JPH02172286A - Laser apparatus - Google Patents

Laser apparatus

Info

Publication number
JPH02172286A
JPH02172286A JP63326719A JP32671988A JPH02172286A JP H02172286 A JPH02172286 A JP H02172286A JP 63326719 A JP63326719 A JP 63326719A JP 32671988 A JP32671988 A JP 32671988A JP H02172286 A JPH02172286 A JP H02172286A
Authority
JP
Japan
Prior art keywords
laser
worked
laser beam
diameter
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63326719A
Other languages
Japanese (ja)
Other versions
JP2606342B2 (en
Inventor
Yuji Takenaka
裕司 竹中
Kimiharu Yasui
公治 安井
Shigenori Yagi
重典 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63326719A priority Critical patent/JP2606342B2/en
Publication of JPH02172286A publication Critical patent/JPH02172286A/en
Application granted granted Critical
Publication of JP2606342B2 publication Critical patent/JP2606342B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To change the convergent beam intensity in a specified spot, and enable high quality working by installing an aperture member to make the diameter of a convergent light beam constant in the vicinity of the focus of a convergent light optical system to converge a laser beam with phase difference. CONSTITUTION:By operating movable mechanism, phase difference between laser beams 80, 81 is made 0 deg., and a laser beam 8 is converged by a condenser lens 15; an object 16 to be worked is put at the focus position; the laser beam is converged to a spot of a specified diameter on the surface of the object 16 to be worked. When a filter 17 having a hole whose diameter is nearly equal to the diameter of the convergent light spot is arranged on the surface of the object 16 to be worked, the laser beam 8 is projected on the object 16 to be worked without being eliminated by the filter 17. When the phase difference between the laser beams 80, 81 is made 180 deg., the intensity distribution on the surface of the object 16 to be worked extends to a wide range. When the filter 17 is arranged, the beam of a specified diameter passes the filter 17, and the object 16 to be worked is irradiated with a part of laser power. Thereby, the intensity of the convergent beam can be changed in a specified spot, and high quality working of the object to be worked is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はレーザ装置、と(【位相調整機能を備えた全
反射ミラーより反射したレーザビームの強度を、そのビ
ーム径を一定に保ったまま、制御できる装置に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a laser device and a method for controlling the intensity of a laser beam reflected from a total reflection mirror with a phase adjustment function while keeping the beam diameter constant. , relates to devices that can be controlled.

〔従来の技術〕[Conventional technology]

第7図は例えば特願昭62−182354号明細書に示
された従来のレーザ装置を模式的に示す断面構成図であ
り、C11は凹面鏡よりなるコリメートミラー、(2)
は部分反射コーティングKl、 (31はレーザ媒質で
、C02レーザ等のガスレーザを例にとれば放電などに
より励起されたガス媒質、YAGレーザなどの固体レー
ザを例にとればフラッシュランプ等により励起されたガ
ラス媒質である。(4)はウィンドミラー (5)はウ
ィンドミラー(4)の面上に施され無反射コーティング
嘆、(6)は周囲を覆う箱体、 +71.  (70)
、 (71)  は共振器内のレーザビーム、 (8)
、  (80)、 (81)  はレーザ共振器から取
り出されたレーザビーム、(9)はレーザ共振器である
FIG. 7 is a cross-sectional configuration diagram schematically showing a conventional laser device disclosed in, for example, Japanese Patent Application No. 182354/1982, in which C11 is a collimating mirror made of a concave mirror, (2)
is a partially reflective coating Kl, (31 is a laser medium; for example, a gas laser such as a CO2 laser is a gas medium excited by an electric discharge, and for a solid-state laser such as a YAG laser, it is a gas medium excited by a flash lamp, etc. It is a glass medium. (4) is a wind mirror (5) is a non-reflective coating applied on the surface of the wind mirror (4), (6) is a box that covers the surrounding area, +71. (70)
, (71) is the laser beam inside the cavity, (8)
, (80), (81) are laser beams taken out from the laser resonator, and (9) is the laser resonator.

Illけウィンドミラー(4)から取り出されたレーザ
ビーム(80) 、 (81)  の光路上に設けられ
た全反射ミラーで、可動ミラーQl)を有し、この可動
ミラーa。
This movable mirror a is a total reflection mirror provided on the optical path of the laser beams (80) and (81) taken out from the wind mirror (4), and has a movable mirror Ql).

