JPH0217179B2 - - Google Patents

Info

Publication number
JPH0217179B2
JPH0217179B2 JP61055479A JP5547986A JPH0217179B2 JP H0217179 B2 JPH0217179 B2 JP H0217179B2 JP 61055479 A JP61055479 A JP 61055479A JP 5547986 A JP5547986 A JP 5547986A JP H0217179 B2 JPH0217179 B2 JP H0217179B2
Authority
JP
Japan
Prior art keywords
blood
hollow fiber
header
recess
continuous helical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61055479A
Other languages
Japanese (ja)
Other versions
JPS62211072A (en
Inventor
Susumu Yoshikawa
Yasushi Fukumura
Masaru Mya
Ichiro Kawada
Akinori Sueoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5547986A priority Critical patent/JPS62211072A/en
Publication of JPS62211072A publication Critical patent/JPS62211072A/en
Publication of JPH0217179B2 publication Critical patent/JPH0217179B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は改良された血液入口ヘツダを有する中
空繊維型血液処理装置に関するものである。 (従来の技術) 従来より中空繊維を用いた血液処理装置は、血
液透析装置、人工肝臓装置、血液過装置、血漿
分離装置、あるいは人工肺装置として広く用いら
れている。 このような血液処理装置(血液過装置)とし
て、通常第4図に示すような血液導入出口が軸対
称位置に設けられた装置が用いられている。 第4図において、1aは血液を中空繊維5の内
部に導き、かつ外部と隔離するための断面が円形
の血液入口ヘツダであり、血液はヘツダの上部に
設けた血液導入口20aよりヘツダ内に導入され
る。1bは中空繊維の内部を通過した血液を集合
させて血液導出口20bより導出するための断面
が円形の血液出口ヘツダである。2は血液の入口
及び出口ヘツダ1a,1bをパツキン12を介し
て、中空繊維束を固定する隔壁6に密着させるた
めの固定キヤツプである。ハウジング3は通常円
筒形であつて透明で硬質の合成樹脂(ポリプロピ
レン、ポリカーボネートなど)で作られ、その内
部には数百〜数万本程度の中空繊維5が充填され
ている。またこのハウジング3には、液導出口
4が設けられている。中空繊維5は、ハウジング
3内に多数本充填され、その両端はポリウレタン
樹脂などの血液適合性に優れた隔壁6で液密に固
定され、しかも中空繊維5の内部はヘツダ1a,
1bに設けられた空間と連通している。血液は血
液入口ヘツダ1aの血液導入口20aより装置内
に導入され中空繊維の壁膜を介して血液中の有害
物をハウジング3の内部に排出した後、血液出口
ヘツダ1bの血液導出口2を経由して体内にもど
される。一方ハウジング3の内部に排出された有
害物質は導出口4から外部へとり出される。 また最近各中空繊維に均一に血液を導入するた
めに血液入口ヘツダに設けられた空間に接線方向
から血液を導入する血液処理装置が提案されてい
る(特公昭60−5308号、特開昭57−86361号な
ど)。第5図は、かかる装置の例であり、図中共
通のものは第1図と同一番号が付されている。こ
の装置では血液は血液入口ヘツダ1aの外部から
内部へ向けて接線方向に開口した血液導入口20
aより導入されヘツダ内に設けられた空間の上端
の内壁面に沿つてラセン状に設けられた血液誘導
路10にそつて旋回しながら下降し、中空糸繊維
束の切断面の外周部に達し、次いで中心に向かう
ラセン流となつて切断面から各中空繊維内部に導
入されるようになつている。 (発明が解決しようとする問題点) しかしながら、このような従来の血液処理装置
には次のような欠点があり、特にヘパリンのよう
な抗血液凝固剤を全く使用しないか、あるいは使
用量を減らした血液透析(ノンヘパあるいは減ヘ
パ透析)や、持続的血液過(CAVH)、体外循
環肺補助(ECMO)などの数日におよぶ長期使
用の場合においては実用上種々の問題がある。す
なわち第4図に示す血液処理装置では構造上、血
液導入口20aより導入された血液は、まず中空
繊維の端面中央部に衝突し、次いで外周部の中空
繊維へ分散される。従つてヘツダの内部の空間を
流れる血液の速度は、血液の導入口の直下付近で
は大きく、周辺に向うに従つて小さくなる。その
結果ヘツダの空間内で血液のよどみを生じ、また
ヘツダに設けられた空間の周辺部では、血液が停
滞する恐れがある。そのため血液処理装置として
の性能が低下し、しかも返血する際に、返血速度
