JPH02172370A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPH02172370A
JPH02172370A JP63325792A JP32579288A JPH02172370A JP H02172370 A JPH02172370 A JP H02172370A JP 63325792 A JP63325792 A JP 63325792A JP 32579288 A JP32579288 A JP 32579288A JP H02172370 A JPH02172370 A JP H02172370A
Authority
JP
Japan
Prior art keywords
image
speed
moving
moving speed
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63325792A
Other languages
Japanese (ja)
Inventor
Toshiyuki Akiyama
俊之 秋山
Itaru Mimura
三村 到
Naoki Ozawa
直樹 小沢
Kenji Takahashi
健二 高橋
Takahiro Matsumoto
孝浩 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63325792A priority Critical patent/JPH02172370A/en
Publication of JPH02172370A publication Critical patent/JPH02172370A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the spread of an image due to the movement of an object during the storage period of a signal charge by devising the device such that a relative speed of an image formed on a photodetecting face with respect to the photodetecting face is decreasing while a signal charge is stored or the image is made nearly standstill on the photodetecting face even if the object is moving. CONSTITUTION:The signal charge is stored while moving an optical system such as a lens 1 and an image pickup element 2 or either of them in matching with the movement of an object so that a relative speed of a noted image being at least part of the image formed on the photodetecting face of an image pickup element 2 with respect to the photodetecting face of the image pickup element 2 is small or nearly at a standstill for a period being nearly an integral number of multiple of a signal charge storage period or a signal charge readout period. Thus, the spread of the image due to a moving object for the signal charge storage period is suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はテレビカメラを左右、上下にゆっくり動かした
際などに起きる、解像度の劣化を低減できるテレビカメ
ラの構造とその駆動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a structure of a television camera and a method for driving the same, which can reduce deterioration in resolution that occurs when the television camera is moved slowly from side to side or up and down.

〔従来の技術〕[Conventional technology]

テレビカメラに用いる撮像素子としては、フレーム期間
あるいはフィールド期間の開信号電荷を蓄積し、その後
−挙に信号電荷を読み出す??核型の撮像素子が広く用
いられている。
Image sensors used in television cameras accumulate open signal charges during a frame period or field period, and then read out the signal charges all at once. ? Karyotype imaging devices are widely used.

しかしこのカメラでは、信号電荷の蓄積期間中に被写体
が動くと像が広がって蓄積され、動き部分の解像度(以
−ド動解像度と記す)が劣化する。
However, in this camera, if the subject moves during the signal charge accumulation period, the image is expanded and accumulated, and the resolution of the moving part (hereinafter referred to as dynamic resolution) deteriorates.

この動解像度の劣化では画面内の一部の動く被写体の解
像度の劣化も気になるが、広い遠景をカメラを左右、上
下にゆっくり動かしながら撮す際など、焦点がずれた感
じになり著しく画質を劣化させる。
This deterioration in dynamic resolution can also cause a deterioration in the resolution of some moving subjects within the screen, but when photographing a wide distant scene while slowly moving the camera left and right or up and down, the image quality will noticeably deteriorate as the focus will seem to have shifted. deteriorate.

従来この解像度の劣化を防ぐ方法としては、撮像素子に
シャッター機能を持たせ(特開昭6252988 ) 
、信号電荷を蓄積する期間をフレーム期間あるいはフィ
ールド期間より短くする方法が採用されている。この方
法では信号電荷の蓄積期間が短いためこの間に於ける被
写体の動きは小さく、信号電荷の蓄積期間中に被写体が
動く事による像の広がりを押さえる事ができる。その結
果動き部分の解像度の劣化を低減することができる。
Conventionally, a method to prevent this resolution deterioration was to provide the image sensor with a shutter function (Japanese Patent Laid-Open No. 6252988).
A method is adopted in which the period for accumulating signal charges is made shorter than the frame period or field period. In this method, since the signal charge accumulation period is short, the movement of the subject during this period is small, and it is possible to suppress the spread of the image due to movement of the subject during the signal charge accumulation period. As a result, deterioration in resolution of moving parts can be reduced.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで信号電荷は蓄積時間が長いほど多くなる。従が
って映像信号のS/Hの点から蓄積時間が長いことが望
ましい。しかしこの従来の方法では信号電荷の蓄積期間
を逆に短くしてしまうため、映像信号のS/Nの劣化を
招いてしまう。
Incidentally, the longer the accumulation time, the more signal charges will be present. Therefore, from the viewpoint of S/H of the video signal, it is desirable that the storage time be long. However, this conventional method conversely shortens the signal charge accumulation period, resulting in deterioration of the S/N ratio of the video signal.

本発明はこの様な映像信号のS/Hの劣化を招く事なく
、カメラを左右、上下にゆっくり動かしたリズームアツ
ブした際などの画面全体の動解像度の劣化、あるいは注
目する被写体が動いている際の解像度の劣化を低減でき
る解像度改善手段を提供するものである。
The present invention does not cause such deterioration of the S/H of the video signal, and prevents deterioration of the dynamic resolution of the entire screen, such as when rezooming by slowly moving the camera left and right or up and down, or when the subject of interest is moving. The purpose of the present invention is to provide resolution improvement means that can reduce deterioration in resolution.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明においては、撮像素子
の受光面上に結像する像の少なくとも一部の注目する像
部分の、撮像素子の受光面に対する相対速度が、信号電
荷の蓄積期間あるいは信号電荷読み出し周期のほぼ整数
倍の期間、小さくあるいはほぼ静止状態に在る様に、被
写体の動きに合わせて、レンズ等の光学系と撮像素子、
あるいはそのいずれか一方を動かしながら信号電荷を蓄
積するようにする。
In order to achieve the above object, in the present invention, the relative velocity of at least a part of the image portion of interest formed on the light receiving surface of the image sensor with respect to the light receiving surface of the image sensor is determined by the signal charge accumulation period or The optical system, such as a lens, and the image sensor
Alternatively, signal charges may be accumulated while moving one of them.

〔作用〕[Effect]

本発明によれは被写体が動いていても、受光面上に結像
した像の受光面に対する相対速度は、信号電荷を蓄積す
る間小さくなるあるいは受光面上にほぼ静止する。その
ため信号電荷の蓄積期間中に被写体が動く事による像の
広がりを押さえる事ができる。
According to the present invention, even if the subject is moving, the relative velocity of the image formed on the light receiving surface with respect to the light receiving surface becomes small or remains almost stationary on the light receiving surface while signal charges are accumulated. Therefore, it is possible to suppress the spread of the image due to movement of the subject during the signal charge accumulation period.

