして、2aは冷凍機1a内の冷媒を圧縮す
る圧縮器、3aは冷却水の冷却により圧縮器2aからの
冷媒を凝縮する凝縮器、4aは凝縮器3aからの冷媒を
膨張させる膨張弁、5aは膨張弁4aからの冷媒を蒸発
させることにより周囲の熱を奪う蒸発器、6aはこれら
の圧縮器28〜蒸発器5aを順次接続する循環管路で、
冷却体1aはこれらの圧縮器2a、凝縮器3a、膨張弁
4a、蒸発器5a、循環管路6aから構成されており、
また、他の冷却体1b〜1nも同様に凝縮器3b〜3n
などからなっている。
In FIG. 1, reference numerals 18 to 1n designate a cooling body 1, for example, a refrigerator (not shown), which cools the surrounding area through a circulating refrigerant. 2a is a compressor that compresses the refrigerant in the refrigerator 1a, 3a is a condenser that condenses the refrigerant from the compressor 2a by cooling cooling water, 4a is an expansion valve that expands the refrigerant from the condenser 3a, and 5a 6a is an evaporator that removes ambient heat by evaporating the refrigerant from the expansion valve 4a, and 6a is a circulation pipe connecting the compressor 28 to the evaporator 5a in sequence.
The cooling body 1a is composed of a compressor 2a, a condenser 3a, an expansion valve 4a, an evaporator 5a, and a circulation pipe 6a.
Similarly, the other cooling bodies 1b to 1n are condensers 3b to 3n.
It consists of etc.

7はこれらの凝縮器38〜3nのそれぞれの出口に接続
される戻り側配管、8はこの戻り側配管7の他端が接続
され、凝縮器38〜3nからの冷却水を冷却する冷却塔
、9はこの冷却塔8に接続され、冷却水を送り出すポン
プ、10はポンプ9と凝縮器38〜3nのそれぞれの入
口に接続される供給側配管で、冷却水は冷却塔8、ポン
プ9、供給側配管10.凝縮器3a〜3n、戻り側配管
7を順次介し循環するようになっている。
7 is a return side pipe connected to each outlet of these condensers 38 to 3n, 8 is a cooling tower to which the other end of this return side pipe 7 is connected and cools the cooling water from the condensers 38 to 3n; 9 is a pump connected to this cooling tower 8 and sends out cooling water; 10 is a supply side pipe connected to each inlet of the pump 9 and condensers 38 to 3n; the cooling water is supplied to the cooling tower 8, the pump 9, and the supply side; Side piping 10. The water is circulated through the condensers 3a to 3n and the return pipe 7 in this order.

そして、llaは凝縮器3a内の冷媒の圧力を検知し、
この圧力に対応する出力信号を発する圧力検知器で、こ
の圧力検知器11aにより凝縮器3a内の冷媒の状態を
検知し、この冷媒の状態に対応する出力信号を発する検
知手段が構成されている。12aは圧力検知器11aか
らの出力信号Pに応じて作動する制御手段、例えば弁制
御器、13aは供給側配管10の凝縮器38部分に取付
けられ、弁制御器12aによりその弁開度Vを制律され
る流量調節弁である。なお、上述した圧力検知器11a
の出力信号Pと流量調節弁13aの弁開度Vとの関係は
、例えば第2図の特性図に示すように、出力信号Pが最
小値POのときに弁開度Vは最小値Voになり、出力信
号Pが大きくなるにしたがって弁開度Vは大きくなり、
出力信号Pが最大値Pmのときに弁開度Vは最大値Vm
となるように設定しである。
Then, lla detects the pressure of the refrigerant in the condenser 3a,
A pressure sensor that emits an output signal corresponding to this pressure constitutes a detection means that detects the state of the refrigerant in the condenser 3a using the pressure sensor 11a and emits an output signal that corresponds to the state of the refrigerant. . Reference numeral 12a indicates a control means, such as a valve controller, which operates in response to the output signal P from the pressure sensor 11a. Reference numeral 13a is attached to the condenser 38 portion of the supply side piping 10, and the valve opening degree V is controlled by the valve controller 12a. It is a controlled flow control valve. Note that the pressure sensor 11a described above
The relationship between the output signal P and the valve opening degree V of the flow rate control valve 13a is, for example, as shown in the characteristic diagram of FIG. 2, when the output signal P is the minimum value PO, the valve opening degree V is the minimum value Vo. As the output signal P increases, the valve opening degree V increases,
When the output signal P is the maximum value Pm, the valve opening degree V is the maximum value Vm
The settings are as follows.