が中央部と周辺部で異なるため、周辺部に近い中
空繊維の内部や、血液がよどみをつくつた領域に
残血現象を起こす。一方第5図に示す装置では、
中空繊維の切断面において相対的に広い面積を占
める外周部に対して接線方向から血液が導かれ、
その後ラセン流路の厚みが漸減するために外周部
と内周部の中空繊維内部への血液流入速度は第4
図に示す装置よりは均一に保たれ、かつ、切断面
に対して平行な血流速度も大きな値をとり得る。
しかしヘツダに設けられた空間での血液の流れ
は、固定された流路でないため、ラセン流路をと
るものの、ハウジングに収容された中空繊維の分
布状態や、中空繊維の切断面の起伏、ヘツダの血
液との接触面の起伏の状態によつてかえつて部分
的なうず流と、それに伴う血栓形成および気泡の
滞留を起し易く、しかもヘツダがかさ高くなるた
め血液充填量が増加するなどの問題があつた。 (問題点を解決するための手段) 従つて本発明の目的は気泡の滞留や血栓、血餅
の発生が少なく、長期間連続使用しても中空繊維
の閉塞が起こらないような血液入口ヘツダを有す
る血液処理装置を提供することである。 本発明は一端に血液入口ヘツダと、他端に血液
出口ヘツダを備えた筒状ハウジング内に中空繊維
束が収容された中空繊維型血液処理装置におい
て、該血液入口ヘツダ内に形成された凹所に、該
凹所の中心部から周辺部にかけて、頂部が中空繊
維束の切断面に実質的に当接する連続ラセン状壁
を延在させて、該凹所内に連続ラセン状溝を形成
するとともに、該連続ラセン状溝の端部に外部を
向けて接線方向に開口する血液導入口を設けたこ
とを特徴とする中空繊維型血液処理装置である。 (作用) 本発明の血液処理装置は、血液入口ヘツダ内に
形成された凹所に中空繊維束の切断面に実質的に
当接する連続ラセン状壁を設け、該ラセン状壁で
連続ラセン状溝を形成することにより、血液導入
口からヘツダ内に設けられた凹所に導かれた血液
は、該連続ラセン状溝に沿つてラセン状に回りつ
つ、中空繊維束の切断面上、すなわち中空繊維の
内部に導入される。その際血液圧は各中空繊維切
断面上に均一に加わるので、血液は一様に中空繊
維内部に導入される。そのため、中空繊維束の開
口端面上における気泡の滞留や血栓形成の原因と
なるよどみ、血小板の粘着の抑止や、中空糸の閉
塞を解消できるものと推測される。 (実施例) 次に本発明の血液処理装置の一実施例を図面に
て説明する。第1図は本発明装置の一部断面図、
第2図は血液入口ヘツダ1aの斜視図であり、図
中共通のものは第4図と同一番号が付されてい
る。第1図の装置はヘツダ部分を中心とした構造
に動徴がある。本発明装置では血液入口ヘツダ1
aの血液導入口20aより導入された血液は、ヘ
ツダ内の凹所の中心部から周辺部に延在する連続
ラセン状壁7で形成された連続ラセン状溝8の端
部へ接線方向から導入される。該連続ラセン状壁
7の頂部は第1図に示すように中空繊維の切断面
に実質的に当接するため、血液導入口20aより
ヘツダ内に導入された血液は連続ラセン状溝8を
移動しながら、中空繊維内部に導入される。した
がつて各中空繊維にはほぼ均一に血液が導入され
る。しかしながらラセン状壁の頂部が中空繊維の
切断面に当接するため、その部分の中空繊維には
血液が流れない。そのためラセン状壁の頂部は鋭
く細くするのが好ましい。またラセン状溝内で血
液が隣接する溝にシヨートパスしない程度の僅か
な空隙を設けてもよい。上記ラセン状溝の深さを
第3図に示すように徐々に小さくすると、連続ラ
セン状溝の全ての場所において血液の速度を一定
とすることができるため好ましい方法である。 また血液出口ヘツダ1bも入口ヘツダ1aと同
様に、血液導出口20bをヘツダの接線方向に設
けると、装置の長さ方向の寸法を小とすることが
できるので、コンパクトになる長所を有する。そ
の際には血液出口ヘツダ1bの凹所にはラセン状
壁を設けない方が好ましい。 次に本発明装置と従来装置との性能の比較を行
う。 本発明装置として血液入口ヘツダに第1図に示
すように連続ラセン状壁を有し、血液出口ヘツダ
にはラセン状壁を設けない装置を用いた。一方従
来装置として第4図と第5図に示す装置を用い
た。(内径235μmのポリスルホン膜を使用、中空
糸本数4300本、有効膜面積0.5m2) 上記各血液処理装置に牛新鮮血(ヘマトクリツ
ト値38%、全蛋白質濃度6g/dl)を用い、血液
流速200ml/min、膜間圧力差100mmHgの条件で
血液過試験を行なつた。8時間血液過後の限
外過量および返血後の残血本数について測定し
た結果を表−1に示す。