は例えば全反射ミラーα値の中央部を放電加工機でくり
抜いて軸方向に移動可能に構成されている。
For example, the central part of the total reflection mirror α value is hollowed out using an electric discharge machine and is configured to be movable in the axial direction.

03は全反射ミラーt11に固定された固定部、C14
は固定部lI3に沿ってi′を線運動する可動機構で2
両者によりrI[s運動機構a2を構成しており、また
可動機構a4には可動ミラーq9が取り付けられている
03 is a fixed part fixed to the total reflection mirror t11, C14
is a movable mechanism that linearly moves i′ along the fixed part lI3.
Both constitute an rI[s movement mechanism a2, and a movable mirror q9 is attached to the movable mechanism a4.

09は集光レンズ、1eは被加工物、 rIsは伸縮素
子で例えばrig運動機構(13の可動部Iに取り付け
られたピエゾ素子、α9は伸縮素子0樽を励起する電源
である。
09 is a condensing lens, 1e is a workpiece, rIs is a telescopic element, for example, a piezo element attached to the moving part I of the rig movement mechanism (13), and α9 is a power source that excites the telescopic element 0 barrel.

第819(a)、 (’b)は各々第7図に示された従
来のレーザ装置の作用を示す説明図であり9例えば第8
図fa)は可動ミラーαυとそれ以外の部分で反射され
たレーザビーム間の位相差が0°の場合、第8図(1)
)は位相差が1800 の場合である。
819(a) and 819('b) are explanatory diagrams each showing the operation of the conventional laser device shown in FIG.
Figure fa) shows that when the phase difference between the movable mirror αυ and the laser beam reflected by the other parts is 0°, Figure 8 (1)
) is the case where the phase difference is 1800°.

次に動作について説明する。Next, the operation will be explained.

コリメートミラー(1)及び凸状のウィンドミラーf4
1の部分反射コーティング模(2)は、いわゆる不安定
型共振器を構成しており2部分反射コーティング嘆(2
)で部分反射し拡大されたレーザビーム(7)はレーザ
媒質(3)により増幅されると共に、コリメートミラー
(1)により平行ビームにコリメートされ。
Collimating mirror (1) and convex wind mirror f4
Partially reflective coating model (2) of Part 1 constitutes a so-called unstable resonator, and model (2) of partially reflective coating (2) constitutes a so-called unstable resonator.
) The laser beam (7) partially reflected and expanded is amplified by the laser medium (3) and collimated into a parallel beam by the collimating mirror (1).

その中央部のレーザビーム(70)の一部は部分反射コ
ーティング嘆(2)を通して外部にレーザビーム(80
)として、またその周辺部のレーザビーム(71)のほ
とんどが無反射コーティング模(5)を通シテ外部にレ
ーザビーム(8I)として暇り出される。この両レーザ
ビームは、ウィンドミラー(4)の表面の異なるコーテ
ィング嗅を通して朋り出されるため1両ビームに位相差
が生じる。
A part of the central laser beam (70) passes through the partially reflective coating (2) to the outside of the laser beam (80).
), and most of the laser beam (71) in the peripheral area passes through the anti-reflection coating pattern (5) and is emitted to the outside as a laser beam (8I). Since both laser beams are extracted through different coatings on the surface of the wind mirror (4), a phase difference occurs between the two laser beams.

この位相差を打消すために2例えばレーザビーム(81
)の方がレーザビーム(80)よりも位相がδ進んでい
るとすると、レーザビームの波長をλとして。
In order to cancel this phase difference, two laser beams (81
) leads the laser beam (80) in phase by δ, then let the wavelength of the laser beam be λ.

δ !=λ□ 2π だけレーザビーム(81)の伝播距離がレーザビーム(
80)の伝播距離に比べて多くなるように直線運動機構
σ2の可動機構α心を移動させて可動ミラーaOを突出
させればよい。全反射ミラーI14及び可動ミラーα0
への入射角が45°であれば、その突出taは ! d= sin45゜ となる。逆くレーザビーム(80)の方がレーザビーム
(8I)より位相がδだけ進んでいる場合には。
δ! The propagation distance of the laser beam (81) increases by =λ□2π
The movable mirror aO may be protruded by moving the movable mechanism α center of the linear motion mechanism σ2 so that the propagation distance is greater than the propagation distance of 80). Total reflection mirror I14 and movable mirror α0
If the angle of incidence on is 45°, its protrusion ta is! d=sin45°. Conversely, if the laser beam (80) leads the laser beam (8I) in phase by δ.