また、他の冷却体1b〜1nにも、圧力検知器11b 
〜lln、弁制御器12b〜12n、流量制御弁13b
〜13nがぞれぞれ備えられている。
In addition, pressure detectors 11b are also installed in the other cooling bodies 1b to 1n.
~lln, valve controllers 12b to 12n, flow rate control valve 13b
~13n are provided, respectively.

さらに、14.15は供給側配管10.戻り側配管7に
それぞれ設けられる水圧検知器、16はこれらの水圧検
知器14.15からの水圧信号の圧力差を演算して制御
信号を出力する水圧制御器。
Furthermore, 14.15 is the supply side piping 10. A water pressure detector 16 is provided in each of the return pipes 7, and 16 is a water pressure controller that calculates the pressure difference between water pressure signals from these water pressure detectors 14 and 15 and outputs a control signal.

17はこの水圧制御器16からの制御信号に基づいてポ
ンプ9の回転数を制御するインバータで、これらの水圧
検知器14,15、水圧制御器16゜インバータ17に
よりポンプ9は所定の吐出圧力で運転されるようになっ
ている。
17 is an inverter that controls the rotation speed of the pump 9 based on the control signal from the water pressure controller 16. These water pressure detectors 14, 15, the water pressure controller 16, and the inverter 17 control the pump 9 at a predetermined discharge pressure. It is designed to be driven.

この実施例にあって1例えば冷凍機1aが作動し続ける
と、この冷凍機1aの凝縮器3a内の冷媒の圧力が定格
値まで上昇し、圧力検知器11aがこの定格圧力に対応
する第2図の出力信号Pmを発する。そこで、この出力
信号Pmに基づいて、弁制御器12aが流量調節弁13
aを制御し、この流量調節弁13aは第2図に示すよう
に最大弁開度Vmに開かれて、この結果、凝縮器3aに
最大流量の冷却水が供給される。同様に、他の冷凍機1
b〜1nも作動し続けると、凝縮器3b〜3nに最大流
量の冷却水がそれぞれ供給される。そして、供給側配管
10、戻り側配管7の水圧が水圧検知器14.15によ
りそれぞれ検知されて、水圧制御器16がこれらの水圧
信号から圧力差を演算し、あらかじめ設定される圧力差
となるように制御信号を発する。この制御信号に基づい
て、インバータ17が作動して、ポンプ9の回転数が制
御される。このとき、流量調節弁13a〜13nが最大
弁開度Vmに開かれており、供給側配管10の管路抵抗
が低下していることから、ポンプ9の回転数は最大値ま
で上昇し、最大流量の冷却水が所定の吐出圧力で送り出
される。
In this embodiment, for example, when the refrigerator 1a continues to operate, the pressure of the refrigerant in the condenser 3a of the refrigerator 1a rises to the rated value, and the pressure detector 11a detects the second The output signal Pm shown in the figure is generated. Therefore, based on this output signal Pm, the valve controller 12a controls the flow rate control valve 13.
a, the flow rate regulating valve 13a is opened to the maximum valve opening degree Vm as shown in FIG. 2, and as a result, the maximum flow rate of cooling water is supplied to the condenser 3a. Similarly, other refrigerator 1
When the condensers b to 1n also continue to operate, the maximum flow rate of cooling water is supplied to the condensers 3b to 3n, respectively. Then, the water pressures of the supply side piping 10 and the return side piping 7 are detected by the water pressure detectors 14 and 15, respectively, and the water pressure controller 16 calculates the pressure difference from these water pressure signals, resulting in a preset pressure difference. The control signal is emitted as follows. Based on this control signal, the inverter 17 is activated and the rotation speed of the pump 9 is controlled. At this time, the flow rate control valves 13a to 13n are opened to the maximum valve opening degree Vm, and the line resistance of the supply side piping 10 is decreasing, so the rotation speed of the pump 9 increases to the maximum value, and the rotation speed of the pump 9 increases to the maximum value. A flow rate of cooling water is delivered at a predetermined discharge pressure.

次に、例えば図示しない冷蔵庫内の温度低下等により、
この冷蔵庫内を冷却する冷凍機1aの圧縮器2aが停止
すると、この圧縮器2aから循環管路6aを介し行なわ
れていた冷媒の供給が停止され、凝縮器3a内の冷媒の
圧力が、低圧側の蒸発器5a内の圧力と平衡するまで徐
々に低下する。
Next, for example, due to a drop in temperature inside the refrigerator (not shown),
When the compressor 2a of the refrigerator 1a that cools the inside of the refrigerator stops, the supply of refrigerant from the compressor 2a through the circulation pipe 6a is stopped, and the pressure of the refrigerant in the condenser 3a decreases to a low pressure. The pressure gradually decreases until it balances with the pressure in the side evaporator 5a.