また本方式では信号の蓄積時間はほぼフレーム期間ある
いはフィールド期問いっばいに取る事ができるので、注
目する映像部分の解像度の劣化の少ない高S/Nの良好
な映像を得ることが出来る。
In addition, in this method, the signal accumulation time can be set to approximately the frame period or field period, so it is possible to obtain a good image with a high S/N ratio and little deterioration in resolution of the image portion of interest.

〔実施例〕〔Example〕

本発明の第1の実施例を第1図に示す。本実施例はテレ
ビカメラを左右、上下にゆっくり動かした時の動解像度
を改善する回路構成例である。
A first embodiment of the invention is shown in FIG. This embodiment is an example of a circuit configuration for improving the dynamic resolution when a television camera is slowly moved left and right and up and down.

第1図において結像位置移動装置3は、光学レンズ1を
通った光による像の結像位置を、撮像素子2の受光面上
でほぼ一定速度V1で移動させる装置である。装置構成
としては、撮像素子が動かす方法と光路を振って結像位
置をずらす方法があるが、図にはレンズと撮像素子の間
に挿入したガラス板を横方向に振る後者の方法を実現す
る例を示した。
In FIG. 1, the imaging position moving device 3 is a device that moves the imaging position of an image formed by light passing through the optical lens 1 on the light receiving surface of the image sensor 2 at a substantially constant speed V1. There are two ways to configure the device: one is to move the image sensor, and the other is to shift the imaging position by shaking the optical path. The figure shows the latter method by shaking a glass plate inserted between the lens and the image sensor laterally. An example was given.

また移動速度検出判別回路4は、撮像素子で得られる映
像の少なくとも一部の領域の映像信号から、被写体の画
面上での移動速度量かその向きを検出し、その検出値に
応じて結像する全体像の移動速度v工を変化させるため
の移動速度変化量Δvz を出力する回路である。この
回路の構成も各種考えられるが、大きく次の3つの回路
に分けて考えることができる。すなわち速度を検出する
ための画面上の位置を指定する検出窓指定回路5と、検
出窓内で得た検出値から移動状態を判別する移動速度判
別回路6と、判別した移動状態に合わせて移動速度の変
化量を算出する移動速度変化量算出回路7である。
Further, the moving speed detection and discrimination circuit 4 detects the moving speed amount or direction of the subject on the screen from the video signal of at least a part of the image obtained by the image sensor, and forms an image according to the detected value. This circuit outputs a moving speed change amount Δvz for changing the moving speed v of the entire image. Various configurations are possible for this circuit, but it can be broadly divided into the following three circuits. That is, a detection window designation circuit 5 that specifies the position on the screen for detecting the speed, a movement speed determination circuit 6 that determines the movement state from the detected value obtained within the detection window, and a movement speed determination circuit 6 that determines the movement state from the detected value obtained within the detection window. This is a moving speed change amount calculation circuit 7 that calculates the amount of change in speed.

移動速度制御回路8は、移動速度検出判別回路4から出
力される移動速度変化量ΔV1と、記憶しておいた移動
速度v1を加算した移動速度v2=vi+Δv1で、結
像する全体像を受光面上で移動するように結像位置移動
装置3を制御する回路である。
The moving speed control circuit 8 sets the entire image to be formed on the light receiving surface at a moving speed v2=vi+Δv1, which is the sum of the moving speed change amount ΔV1 outputted from the moving speed detection and discrimination circuit 4 and the stored moving speed v1. This is a circuit that controls the imaging position moving device 3 to move above.

第1図の回路は次の様に駆動する。The circuit of FIG. 1 operates as follows.

まず初めに結像位置移動装置3を、移動速度制御回路8
の制御信号によって次の様に駆動する。
First, the imaging position moving device 3 is moved to the moving speed control circuit 8.
It is driven as follows by the control signal.

すなわち第2図(b)に示す様に信号電荷を蓄積する期
間すなわち符号]、1.13; 1.5.・・・で示す
時間、光学レンズ]、を通った光による像の結像位置を
第2図(a)の如く、撮像素子2の受光面上でほぼ一定
速度Vl、 V2.・・で移動させ(第2図(a)では
右方向)、この間に蓄積した信号電荷を読み出す。そし
て信号電荷を読みだした直後(あるいは次のフィールド
の信号電荷蓄積開始時の直前)の時間12,1.4.・
・に、移動速度−Vl、−Vz、・・より速い移動速度
−vrで十分短い一定期間の間に結像位置を元の位置に
戻す。
That is, as shown in FIG. 2(b), the period for accumulating signal charges, that is, the sign], 1.13; 1.5. As shown in FIG. 2(a), the imaging position of the image formed by the light passing through the optical lens is set on the light-receiving surface of the image sensor 2 at approximately constant speeds Vl, V2. ... (rightward in FIG. 2(a)), and the signal charge accumulated during this period is read out. Then, at time 12, 1.4, immediately after reading out the signal charge (or just before the start of signal charge accumulation for the next field).・
- Then, the imaging position is returned to the original position within a sufficiently short fixed period at a faster movement speed -vr, -Vl, -Vz, .

以上の動作を1−フィールド期間毎に繰り返す様に結像
位置移動装置3を駆動する。
The imaging position moving device 3 is driven so that the above operation is repeated every 1-field period.

この駆動状態の下で蓄積期間1】−に蓄積され、信号読
み出し期間13(次のフィールド信号の信号電荷蓄積期
間でもある)に撮像素子2から読み出した映像信号は、
まず検出窓指定回路5で映像内の注目する部分を取り出
し、移動速度判別回路6に出力する。
Under this driving state, the video signal accumulated during the accumulation period 1]- and read out from the image sensor 2 during the signal readout period 13 (also the signal charge accumulation period of the next field signal) is
First, the detection window designation circuit 5 extracts a portion of interest in the video and outputs it to the movement speed determination circuit 6.

移動速度判別回路6では、映像信号の高周波成分の振幅
Hpを映像信号の振[Spで割った振幅比Hp / S
 p (振幅Hpそのものを用いても良い)を検出し、
その振幅比が一定量P ]、以下の時は移動速度を変え
ないように移動速度変化量算出回路7を通して移動速度
変化量Δv1−0を出力する。
The moving speed discrimination circuit 6 divides the amplitude Hp of the high frequency component of the video signal by the amplitude [Sp] of the video signal, which is the amplitude ratio Hp/S.
p (the amplitude Hp itself may be used),
When the amplitude ratio is a certain amount P], the moving speed change amount Δv1-0 is outputted through the moving speed change amount calculation circuit 7 so as not to change the moving speed.