上記dだけ可動ミラーa9を後退させれば良い。It is sufficient to move the movable mirror a9 backward by the amount d mentioned above.

従って2例えば伸縮素子Qlを周期的に運動させるとそ
れに伴ない可動機構Iも周期的に動作し。
Therefore, for example, when the elastic element Ql is moved periodically, the movable mechanism I is also moved periodically.

レーザビーム(80)の位相は周期的に変化する。The phase of the laser beam (80) changes periodically.

このようにして位相変化を受けたレーザビーム(8)は
集光レンズ09により集光され、これにより被加工物口
eのレーザ加工を行なうと9強度が周期的に変化するレ
ーザ加工が実現できる。
The laser beam (8) that has undergone a phase change in this way is focused by a condensing lens 09, and as a result, when performing laser processing on the mouth e of the workpiece, it is possible to realize laser processing in which the intensity changes periodically. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のレーザ装置は以上のように構成されているので2
例えば、第7図で可動機構114)を動作させ。
Since the conventional laser device is configured as described above, 2
For example, in FIG. 7, the movable mechanism 114) is operated.

レーザビーム(80) 、 (81)  間の位相差を
ゼロにし九場合、レーザビーム(81)は第819(a
)に示すように一定スポット内に集光される。しかし1
例えば第7図でレーザビーム(80) 、 (81) 
 間の位相差を180’にするとレーザビーム(8)は
第8図(blに示すように集光スポット径以上にビーム
が拡がってしまうという問題点があった。
When the phase difference between the laser beams (80) and (81) is zero, the laser beam (81) becomes the 819th (a)
), the light is focused within a fixed spot. But 1
For example, in Fig. 7, the laser beams (80) and (81)
When the phase difference between the two is set to 180', there is a problem in that the laser beam (8) spreads beyond the diameter of the condensed spot, as shown in FIG. 8 (bl).

この発明は上記のような問題点を媚消するためになされ
たもので、一定スポット内で集光ビームの強度を変化さ
せて被加工物の高品質加工が行なえるレーザ装置を提供
することを目的とする。
This invention was made in order to alleviate the above-mentioned problems, and aims to provide a laser device that can perform high-quality processing of a workpiece by changing the intensity of a focused beam within a fixed spot. purpose.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るレーザ装置は、二つのレーザビーム間の
位相差を利用して強度変調するレーザ装+tICおいて
集光光学系の焦点近傍に集光ビームの径を一定にする開
口部材を設けたものである。
The laser device according to the present invention includes a laser device + tIC that modulates intensity using the phase difference between two laser beams, and an aperture member that keeps the diameter of the focused beam constant near the focal point of the focusing optical system. It is something.

〔作用〕[Effect]

この発明における開口部材は2位相差の変化に対して変
化する集光ビームの径を一定にする。
The aperture member in this invention keeps the diameter of the focused beam constant, which changes with respect to changes in the two-phase difference.

〔実楕例〕[Real ellipse example]

以下、この発明の一実惰例を図について説明する。 Hereinafter, one practical example of this invention will be explained with reference to the drawings.

第1図において、(1)〜18)は上記従来装装置と全
く同一のものである。
In FIG. 1, (1) to 18) are exactly the same as the conventional device described above.

αηは集光レンズa!jの焦点位置付近に設置されたフ
ィルターであり9%光ビームの径を一定にする開口部材
である。
αη is the condenser lens a! This is a filter installed near the focal point of j, and is an aperture member that makes the diameter of the 9% light beam constant.

第2 閣fa)(b)け各々この°発明の一実施例に係
るレーザビームの強度分布を示す分布図であり、第2図
fa)は可動ミラー[+11とそれ以外の部分で反射さ
れたレーザビーム間の位相差が0°の場合の、フィルタ
ー面に入射する前の焦点付近での強度分布。
Fig. 2 is a distribution diagram showing the intensity distribution of the laser beam according to an embodiment of the present invention, and Fig. 2 fa) shows the intensity distribution of the laser beam reflected by the movable mirror [+11 and other parts]. Intensity distribution near the focal point before entering the filter surface when the phase difference between laser beams is 0°.

第2図(1)lは上記位相差が180° の場合の、フ
ィルター09に入射する前の焦点付近での強度分布であ
る。なお、横軸は水平面内の位置1点Pはビーム照射中
心位置である。
FIG. 2(1)l shows the intensity distribution near the focal point before entering the filter 09 when the phase difference is 180°. In addition, on the horizontal axis, one point P in the horizontal plane is the beam irradiation center position.