この圧力の低下に伴なって、圧力検知器11aの出力信
号Pも最大値Pmから徐々に低下し、この結果、第2図
に示すように、流量調節弁13aの弁開度Vも最大値V
mから徐々に小さくなるとともに、凝縮器3aに供給さ
れる冷却水の流量が減少する。やがて、凝縮器3a内の
冷媒の圧力が蒸発器5a内の冷媒の圧力と平衡すると、
圧力検知器11aの発する出力信号Pが最小値POとな
り、これに伴って、流量調節弁13aの弁開度Vが最小
値Voとなって、ls縮器3aに供給される冷却水の流
量が最小となる。同様に、他の冷凍機1b〜inの圧縮
器2b〜2nが停止すると、凝縮器3b〜3nの冷媒の
圧力が低下し、流量調節弁13b〜13nの弁開度Vが
小さくなるとともに。
Along with this decrease in pressure, the output signal P of the pressure detector 11a also gradually decreases from the maximum value Pm, and as a result, as shown in FIG. V
m, the flow rate of cooling water supplied to the condenser 3a decreases. Eventually, when the pressure of the refrigerant in the condenser 3a equilibrates with the pressure of the refrigerant in the evaporator 5a,
The output signal P generated by the pressure sensor 11a becomes the minimum value PO, and accordingly, the valve opening degree V of the flow rate adjustment valve 13a becomes the minimum value Vo, and the flow rate of the cooling water supplied to the ls compressor 3a becomes Minimum. Similarly, when the compressors 2b-2n of the other refrigerators 1b-in stop, the pressure of the refrigerant in the condensers 3b-3n decreases, and the valve openings V of the flow rate control valves 13b-13n decrease.

これらの凝縮器3b〜3nに供給される冷却水の流量も
それぞれ減少する。
The flow rates of cooling water supplied to these condensers 3b to 3n also decrease.

そして、これらの流量調節弁13a〜13nの弁開度V
が小さくなると、供給側配管1oの管路抵抗が増加し、
この供給側配管10内の水圧が上昇する。この水圧の上
昇に応じて、水圧制御器1Gからの制御信号に基づき、
インバータ17を介してポンプ9が減速され、この結果
、減少した流量の冷却水が所定の吐出圧力で送り出され
る。
Then, the valve opening degree V of these flow rate control valves 13a to 13n
When becomes smaller, the pipe resistance of the supply side pipe 1o increases,
The water pressure within this supply side piping 10 increases. In response to this increase in water pressure, based on the control signal from the water pressure controller 1G,
The pump 9 is decelerated via the inverter 17, and as a result, a reduced flow rate of cooling water is delivered at a predetermined discharge pressure.

その後、冷蔵庫内の温度上昇等により冷凍機1aの圧縮
器2aが再び作動すると、前述の停止の場合とは逆に、
凝縮器3a内の冷媒の圧力が上昇して、圧力検知器11
aの発する出力信号Pも最小値Poから徐々に増加し、
これに伴って流量調節弁13aの弁開度Vも最小値vO
から徐々に大きくなる。やがて、凝縮器3a内の冷媒の
圧力が定格値に達すると、圧力検知器11aの出力信号
Pが最大値Pmとなるとともに、流量調節弁13aの弁
開度■も最大値Vmに達して、凝縮器3aに再び最大流
量の冷却水が供給される。同様に、他の冷凍機上b〜1
nの圧縮器2b〜2nが再び作動すると、Ig縮器3b
〜3n内の冷媒の圧力が上昇し、流量調節弁13b〜1
3nの弁開度Vが大きくなるとともに、これらの凝縮器
3b〜3nに供給される冷却水の流量もそれぞれ増加す
る。
After that, when the compressor 2a of the refrigerator 1a operates again due to a rise in the temperature inside the refrigerator, contrary to the case of the above-mentioned stop,
The pressure of the refrigerant in the condenser 3a increases, and the pressure detector 11
The output signal P emitted by a also gradually increases from the minimum value Po,
Along with this, the valve opening degree V of the flow rate control valve 13a also reaches the minimum value vO.
gradually increases from Eventually, when the pressure of the refrigerant in the condenser 3a reaches the rated value, the output signal P of the pressure detector 11a reaches the maximum value Pm, and the valve opening degree ■ of the flow rate control valve 13a also reaches the maximum value Vm. The maximum flow rate of cooling water is again supplied to the condenser 3a. Similarly, on other refrigerators b~1
When the Ig compressors 2b to 2n operate again, the Ig compressor 3b
The pressure of the refrigerant in ~3n increases, and the flow rate control valves 13b~1
As the valve opening degree V of 3n increases, the flow rates of cooling water supplied to these condensers 3b to 3n also increase.