ただし移動速度変化量0が続く時は、一定の期間毎に後
述する移動速度の再調整を行う。
However, if the moving speed change amount continues to be 0, the moving speed is readjusted at regular intervals as described below.

一方、振幅比Hp/Spが一定#:P1を越えて急激に
変化した時は、次の様にして移動速度の再調整を行う。
On the other hand, when the amplitude ratio Hp/Sp suddenly changes beyond the constant #:P1, the moving speed is readjusted as follows.

まず移動速度v1を一定速度Δvoだけ変えるために、
移動速度変化量Δv1=ΔVQを移動速度変化量算出回
路7を通して出力し、結像位置移動装置3による結像領
域の移動速度v1を移動速度V2”V1+Δvoに変え
る。
First, in order to change the moving speed v1 by a constant speed Δvo,
The moving speed change amount Δv1=ΔVQ is outputted through the moving speed change amount calculation circuit 7, and the moving speed v1 of the imaging area by the imaging position moving device 3 is changed to the moving speed V2''V1+Δvo.

そしてこの移動速度の変化の結果、第3図(a)の様に
振幅比Hp、 / S p、の値が前フィールドにおけ
る値より一定量P1を越えて大きくなる時は、更に同じ
方向の移動速度変化量ΔV2=Δvoを出力して移動速
度v2をVδFVz+Δv0に変える。
As a result of this change in movement speed, when the value of the amplitude ratio Hp,/Sp becomes larger than the value in the previous field by more than a certain amount P1, as shown in Fig. 3(a), the movement in the same direction is continued. The speed change amount ΔV2=Δvo is output to change the moving speed v2 to VδFVz+Δv0.

そして振幅比の変化量が一定量P1以下になるまで同様
の操作を繰り返す。
Then, similar operations are repeated until the amount of change in the amplitude ratio becomes equal to or less than a certain amount P1.

これに対し移動速度V1を変えてv2==v1+Δvo
にした時、振幅比の値が第3図(b)の様に一定量P1
−を越えて小さくなるかその変化量が小さい時は、逆方
向の移動速度変化量Δv2二2×Δvoを出力して移動
速度をv3=v1Δvoに変えた後、Δvo とは逆の
方向−ΔvOに第3図(a)の操作を繰り返す。
On the other hand, by changing the moving speed V1, v2==v1+Δvo
, the value of the amplitude ratio becomes a constant amount P1 as shown in Figure 3(b).
- or when the amount of change is small, output the moving speed change amount Δv22×Δvo in the opposite direction and change the moving speed to v3=v1Δvo, then -ΔvO in the opposite direction to Δvo. Repeat the operation shown in FIG. 3(a).

また移動速度をV2:V1+Δvoに変えてもv3=V
1−Δv0に変えても振幅比が小さくなるか変わらない
時は移動速度変化量Δv3=Δvoを出力し、移動速度
を元の値v4=v3+Δvo=v工に戻す。
Also, even if you change the movement speed to V2:V1+Δvo, v3=V
If the amplitude ratio becomes smaller or does not change even if the amplitude ratio is changed to 1-Δv0, the moving speed change amount Δv3=Δvo is output, and the moving speed is returned to the original value v4=v3+Δvo=v.

以上述べた様に1フレ一ム周期で移動速度を変更し、移
動速度の調整を行った後の状態を第4図に模式的に示す
As described above, the moving speed is changed in one frame period, and the state after adjusting the moving speed is schematically shown in FIG.

注目する映像部分(例えば木の像の部分)が結像領域内
を移動する速度をVs とすると、結像領域は受光面に
対して大きさがほぼVs に等しく方向が逆の速度Vl
”FVSで移動するようになる。そのため信号電荷を蓄
積する期間における、注目する映像部分(例えば木の像
の部分)の受光面に対する相対速度は非常に小さな物に
なる。
If the speed at which the image part of interest (for example, the part of the image of a tree) moves within the imaging area is Vs, then the imaging area moves at a speed Vl that is approximately equal in size to Vs and in the opposite direction relative to the light-receiving surface.
``The object moves at FVS. Therefore, the relative speed of the image part of interest (for example, the part of the image of a tree) to the light receiving surface during the period of accumulating signal charges becomes extremely small.

ところで上記の様に結像位置移動装置3を動作させると
、結像領域の位置は受光面上の元の位置に周期的に戻る
。この動作に伴い注目する映像部分(例えは木の像の部
分)は受光面上を、1フイ一ルド周期毎にVs x (
1フイ一ルド周期)たけ順次移動(第4図では左方向)
して行く。そのため検出窓指定回路5による窓位置は、
その窓位置が受光領域の外に出るなどの一定の条件を満
たすまで、少なくとも移動速度の調整中は注目する映像
部分の移動に合わせて−vl X (1フイール1へ周
期)づつ移動させて行くことが望ましい。
By the way, when the imaging position moving device 3 is operated as described above, the position of the imaging area periodically returns to its original position on the light receiving surface. As a result of this operation, the image part of interest (for example, the part of the image of a tree) moves on the light-receiving surface by Vs x (
1 field cycle) (towards the left in Figure 4)
I'll go. Therefore, the window position determined by the detection window designation circuit 5 is
At least while adjusting the moving speed, move by -vl This is desirable.

この様に本回路では被写体が動いていても受光面上に結
像した像の受光面に対する相対速度は、信号電荷を蓄積
する間小さくなるかあるいは受光面上にほぼ静止する。
In this way, in this circuit, even if the object is moving, the relative velocity of the image formed on the light receiving surface with respect to the light receiving surface becomes small or remains almost stationary on the light receiving surface while signal charges are accumulated.

そのため信号電荷の蓄積期間中に被写体が動く事による
像の広がりを押さえる事ができる。また本方式では信号
の蓄積時間はほぼフィールド期問いっばいに取る事がで
きるので、注目する映像部分の解像度の劣化の少ない高
S/Nの良好な映像を得ることが出来る。
Therefore, it is possible to suppress the spread of the image due to movement of the subject during the signal charge accumulation period. In addition, in this method, the signal accumulation time can be taken to be approximately the same as the field period, so it is possible to obtain a good image with a high S/N ratio and little deterioration in resolution of the image portion of interest.