上記のように構成されたレーザ装置において。In a laser device configured as described above.

レーザビーム(8)が嘔光しンズロ9を通過するまでは
従来装置の動作と全(同じであるが、集光レンズa5を
通運した後、被加工物(IQにレーザビーム(8)が照
射される間にその違いがある。第1図において可@轡構
04を動作させレーザビーム(80) 、 (81)間
の位相差を09にした場合、レーザビーム(8)を集光
レンズαりで集光させ、集光レンズへ9の焦点位置に被
加工物IIeを竜(と、被加工物aSの面上での強度分
布は第2図(al)ζ示すごとく一定のスポット径内に
集光される。従って2例えば第3図fa)に示すように
、被加工物(1eの面上近傍に集光スポット径とほぼ同
径の穴のあいたフィルター面を電<ト。
The entire operation is the same as that of the conventional device until the laser beam (8) passes through the laser beam lens 9, but after passing through the condensing lens a5, the laser beam (8) irradiates the workpiece (IQ). In Fig. 1, when the phase difference between the laser beams (80) and (81) is set to 09 by operating the frame 04, the laser beam (8) is transferred to the condenser lens α. Then, the intensity distribution on the surface of the workpiece aS is within a certain spot diameter as shown in Figure 2 (al) ζ. Therefore, as shown in FIG. 3, for example, a filter surface with a hole approximately the same diameter as the focal spot diameter is placed near the surface of the workpiece (1e).

レーザビーム(8)はフィルターaηによって削除され
ることなく、従ってほとんどのレーザパワーが被加工物
(Illに照射される。
The laser beam (8) is not filtered out by the filter aη, so most of the laser power is irradiated onto the workpiece (Ill).

次に、第1図において可動機構j1湯を動作させ。Next, in FIG. 1, the movable mechanism j1 is operated.

レーザビーム(aO)、(Sリ 間の位相差を例えば1
80°にした場合、被加工物aeの面上での強度分布は
第2図(b)に示すごとく広範囲にわたる。従って、第
3図(blに示すよって、フィルターαηヲ置くと、一
定スポット径のビームはフィルターaηを通運し、従っ
て、レーザパワーの一部のみ9例えばこの場合、5%曜
度が被加工物tieに照射されるが、それ以外のレーザ
ビームはフィルターαηによって削除される。
For example, if the phase difference between the laser beam (aO) and (S) is 1
When the angle is 80°, the intensity distribution on the surface of the workpiece ae covers a wide range as shown in FIG. 2(b). Therefore, as shown in FIG. 3 (bl), when the filter αη is placed, the beam with a constant spot diameter will pass through the filter aη, and therefore only a portion of the laser power 9 For example, in this case, 5% The other laser beams are removed by the filter αη.

第3図(a)、 (b)各状態ニオイテ、被加工物il
l:@射されるビーム強度を比較すると、第3図fa)
の方が例えば20倍種度強い。従って1例えば被加工物
tl[iが第3図ia)の強度においては加工され、第
3図1b)の強度においてi−1″功工されないならば
、第1第1図の伸縮素子嗜を用すてレーザビーム(80
) 。
Figure 3 (a), (b) Each state's condition, workpiece il
l:@ Comparing the emitted beam intensity, Figure 3 fa)
is, for example, 20 times more specific. Therefore, if, for example, the workpiece tl[i is processed at the strength of Fig. 3 ia), but not i-1'' at the strength of Fig. 3 1b), then the elastic element configuration of Fig. 1 is Laser beam (80
).

(81)間の位相差を06から180°まで周期的に変
化させるように可動機構Iを動作させると。
(81) When the movable mechanism I is operated so as to periodically change the phase difference between 06 and 180 degrees.

パルス的な加工を行なうことができる。Pulse processing can be performed.

レーザのパルス化においては、レーザ媒質の特性からそ
の上限冑波数が決まるのが普通で1例えハ002などの
ガスレーザでは数KHzが上限である。
When pulsing a laser, the upper limit frequency is usually determined by the characteristics of the laser medium; for example, in the case of a gas laser such as Ha002, the upper limit is several KHz.

しかし、この方法においてはパルス化がレーザ媒質の特
性と全く関係なく、高周枝化でき、10KHz、I以上
が可能でちる。
However, in this method, pulsing is completely unrelated to the characteristics of the laser medium, and the frequency can be increased to 10 KHz, I or more.