このとき、これらの流#C調節弁13a〜13nが開く
ことから、供給側配管10内の管路抵抗が減少して、こ
の供給側配管10内の水圧が上昇する。この水圧の上昇
に応じて、水圧制御器16からの制御信号に基づき、イ
ンバータ17を介してポンプ9が増速され、この結果、
増加した流量の冷却水が所定の吐出圧力で送り出される
At this time, since these flow #C control valves 13a to 13n open, the pipe resistance in the supply side piping 10 decreases, and the water pressure in the supply side piping 10 increases. In response to this increase in water pressure, the speed of the pump 9 is increased via the inverter 17 based on a control signal from the water pressure controller 16, and as a result,
The increased flow rate of cooling water is delivered at a predetermined discharge pressure.

このように構成した実施例にあっては、冷凍機1a〜1
nの作動状態に応じて、これらの冷凍機18〜I nの
凝縮器38〜3nへの冷却水の流量をそれぞれ制御する
とともに、この冷却水を供給側配管工0を介し送り出す
ポンプ14を適正な回転数で運転することができる。
In the embodiment configured in this way, the refrigerators 1a to 1
The flow rate of cooling water to the condensers 38 to 3n of these refrigerators 18 to In is controlled depending on the operating state of the refrigerators 18 to In, and the pump 14 that sends out this cooling water through the supply plumber 0 is adjusted appropriately. It can be operated at a certain rotation speed.

なお、この実施例では、冷却体として冷蔵庫内を冷却す
る冷凍機18〜1nを例示したが、これらの冷凍機18
〜1nの代わりに、同様の構成を有するもの、例えば空
調機を備えることもできる。
In addition, in this embodiment, although the refrigerators 18 to 1n that cool the inside of the refrigerator are illustrated as cooling bodies, these refrigerators 18
In place of ~1n, it is also possible to provide something with a similar configuration, for example an air conditioner.

[発明の効果] 本発明は以上のように構成したことから、それぞれの冷
却体の作動状態に応じて、これらの冷却体の凝縮器への
冷却水の流量をそれぞれ制御でき、したがって、不要な
冷却水を供給することが防止され、ポンプを運転する電
力の消費量を低減して。
[Effects of the Invention] Since the present invention is configured as described above, the flow rate of cooling water to the condenser of each cooling body can be controlled according to the operating state of each cooling body. Supplying cooling water is prevented and reduces power consumption to operate the pump.

運転経費を削減できるという効果がある。This has the effect of reducing operating costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の冷却装置の一実施例の構成を示すブロ
ック図、第2図は第1図の冷却装置に備えられる圧力検
知器の出力信号と流量調節弁の弁141度との相関関係
を示す特性図である。 18〜1n・・・・冷凍機(冷却体)、38〜3n・・
・凝縮器、7.10・・・・・配管、8・・・・・冷却
塔、9・・・・・ポンプ、lla〜lln・・・・・・
圧力検知器(検知手段)、12a〜L2n・・・・・弁
制御器(制御手段)、13a〜13n・・・・・・流量
調節弁、14゜15・・・・・水圧検知器、16・・・
・・・水圧制御器、17・・・・インバータ。
Fig. 1 is a block diagram showing the configuration of an embodiment of the cooling device of the present invention, and Fig. 2 shows the correlation between the output signal of the pressure detector provided in the cooling device of Fig. 1 and the valve 141 degrees of the flow rate control valve. It is a characteristic diagram showing a relationship. 18~1n... Refrigerator (cooling body), 38~3n...
・Condenser, 7.10...Piping, 8...Cooling tower, 9...Pump, lla~lln...
Pressure detector (detection means), 12a to L2n... Valve controller (control means), 13a to 13n... Flow rate adjustment valve, 14° 15... Water pressure detector, 16 ...
...Water pressure controller, 17...Inverter.