なお結像位置移動装置3の構造としては、第5図に示す
様に2枚の鏡Ml、M2を各々異なる軸の回りで振る構
造(光路を振る方法における他の構造例)や、撮像素子
2をピエゾ素子等(図示せず)を用いて直接振動させる
構造など多くの構造が可能であるが、2次元的に移動方
向を選択できる構造であることが望ましい。
The structure of the imaging position moving device 3 includes a structure in which two mirrors Ml and M2 are moved around different axes as shown in FIG. Although many structures are possible, such as a structure in which 2 is directly vibrated using a piezo element or the like (not shown), it is desirable to have a structure in which the direction of movement can be selected two-dimensionally.

また結像位置移動装置3の駆動方法としては、結像位置
を元の位置に戻す操作を第2図の様すこ蓄積期間毎(ユ
フィールド期間毎)ではなく、信号電荷を読み出し周期
のほぼ整数倍毎(数フイールド期間毎)に行うようにし
ても良い。但しこの際受光面に対して注目する映像部分
がほぼ静止状態になる数フィールドの映像信号は、結像
領域内での注目する映像部分の移動速度に合わせて、第
1図に示す出画位置移動回路9によってずらしながら出
力する必要がある。また移動速度の変更は蓄積期間毎(
1フイ一ルド期間毎)に行うことが望ましい。
Furthermore, as a driving method for the imaging position moving device 3, the operation of returning the imaging position to the original position is not carried out every few accumulation periods (every Eufield period) as shown in FIG. It may also be performed every multiple (every several field periods). However, in this case, the image signal of several fields in which the image part of interest is almost stationary with respect to the light-receiving surface is adjusted to the image output position shown in Figure 1 according to the moving speed of the image part of interest within the imaging area. It is necessary to shift the output using the moving circuit 9. Also, the movement speed can be changed every accumulation period (
It is desirable to perform this every one field period).

また結像位置を逆方向に戻す際の戻す位置は一定の位置
ではなく、移動速度の太きいときは遠くにまた移動速度
が小さいときは受光領域の中央付近に戻し、移動速度O
では結像領域が受光領域のほぼ中央に位置するように駆
動する事が望ましい。
In addition, when returning the imaging position in the opposite direction, the returning position is not a fixed position, but when the moving speed is fast, it is moved far away, and when the moving speed is slow, it is returned to near the center of the light receiving area, and when the moving speed is
In this case, it is desirable to drive the image forming area so that it is located approximately at the center of the light receiving area.

また結像位置を逆方向に戻す速度を下げ、1フイールド
あるいはその整数倍の期間で戻す。そしてその間の映像
信号は、逆方向へ移動を開始する前の映像信号を記憶し
ておき、その記憶しておいた映像信号を注目する映像部
分の移動速度に合わせてずらせながら出力する様にして
も良い。
In addition, the speed at which the imaging position is returned in the opposite direction is reduced, and the imaging position is returned in a period of one field or an integral multiple thereof. As for the video signal during that time, the video signal before starting to move in the opposite direction is stored, and the stored video signal is output while being shifted in accordance with the moving speed of the video part of interest. Also good.

また移動速度の調整速度と精度を上げるため、移動速度
変化量Δvoの大きさは前2フィールドにおける振幅比
の大きさや移動速度変化量の値に応じて変えるようにす
る事が望ましい。
Furthermore, in order to increase the adjustment speed and accuracy of the moving speed, it is desirable to change the magnitude of the moving speed change amount Δvo in accordance with the magnitude of the amplitude ratio in the previous two fields and the value of the moving speed change amount.

また同様移動速度の調整速度を上げるため移動速度変化
量算出回路7を、1フイールド毎に移動速度を変えて過
去2フイールドに出力した映像信号における振幅比の変
化量から、次のフィールドの移動速度変化量を算出して
出力する回路にすることが望ましい。
Similarly, in order to increase the adjustment speed of the moving speed, the moving speed change amount calculating circuit 7 calculates the moving speed of the next field from the amount of change in the amplitude ratio of the video signal output in the past two fields by changing the moving speed for each field. It is desirable to use a circuit that calculates and outputs the amount of change.

また最大の移動速度をV II a xとする時、結像
領域を移動してもテレビ信号として出力する出画領域が
、常に撮像素子の受光領域と光学レンズの結像領域の中
にあるように、結像領域の大きさは出画領域の大きさよ
りVmax X (移動期間)以上、また受光領域の大
きさはVmaつX(移動期間−1フイ一ルド期間)以上
大きくしておく必要がある。
Furthermore, when the maximum moving speed is V II a x, the image output area that is output as a television signal is always within the light receiving area of the image sensor and the image forming area of the optical lens even if the image forming area is moved. In addition, the size of the image forming area must be larger than the size of the image output area by more than Vmax x (moving period), and the size of the light receiving area must be larger than the size of the image output area by more than Vmax x (moving period - 1 field period). be.

第6図は本発明の第2の実施例である。第6図の装置は
動く被写体を追尾する事によってその映像部分の解像度
を改善する装置構成例であり、前記実施例の結像位置移
動装置3を、レンズの方向を変えるレンズ方向移動装置
23に変更した点を除けば、はぼ第1図と同様の回路構
成となっている。
FIG. 6 shows a second embodiment of the invention. The device shown in FIG. 6 is an example of a device configuration that improves the resolution of an image portion by tracking a moving subject. The circuit configuration is essentially the same as that in FIG. 1 except for the changes.

第6図の回路は次の様に駆動する。The circuit of FIG. 6 operates as follows.

まず初めにレンズ方向移動装置23を移動速度制御回路
8′の制御信号によって制御し、信号電荷を蓄積する間
カメラのレンズ方向をほぼ一定速渡1で移動させ(例え
ば右方向に)、一定期間後に蓄積した信号電荷を読み出
す。テレビカメラ21から得られた映像信号は移動速度
検出判別回路4′に入力し、第1の実施例の移動速度検
出判別回路4の操作と同様にして移動速度の調整を行う
。この移動速度の調整を行うとレンズの方向の移動速度
■1は、注目する被写体の移動する速度Vsにほぼ等し
い速度V s、 ”’; V sに成るので、テレビカ
メラ21内の撮像素子の受光面に対する、注目する被写
体の結像位置の相対速度は非常に小さくできる。
First, the lens direction moving device 23 is controlled by a control signal from the movement speed control circuit 8', and the camera lens direction is moved at a substantially constant speed 1 (for example, to the right) for a certain period of time while signal charges are being accumulated. The accumulated signal charges are then read out. The video signal obtained from the television camera 21 is input to the moving speed detection/discrimination circuit 4', and the moving speed is adjusted in the same manner as the operation of the moving speed detection/discrimination circuit 4 of the first embodiment. When this movement speed is adjusted, the movement speed (1) in the direction of the lens becomes a speed Vs, ``'; The relative velocity of the imaging position of the object of interest with respect to the light receiving surface can be made very small.