上記実情列では1位相を調整する全反射ミラーn1及び
可動ミラーtlllを共振器の外部に設けたものを示し
たが、第4図に示すように、可動ミラーαBを備えた全
反射ミラー口1を共振器ミラーの1つとして共振器内に
設けても良い。なお、1′!Qはビーム光路を変えるミ
ラーである。
In the above actual situation series, a total reflection mirror n1 for adjusting one phase and a movable mirror tlll are provided outside the resonator, but as shown in FIG. may be provided within the resonator as one of the resonator mirrors. In addition, 1′! Q is a mirror that changes the beam optical path.

また、上記実情列では、共振器内に1数の光路をもつレ
ーザ共振器を例にとって示したが、この発明はこれに限
るものではなく1例えば第5図に示すように安定型共振
器を用いても同様の効果が得られる。なお(700)は
共振器内のレーザビームであろう さらに、上記実施例では、集光レンズを1枚用いたもの
を示し九が、集光レンズを複数枚用いても良く2例えば
第6図(a)、 (1:++に示すように集光レンズを
2枚用いて、その間にフィルターを挿入しても同様の効
果が得られる。なお、第6図(a)はレーザビーム間の
位相差が0°の場合であり、レーザビーム!8)は集光
レンズ12Dの焦点位置にフィルター面を挿入しても削
除されることな(、被加工物118に照射される。第6
図(b)は位相差が1800の場合であり、レーザビー
ム(8)はフィルターa71によって集光スポット径以
外の部分を削除され、従って被加工物l1lsには強度
の弱い集光ビームが照射される。
Further, in the above actual situation series, a laser resonator having one optical path within the resonator is shown as an example, but the present invention is not limited to this.For example, a stable resonator as shown in FIG. Similar effects can be obtained by using Note that (700) is the laser beam inside the resonator.Furthermore, in the above embodiment, one condensing lens is used, but a plurality of condensing lenses may be used.2For example, as shown in FIG. The same effect can be obtained by using two condensing lenses and inserting a filter between them as shown in (1:++). Figure 6 (a) shows the position between the laser beams. This is a case where the phase difference is 0°, and the laser beam !8) is not deleted even if a filter surface is inserted at the focal position of the condenser lens 12D (the workpiece 118 is irradiated.
Figure (b) shows a case where the phase difference is 1800, and the portion of the laser beam (8) other than the focused spot diameter is removed by the filter a71, so that the workpiece l1ls is irradiated with a focused beam with weak intensity. Ru.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば二つのレーザビーム間
の位相差を利用してビームの強度を制御するレーザ製電
ておいて2位相差を与えるレーザビームを集光する集光
光学系の焦点近傍に集光ビ−ムの径を一定にする11一
部材を設けたので、ビーム径が一定の状態でビーム強度
が変化でき、高品質加工が行なえる効果がある。
As described above, according to the present invention, a condensing optical system that condenses a laser beam giving two phase differences in a laser device that controls the intensity of the beam by using the phase difference between the two laser beams. Since a member 11 for making the diameter of the condensed beam constant is provided near the focal point, the beam intensity can be changed while the beam diameter remains constant, which has the effect of allowing high-quality processing to be performed.

また、さらに高問波化も可能となる効果がある。Moreover, it has the effect of making it possible to raise the frequency even higher.

【図面の簡単な説明】[Brief explanation of the drawing]

第11号はこの発明の一実施例によるレーザ装置を示す
断面構成図、第2図Is l (blは各々この発明の
一実施例に係るレーザビームの強度分布を示す分布図、
第31’1la)fb)け各々この発明の一実施例によ
るレーザ装置の動作を説明する税明図、第4図及び第5
図はこの発明の他の実施例によるレーザ装置を示す断面
嘴成哩、第6図fa)jb)は各々この発明の他の実施
例によるレーぜ装置萱の一部を示す部分断面構成図、第
7図は従来のレーザ装置を示す断面構成曜、並びに第8
図(a)fb)は各々従来のレーザ装置の動作を説明す
る説明層である。 図において、 +71 (70)(71)(700)・
81 (8i1X81)はレーザビーム、(9)はレー
ザ共mW、 illは全反射ミラー、 lIt+け可動
ミラー、α2は直線運・動機構、Iは可@櫓嘴、嗜は集
光レンズ、 qnはフィルターである。 なお図中、@−笹号は同−又は相当部分を示す。
No. 11 is a cross-sectional configuration diagram showing a laser device according to an embodiment of the present invention, and FIG. 2 is a distribution diagram showing the intensity distribution of a laser beam according to an embodiment of the present invention.
31'1la) fb) Figures 4 and 5 each illustrate the operation of a laser device according to an embodiment of the present invention.
6(a) and 6(b) are partial cross-sectional configuration diagrams showing a part of the laser device according to another embodiment of the present invention, respectively; Figure 7 shows the cross-sectional structure of a conventional laser device, and
Figures (a) and (fb) are explanatory layers each explaining the operation of a conventional laser device. In the figure, +71 (70) (71) (700)・
81 (8i1X81) is a laser beam, (9) is a laser with mW, ill is a total reflection mirror, lIt+ is a movable mirror, α2 is a linear movement/motion mechanism, I is a possible @ tower beak, sho is a condensing lens, qn is It's a filter. In the figure, the symbol @-sasa indicates the same or equivalent part.