Claims (1)

【特許請求の範囲】[Claims] (1)冷却水の冷却により冷媒を凝縮する凝縮器を含み
、前記冷媒を介して周囲の冷却を行なう少なくとも1つ
の冷却体と、この冷却体の凝縮器の入口および出口に接
続され前記冷却水が循環する配管と、この配管に介設さ
れ前記出口からの冷却水を冷却する冷却塔と、この冷却
塔に接続され前記配管を介し前記入口に冷却水を送り出
すポンプとを有する冷却装置において、前記冷却体のそ
れぞれに対応して設けられ、該冷却体の凝縮器に流入出
する冷却水の流量を調節可能な流量調節弁を設けるとと
もに、前記冷却体のそれぞれに、前記凝縮器内の冷媒の
状態を検知し、この冷媒の状態に対応する出力信号を発
する検知手段と、この検知手段からの出力信号に応じて
前記流量調節弁を制御する制御手段とを設けたことを特
徴とする冷却装置。
(1) At least one cooling body that includes a condenser that condenses a refrigerant by cooling the cooling water and cools the surrounding area via the refrigerant, and the cooling water that is connected to the inlet and outlet of the condenser of this cooling body. A cooling device having a pipe through which the cooling water circulates, a cooling tower interposed in the pipe to cool the cooling water from the outlet, and a pump connected to the cooling tower and sending the cooling water to the inlet via the pipe, A flow rate control valve is provided corresponding to each of the cooling bodies and can adjust the flow rate of cooling water flowing into and out of the condenser of the cooling body, and each of the cooling bodies is provided with a flow rate control valve that can adjust the flow rate of cooling water flowing into and out of the condenser of the cooling body. A cooling device comprising: a detection means for detecting the state of the refrigerant and emitting an output signal corresponding to the state of the refrigerant; and a control means for controlling the flow rate regulating valve according to the output signal from the detection means. Device.
JP16506288A 1988-07-04 1988-07-04 Cooling device Pending JPH0217362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16506288A JPH0217362A (en) 1988-07-04 1988-07-04 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16506288A JPH0217362A (en) 1988-07-04 1988-07-04 Cooling device

Publications (1)

Publication Number Publication Date
JPH0217362A true JPH0217362A (en) 1990-01-22

Family

ID=15805133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16506288A Pending JPH0217362A (en) 1988-07-04 1988-07-04 Cooling device

Country Status (1)

Country Link
JP (1) JPH0217362A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651762U (en) * 1992-12-10 1994-07-15 株式会社東洋製作所 Refrigeration system
JP2011094940A (en) * 2009-11-02 2011-05-12 Mitsubishi Electric Corp Heat source machine and air conditioner
JP2018136071A (en) * 2017-02-21 2018-08-30 高砂熱学工業株式会社 Cooling water transfer control system and cooling water transfer control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651762U (en) * 1992-12-10 1994-07-15 株式会社東洋製作所 Refrigeration system
JP2011094940A (en) * 2009-11-02 2011-05-12 Mitsubishi Electric Corp Heat source machine and air conditioner
JP2018136071A (en) * 2017-02-21 2018-08-30 高砂熱学工業株式会社 Cooling water transfer control system and cooling water transfer control method

Similar Documents

Publication Publication Date Title
US8701424B2 (en) Turbo chiller, heat source system, and method for controlling the same
US7028768B2 (en) Fluid heat exchange control system
JP6570746B2 (en) Heat medium circulation system
US8185246B2 (en) Air-conditioning control algorithm employing air and fluid inputs
US4535607A (en) Method and control system for limiting the load placed on a refrigeration system upon a recycle start
US6449969B1 (en) Method for controlling coolant circulation system
US4471622A (en) Rankine cycle apparatus
JPS6186536A (en) Refrigerator and environment controller
KR890013430A (en) Air conditioner and control method
CA2436226A1 (en) Self tuning pull-down fuzzy logic temperature control for refrigeration systems
JPH0536700B2 (en)
CN110822545A (en) Variable frequency air conditioning system and control method for low frequency operation thereof
EP2204620B1 (en) Heating and/or cooling installation and method for monitoring the operability of the installation
JPH0217362A (en) Cooling device
JPH0239710B2 (en)
JPH04313629A (en) Controlling device for water temperature of heat source water for air conditioning
JPH01217164A (en) Multi-chamber type airconditioner
JPH03271675A (en) Cold water manufacturing device
JP2009300033A (en) Controller for air-conditioning secondary pump
JP2005180848A (en) Heat supply system
JPH07151353A (en) Preventive method for stopping circulation of refrigerant in natural refrigerant-circulation air-conditioning system
KR200242219Y1 (en) Air conditioner thermostat
JP2000310452A (en) Turbo refrigerator
JPH01266473A (en) System for controlling flow rate of cooling water for refrigerator
JPH03164659A (en) Refrigerator