この様に本装置では被写体が動いていてもその後をテレ
ビカメラのレンズが追い、受光面上に結像した像の受光
面に対する相対速度は小さくなるかあるいは受光面上に
ほぼ静止させうる。そのため信号電荷の蓄積期間中に被
写体が動く事による像の広がりをおさえる事ができる。
In this way, with this device, even if the subject is moving, the lens of the television camera follows it, and the relative speed of the image formed on the light receiving surface to the light receiving surface is reduced or the image can be kept almost stationary on the light receiving surface. Therefore, it is possible to suppress the spread of the image due to movement of the subject during the signal charge accumulation period.

また本方式では信号の蓄積時間をほぼフィールド期問い
っばいに取る事ができるので、注目する映像部分の解像
度の劣化の少ない高S/Nの良好な映像を得ることが出
来る。
In addition, in this method, the signal accumulation time can be set to almost the same as the field period, so it is possible to obtain a good image with a high S/N ratio and little deterioration in the resolution of the image portion of interest.

なお移動速度の変更は第7図に示す様に、第1の実施例
と同様、はぼ1−フィールド期間毎の信号電荷を読み出
した直後あるいは信号電荷の蓄積を開始する直前に行う
事が望ましい。また移動速度の調整中に、注目する被写
体の結像位置がずれたり、出画位置を画面中央などに変
更するかあるいは注目する被写体を変更する際などレン
ズ方向に対する被写体の相対位置を変更したい時は、第
7図20に示す様に移動速度の変更に合わせて一時的に
移動速度を速くあるいは遅くするように駆動して調節す
ることが望ましい。
As shown in FIG. 7, it is preferable to change the moving speed immediately after reading out the signal charges for each field period or immediately before starting to accumulate the signal charges, as in the first embodiment. . Also, when adjusting the movement speed, the image formation position of the subject of interest shifts, or when you want to change the relative position of the subject to the lens direction, such as when changing the image output position to the center of the screen, or when changing the subject of interest. It is desirable to drive and adjust the moving speed so as to temporarily speed up or slow down in accordance with the change in the moving speed, as shown in FIG. 7, 20.

また追尾速度差に対応する移動速度変化量に応じて、検
出窓指定回路5′で指定する窓の位置も移動させ、注目
する被写体が検出用の窓位置から外れる可能性の低減を
図っておく事が望ましい。
In addition, the position of the window designated by the detection window designation circuit 5' is also moved in accordance with the amount of change in movement speed corresponding to the tracking speed difference, thereby reducing the possibility that the subject of interest will deviate from the detection window position. things are desirable.

第8図は本発明の第3の実施例である。第8図の装置は
レンズのズーム比を変える際の解像度の劣化を低減する
装置の構成例であり、この装置によるズーム比の変更は
次の様にして行う。
FIG. 8 shows a third embodiment of the present invention. The device shown in FIG. 8 is an example of the configuration of a device that reduces deterioration in resolution when changing the zoom ratio of a lens, and the zoom ratio is changed by this device in the following manner.

まず同期信号発生回路25で発生した同期信号をズーム
比変更量制御回路26に入力しておく。
First, the synchronization signal generated by the synchronization signal generation circuit 25 is input to the zoom ratio change amount control circuit 26.

そしてズーム比の変更を指示する信号を受けて、第9図
に示す様にズーム比変更量制御回路26においてズーム
比変更のための制御信号を発生させる。この信号により
信号電荷を読み出した直後の十分短い期間のみズーム比
を変える。信号電荷の蓄積期間はほぼ一定のズーム比に
保つ。
Then, in response to the signal instructing the change of the zoom ratio, the zoom ratio change amount control circuit 26 generates a control signal for changing the zoom ratio, as shown in FIG. This signal changes the zoom ratio only for a sufficiently short period immediately after the signal charges are read out. The signal charge accumulation period is maintained at a substantially constant zoom ratio.

この制御信号によってズーム比変更装置を駆動すると、
外部からズーム比の変更を指示する信号を加えても、信
号電荷の蓄積期間中は実際のズーム比はほとんど変わら
ない。そして受光面上に結像した像の受光面に対する相
対速度は小さくなるかあるいは受光面上にほぼ静止させ
る。そのため信号電荷の蓄積期間中にズーム比を変えた
時、被写体像の大きさが動< 711による像の広がり
をおさえる事ができる。また本方式では信号の蓄積時間
はほぼフィールド期間いっばいに取る事ができるので、
注目する映像部分の解像度の劣化の少ない高S/Nの良
好な映像を得ることが出来る。
When the zoom ratio changing device is driven by this control signal,
Even if a signal instructing to change the zoom ratio is applied from the outside, the actual zoom ratio hardly changes during the signal charge accumulation period. Then, the relative velocity of the image formed on the light-receiving surface to the light-receiving surface is reduced or the image is made to remain almost stationary on the light-receiving surface. Therefore, when the zoom ratio is changed during the signal charge accumulation period, it is possible to suppress the spread of the image due to the movement of the object image size <711. In addition, with this method, the signal accumulation time can be taken almost at the same time as the field period, so
It is possible to obtain a good video with a high S/N ratio and little deterioration in resolution of the video portion of interest.

なお結像領域あるいはレンズの方向の移動速度は、注目
する映像部分ではなく映像の一定領域内の平均速度等の
任意の速度に合わせる様にしても良いことは言うまでも
ない。
It goes without saying that the speed of movement in the direction of the imaging area or the lens may be adjusted to an arbitrary speed such as an average speed within a certain area of the image rather than the image portion of interest.

また像の移動速度は、映像信号から検出するのではなく
、テレビカメラの三脚などに光学レンズの方向の移動を
検出する回路を新たに設け、その回路からの出力信号を
基に算出する様にしても良い。あるいは更に上記実施例
に示したような映像信号からの検出と併用しても良い。
In addition, instead of detecting the image movement speed from the video signal, a new circuit is installed on the tripod of a TV camera to detect the movement of the optical lens, and the image movement speed is calculated based on the output signal from that circuit. It's okay. Alternatively, detection from a video signal as shown in the above embodiment may be used in combination.

また上記実施例ではいずれも像あるいはレンズを左右に
移動する場合についてのみ記したが、上下方向など任意
の方向に移動する場合にも同様に適用できるのは明かで
ある。
Further, in the above embodiments, only the case where the image or lens is moved left and right is described, but it is obvious that the invention can be similarly applied to the case where the image or lens is moved in any direction such as up and down.