Claims (1)

【特許請求の範囲】[Claims]  レーザ共振器、このレーザ共振器の内部又は外部に設
けられ、反射面の一部が軸方向に移動可能な可動部を有
する全反射ミラー、及び上記全反射ミラーから反射され
たレーザビームを集光する集光光学系を備え、上記可動
部の移動量を制御して、上記可動部とそれ以外の部分で
反射されたレーザビーム間の位相を変化させ、集光ビー
ムの強度を変えるものにおいて、上記集光光学系の焦点
近傍に、上記集光ビームの径を一定にする開口部材を設
けたことを特徴とするレーザ装置。
A laser resonator, a total reflection mirror provided inside or outside the laser resonator and having a movable part in which a part of the reflection surface can be moved in the axial direction, and condensing the laser beam reflected from the total reflection mirror. a condensing optical system that controls the amount of movement of the movable part to change the phase between the laser beam reflected by the movable part and other parts to change the intensity of the condensed beam, A laser device characterized in that an aperture member is provided near the focal point of the condensing optical system to make the diameter of the condensed beam constant.
JP63326719A 1988-12-24 1988-12-24 Laser device Expired - Lifetime JP2606342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63326719A JP2606342B2 (en) 1988-12-24 1988-12-24 Laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63326719A JP2606342B2 (en) 1988-12-24 1988-12-24 Laser device

Publications (2)

Publication Number Publication Date
JPH02172286A true JPH02172286A (en) 1990-07-03
JP2606342B2 JP2606342B2 (en) 1997-04-30

Family

ID=18190910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63326719A Expired - Lifetime JP2606342B2 (en) 1988-12-24 1988-12-24 Laser device

Country Status (1)

Country Link
JP (1) JP2606342B2 (en)

Also Published As

Publication number Publication date
JP2606342B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
US11648629B2 (en) Laser processing apparatus, laser processing method, and correction data generation method
EP1943049B1 (en) Laser welding method and laser welding system
CN105478767A (en) Device and method for obtaining metal dental prosthesis through laser 3D printing
JP2003112280A (en) Light irradiation device, optical machining device, machining method and electronic component
JP2007222902A (en) Laser machining apparatus and laser machining method
JP2009178720A (en) Laser beam machining apparatus
JP7270216B2 (en) LASER PROCESSING DEVICE, LASER PROCESSING METHOD, AND CORRECTION DATA GENERATION METHOD
JP2007029959A (en) Laser beam machining apparatus
JP2000084689A (en) Laser beam machining device
JP7398622B2 (en) Laser processing head and laser processing system
JPH02172286A (en) Laser apparatus
JP2006007257A (en) Laser beam machining apparatus
JP7285465B2 (en) LASER PROCESSING DEVICE, LASER PROCESSING METHOD, AND CORRECTION DATA GENERATION METHOD
JPH09159572A (en) Optical device
JP7262081B2 (en) LASER PROCESSING DEVICE AND OPTICAL ADJUSTMENT METHOD
JP2020082149A (en) Laser irradiation system
JP2021037527A (en) Laser processing device and optical adjustment method
JP7478984B2 (en) Laser processing device and laser processing method
JPH04187393A (en) Laser beam machine
JPH01271088A (en) Laser beam machine
JP7489664B2 (en) Laser processing apparatus and optical adjustment method for laser processing apparatus
JP7452901B2 (en) laser processing equipment
JPH01228688A (en) Machining head for laser bean machine
JP2002001565A (en) Laser beam machining device
US20240157470A1 (en) Laser processing device