また以上移動速度検出判別回路は全て振幅比を用いる方
法を使って説明したが、連続する2フイールドあるいは
2フレームの映像信号から注目する映像部分の移動速度
を直接検出し、検出した移動速度に合わせて結像位置の
移動速度あるいはレンズの方向移動速度を調節すること
が望ましい事は言うまでも無い。
In addition, although all of the moving speed detection and discrimination circuits have been explained above using a method that uses amplitude ratios, the moving speed of the video portion of interest is directly detected from two consecutive fields or two frames of video signals, and the moving speed is adjusted to match the detected moving speed. Needless to say, it is desirable to adjust the moving speed of the imaging position or the directional moving speed of the lens.

また画面−に扮移動する注目する映像部分の雑音は、巡
回加算形ノイズリデューサー等の通常のノイズリデュー
サ−だけでは低減できないが、本発明と併用することに
よってそれを可能にすることが出来る。すなわち例えば
巡回加算形ノイズリデューサ−において、結像領域内で
の注目する映像部分の移動速度に合わせて巡回加算した
平均信号を移動し、この移動した平均信号(ズーム比を
変える時は、信号処理によって拡大縮小した平均信号)
と新たに人力した映像信号の巡回加算を行ってゆくこと
によって、画面上を移動する注1」する映像部分の雑音
を低減することが出来る。なおこの時用いるノイズリデ
ューサーは、加算する映像信号の相対的な動きを検出し
、動きが少ない時のみ加算平均してゆく動き適応形のノ
イズリデューサ−であることが望ましい。
Further, noise in the video portion of interest that moves on the screen cannot be reduced by a normal noise reducer such as a cyclic additive noise reducer alone, but it can be reduced by using it in conjunction with the present invention. In other words, for example, in a cyclic addition type noise reducer, the cyclically added average signal is moved in accordance with the moving speed of the video part of interest within the imaging area, and this moved average signal (when changing the zoom ratio, signal processing average signal scaled by )
By performing cyclic addition of the newly manually generated video signals, it is possible to reduce the noise in the video parts that move on the screen. It is preferable that the noise reducer used at this time is a motion adaptive noise reducer that detects the relative motion of the video signals to be added and averages them only when there is little motion.

また本発明を利用することにより、手ぶれ等による像の
揺れを低減することが出来る。すなわち注I」シている
像の受光面上での位置があまり動かないようにレンズを
移動する、あるいは注目シている像の画面上での位置か
余り移動しないように、像の位置を移動して出画するこ
とによって手ふれ等による像の揺れを低減することが出
来る。
Further, by utilizing the present invention, it is possible to reduce image shaking due to camera shake or the like. In other words, move the lens so that the position of the image you are looking at on the light-receiving surface does not move too much, or move the position of the image so that the position of the image you are looking at on the screen does not move too much. By outputting the image in such a manner, it is possible to reduce image shaking due to hand shake or the like.

〔発明の効果〕〔Effect of the invention〕

以上本発明によれば、被写体が動いていても受光面上に
結像した像の受光面に対する相対速度は、信号電荷を蓄
積する間小さくなるあるいは受光面上にほぼ静止する。
According to the present invention, even if the object is moving, the relative velocity of the image formed on the light receiving surface with respect to the light receiving surface decreases or remains almost stationary on the light receiving surface while signal charges are accumulated.

そのため信号電荷の蓄積期間中に被写体が動く事による
像の広がりを押さえる事ができる。
Therefore, it is possible to suppress the spread of the image due to movement of the subject during the signal charge accumulation period.

また本方式では信号の蓄積時間はほぼフレーム期間ある
いはフィールド期問いっばいに取る事ができるので、注
目する映像部分の解像度の劣化の少ない高S/Nの良好
な映像を得ることが出来る。
In addition, in this method, the signal accumulation time can be set to approximately the frame period or field period, so it is possible to obtain a good image with a high S/N ratio and little deterioration in resolution of the image portion of interest.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の装置構成を示すブロック図
、第2図〜第4図は上記実施例の動作説明図、第5図は
一実施例の結像位置移!1lII駆動部分の模式図、第
6図は本発明の第2の実施例の装置構成を示すブロック
図、第7図は第2の実施例の動作説明図、第8図は本発
明の第3の実施例の装置構成のブロック図、第9図は第
3の実施例のズーム比変更の動作説明図である。 1 ・光学レンズ、2・・撮像素子、3・・結像位置移
動装置、4・移動速度検出判別回路、8・移動速度制御
回路、23 ・レンズ方向移動装置、26ズ一ム比変更
量制御回路。 第 図 し 」 鷺 七虹 第 区 、レシス 第 5 酢化 図 用凭 第 乙 図 ヤ 回
Fig. 1 is a block diagram showing the configuration of an apparatus according to an embodiment of the present invention, Figs. 2 to 4 are explanatory diagrams of the operation of the above embodiment, and Fig. 5 shows how the imaging position is moved according to the embodiment. 6 is a block diagram showing the device configuration of the second embodiment of the present invention, FIG. 7 is an explanatory diagram of the operation of the second embodiment, and FIG. 8 is a diagram of the third embodiment of the present invention. FIG. 9 is an explanatory diagram of the operation of changing the zoom ratio in the third embodiment. 1. Optical lens, 2. Imaging element, 3. Imaging position movement device, 4. Movement speed detection and discrimination circuit, 8. Movement speed control circuit, 23. Lens direction movement device, 26. Zoom ratio change amount control. circuit. ``Sagi Seven Rainbows'', Resis No. 5, Acetic Candle, No. 2

Claims (1)

【特許請求の範囲】 1、光学レンズと該光学レンズを通つた光を電気信号に
変換する撮像素子(撮像管あるいは固定体撮像素子など
)を有する撮像装置において、該撮像素子の受光面上に
結像する像の少なくとも一部の像部分の受光面に対する
速度あるいは一定領域の平均速度を、一定の期間該撮像
素子の受光面に対してほぼ0の所定の範囲の速度に成る
ようにして撮像する構造を有する撮像装置。 2、該平均速度をほぼ0の所定の範囲速度に保つ一定の
期間を、信号電荷の蓄積期間あるいは信号電荷読み出し
周期のほぼ整数倍にする手段を有してなることを特徴と
する請求項1項記載の撮像装置。 3、該撮像素子の受光面上に結像する全体像の該撮像素
子の受光面上での位置を、一定速度v_1で移動させる
事のできる結像位置移動装置と、被写体像の受光面上で
の移動速度あるいはその向きを検出あるいは予想、し、
該検出値あるいは予想値に応じて該結像する全体像の移
動速度v_1を変化させるための移動速度変化量Δv_
1を出力する移動速度検出判別回路と、該移動速度検出
判別回路から出力する移動速度変化量Δv_1と、記憶
しておいた移動速度v_1を足した移動速度v_2=v
_1+Δv_1で、該結像する全体像が該受光面に対し
て移動するように該結像位置移動装置を制御する移動速
度制御回路を有することを特徴とする請求項第1項記載
の撮像装置。 4、該移動速度検出判別回路は、該撮像素子で得られる
映像の少なくとも一部の1領域もしくは複数領域の映像
信号から該移動速度量あるいはその向きを検出する回路
、あるいは別に設けた光学レンズ方向移動検出回路から
の信号を基に、該移動速度量あるいはその向きを算出す
る回路である事を特徴とする請求項第3項記載の撮像装
置。 5、該結像する全体像の該撮像素子の受光面上での位置
を、一定方向θに一定速度v_1で移動させると共に、
一定期間τ後に該一定速度v_1以上の速度v_rで逆
方向に移動し、該結像する全体像の位置を該撮像素子の
受光面上の元の位置に戻す様に該撮像位置移動装置を駆
動する該移動速度制御回路を有する請求項第3項もしく
は第4項記載の撮像装置。 6、一定速度で動く間は該撮像素子で得られる映像信号
による像の位置を、画面上で該結像の移動速度v_1と
同じ平均相対速度で逆方向に移動するように移動して出
画する出画位置移動回路を有する事を特徴とする請求項
第5項記載の撮像装置。 7、撮像素子で得られる映像の少なくとも一部の領域の
映像信号から被写体像の受光面上での移動速度量あるい
はその向きを検出する移動速度検出判別回路を有する請
求項第3項の撮像装置において、該移動速度検出判別回
路は、該移動速度変化量を決める際に用いる検出値を求
める映像の領域を、該映像信号による像の位置と共に移
動させ、検出する映像の領域が該撮像素子の受光領域の
外に出る等の一定の条件を満たすとき元の画面位置に戻
すことを特徴とする撮像装置。 8、該光学レンズと撮像素子の被写体に対する方向を一
定速度v_1で変えることのできるレンズ方向移動装置
と、該撮像素子で得られる映像の少なくとも一部の領域
の映像信号から、被写体像の受光面上での移動速度量あ
るいはその向きを検出し、該検出値に応じて該光学レン
ズと揃像素子の被写体に対する方向の移動速度v_1を
変化させるための移動速度変化量Δv_1を出力する移
動速度検出判別回路と、該移動速度検出判別回路から出
力する移動速度変化量Δv_1と、記憶しておいた移動
速度V_1を足した移動速度v_2=v_1+Δv_1
で、該光学レンズと撮像素子の被写体に対する方向が変
わるように該レンズ方向移動装置を制御する移動速度制
御回路を有することを特徴とする請求項第1項記載の撮
像装置。 9、該光学レンズと撮像素子の方向を変える移動速度を
一定期間速くあるいは遅くし、注目する像の画面上での
位置が移動するように該レンズ方向移動装置を駆動する
該移動速度制御回路を有することを特徴とする請求項第
8項記載の撮像装置。 10、該注目する像の画面上での移動先がほぼ画面中央
であるように該レンズ方向移動装置を駆動する該移動速
度制御回路を有することを特徴とする請求項第1項もし
くは第9項記載の撮像装置。 11、該移動速度検出判別回路は、該撮像素子で得られ
る映像の少なくとも一部の領域の映像信号における高周
波成分の振幅Hpあるいはこの振幅Hpをさらに映像信
号の振幅Spで割つた振幅比Hp/Spを検出する回路
であつて、該高周波成分の振幅量あるいは振幅比が一定
量P1以上急激に変化した時、あるいは一定の期間毎に
該移動速度v_1を速度V_2=v_1+Δv_0に変
化させる移動速度変化量Δv_0を出力し、この後該高
周波成分の振幅量あるいは振幅比が大きくなるときは更
に移動速度をv_3=v_2+Δv_0に変化させる移
動速度変化量Δv_0を出力し、該高周波成分の振幅量
あるいは振幅比が小さくなるか、その変化量が小さいと
きは逆方向v_3=v_1−Δv_0に移動速度を変化
させる移動速度変化量(−2×Δv_0)を出力し、該
移動速度をv_2=v_1+Δv_0に変えてもv_3
=v_1−Δv_0に変えても該高周波成分の振幅量あ
るいは振幅比が小さくなるか変わらないときは、該移動
速度を元の値v_4=v_3+Δv_0=v_1に戻す
様に移動速度変化量Δv_0を出力する回路であること
を特徴とする請求項第2項から第9項のいずれかに記載
の撮像装置。 12、信号電荷を蓄積して読み出す周期あるいはその整
数倍の周期で、且つほぼ信号電荷の蓄積を開始する時刻
あるいは該信号電荷を読み出した時刻に合わせて該受光
面上に結像する像の位置あるいはその移動速度を変える
様に制御することを特徴とする請求項第1項から第11
項のいずれかに記載の撮像装置。
[Scope of Claims] 1. In an imaging device having an optical lens and an imaging device (such as an imaging tube or a fixed body imaging device) that converts light passing through the optical lens into an electrical signal, a light-receiving surface of the imaging device is Imaging is carried out so that the velocity of at least a part of the image portion of the image to be formed with respect to the light-receiving surface or the average velocity of a certain area is within a predetermined range of approximately 0 relative to the light-receiving surface of the image sensor for a certain period of time. An imaging device having a structure that 2. Claim 1, further comprising means for making the fixed period for maintaining the average speed at a predetermined speed range of approximately 0 approximately an integral multiple of the signal charge accumulation period or the signal charge readout cycle. Imaging device described in Section 2. 3. An imaging position moving device capable of moving the position of the entire image formed on the light receiving surface of the image sensor on the light receiving surface of the image sensor at a constant speed v_1; Detect or predict the speed or direction of movement at
Movement speed change amount Δv_ for changing the movement speed v_1 of the entire image to be formed according to the detected value or expected value
A moving speed detection/discrimination circuit that outputs 1, a moving speed change amount Δv_1 output from the moving speed detection/discrimination circuit, and a moving speed v_2=v, which is the sum of the stored moving speed v_1.
2. The imaging device according to claim 1, further comprising a movement speed control circuit that controls the imaging position moving device so that the entire image to be formed moves relative to the light receiving surface by _1+Δv_1. 4. The movement speed detection and discrimination circuit is a circuit that detects the amount of movement speed or its direction from a video signal of one area or multiple areas of at least a part of the image obtained by the image sensor, or a separately provided optical lens direction. 4. The imaging device according to claim 3, wherein the circuit calculates the amount of movement speed or its direction based on a signal from a movement detection circuit. 5. Moving the position of the formed overall image on the light receiving surface of the image sensor in a constant direction θ at a constant speed v_1,
After a certain period of time τ, the imaging position moving device is driven so as to move in the opposite direction at a speed v_r greater than or equal to the certain speed v_1, and return the position of the entire image to be formed to the original position on the light receiving surface of the imaging element. The imaging device according to claim 3 or 4, further comprising the moving speed control circuit. 6. While moving at a constant speed, the position of the image based on the video signal obtained by the image sensor is moved on the screen at the same average relative speed as the moving speed v_1 of the image to output the image. 6. The imaging apparatus according to claim 5, further comprising an image output position moving circuit. 7. The imaging device according to claim 3, further comprising a moving speed detection/discrimination circuit for detecting the moving speed amount or direction of the object image on the light-receiving surface from the video signal of at least a part of the image obtained by the image sensor. In the above, the moving speed detection and discrimination circuit moves an image area for which a detected value used in determining the amount of change in moving speed is to be moved together with the position of the image based on the image signal, so that the area of the image to be detected is the area of the image sensor. An imaging device that returns to its original screen position when certain conditions are met, such as going outside a light receiving area. 8. A lens direction moving device capable of changing the direction of the optical lens and the image sensor with respect to the object at a constant speed v_1; A moving speed detection device that detects the amount of moving speed or the direction thereof, and outputs a moving speed change amount Δv_1 for changing the moving speed v_1 of the optical lens and the alignment element in the direction relative to the subject according to the detected value. Movement speed v_2 = v_1 + Δv_1 which is the sum of the movement speed change amount Δv_1 output from the discrimination circuit and the movement speed detection and discrimination circuit and the stored movement speed V_1
2. The imaging device according to claim 1, further comprising a movement speed control circuit that controls the lens direction moving device so that the directions of the optical lens and the imaging device relative to the subject change. 9. The movement speed control circuit speeds up or slows down the movement speed for changing the direction of the optical lens and the image sensor for a certain period of time, and drives the lens direction movement device so that the position of the image of interest on the screen moves. 9. The imaging device according to claim 8, further comprising: 10. Claim 1 or 9, further comprising a moving speed control circuit that drives the lens direction moving device so that the target image moves to approximately the center of the screen. The imaging device described. 11. The moving speed detection and discrimination circuit calculates the amplitude Hp of a high frequency component in the video signal of at least a part of the image obtained by the image sensor, or the amplitude ratio Hp/ which is obtained by further dividing this amplitude Hp by the amplitude Sp of the video signal. A circuit that detects Sp, and a movement speed change that changes the movement speed v_1 to speed V_2 = v_1 + Δv_0 when the amplitude amount or amplitude ratio of the high frequency component suddenly changes by a certain amount P1 or more, or every fixed period. After that, when the amplitude amount or amplitude ratio of the high frequency component becomes large, the moving speed change amount Δv_0 that changes the moving speed to v_3=v_2+Δv_0 is output, and the amplitude amount or amplitude ratio of the high frequency component is output. becomes smaller, or when the amount of change is small, outputs the amount of change in moving speed (-2 x Δv_0) that changes the moving speed in the opposite direction v_3 = v_1 - Δv_0, and even if the moving speed is changed to v_2 = v_1 + Δv_0. v_3
If the amplitude amount or amplitude ratio of the high frequency component decreases or does not change even if it is changed to = v_1 - Δv_0, the moving speed change amount Δv_0 is output so that the moving speed is returned to the original value v_4 = v_3 + Δv_0 = v_1. The imaging device according to any one of claims 2 to 9, wherein the imaging device is a circuit. 12. The position of the image formed on the light-receiving surface at the cycle of accumulating and reading signal charges or at a cycle that is an integral multiple thereof, and approximately at the time when accumulation of signal charges starts or when the signal charges are read out. Claims 1 to 11 characterized in that the movement speed is controlled to change.
The imaging device according to any one of paragraphs.
JP63325792A 1988-12-26 1988-12-26 Image pickup device Pending JPH02172370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63325792A JPH02172370A (en) 1988-12-26 1988-12-26 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63325792A JPH02172370A (en) 1988-12-26 1988-12-26 Image pickup device

Publications (1)

Publication Number Publication Date
JPH02172370A true JPH02172370A (en) 1990-07-03

Family

ID=18180651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63325792A Pending JPH02172370A (en) 1988-12-26 1988-12-26 Image pickup device

Country Status (1)

Country Link
JP (1) JPH02172370A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222913A (en) * 2014-05-23 2015-12-10 国立大学法人広島大学 Intermittent tracking imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222913A (en) * 2014-05-23 2015-12-10 国立大学法人広島大学 Intermittent tracking imaging apparatus

Similar Documents

Publication Publication Date Title
US7787015B2 (en) Apparatus and method for reducing image blur in a digital camera
JP5328307B2 (en) Image capturing apparatus having shake correction function and control method thereof
JPS62209978A (en) Image pickup device
US6424372B1 (en) Electronic image-movement correcting device with a variable correction step feature
JPH0974524A (en) Image input device
JPH09322057A (en) Image pickup device
US9654680B2 (en) Image capturing apparatus and control method therefor
US6876386B1 (en) Digital camera with downsampling and zoom processing and method of controlling operation of same
JPH05199449A (en) Vibration proof camera
JPH03188774A (en) Automatic focus adjustment device
JPH02117276A (en) Tracking area determining method
JP3465271B2 (en) Video camera
KR100392619B1 (en) Hand shake correction device
JPH02172370A (en) Image pickup device
JP4064001B2 (en) camera
JPS61196215A (en) Focus detecting device
JP3460385B2 (en) Image stabilization device
JP2005114858A (en) Range-finding camera device
JPH07107369A (en) Image processor
JP4227213B2 (en) Imaging device
JP2770957B2 (en) Motion compensator
JPH0783447B2 (en) Automatic focusing method and video camera using the same
JP3079638B2 (en) Solid-state imaging device
JP3118135B2 (en) Imaging device
JP2804644B2 (en) Imaging device