INDUSTRIAL APPLICATION This invention relates to a hollow fiber blood processing device having an improved blood inlet header. (Prior Art) Blood processing devices using hollow fibers have conventionally been widely used as hemodialysis devices, artificial liver devices, blood filtration devices, plasma separation devices, or artificial lung devices. As such a blood processing device (blood filtration device), a device as shown in FIG. 4 in which blood inlet ports are provided at axially symmetrical positions is usually used. In FIG. 4, reference numeral 1a denotes a blood inlet header with a circular cross section for guiding blood into the inside of the hollow fiber 5 and isolating it from the outside. be introduced. Reference numeral 1b denotes a blood outlet header having a circular cross section for collecting blood that has passed through the hollow fibers and leading it out from the blood outlet 20b. Reference numeral 2 designates a fixing cap for bringing the blood inlet and outlet headers 1a and 1b into close contact with the partition wall 6, which fixes the hollow fiber bundle, through the packing 12. The housing 3 is usually cylindrical and made of transparent, hard synthetic resin (polypropylene, polycarbonate, etc.), and its interior is filled with hundreds to tens of thousands of hollow fibers 5. The housing 3 is also provided with a liquid outlet 4. A large number of hollow fibers 5 are packed in the housing 3, and both ends of the hollow fibers 5 are fixed liquid-tightly with partition walls 6 made of polyurethane resin or the like having excellent blood compatibility.
It communicates with the space provided in 1b. Blood is introduced into the device through the blood inlet port 20a of the blood inlet header 1a, and harmful substances in the blood are discharged into the housing 3 through the wall membrane of the hollow fibers. It is returned to the body via On the other hand, harmful substances discharged into the interior of the housing 3 are taken out from the outlet 4. Recently, a blood processing device has been proposed in which blood is introduced tangentially into a space provided in a blood inlet header in order to introduce blood uniformly into each hollow fiber (Japanese Patent Publication No. 60-5308, JP-A-57 −86361 etc.). FIG. 5 shows an example of such a device, and common parts in the figure are given the same numbers as in FIG. 1. In this device, blood is passed through a blood inlet 20 which opens tangentially from the outside of the blood inlet header 1a to the inside.
It is introduced from a and descends while turning along the blood guide path 10 provided in a spiral along the inner wall surface of the upper end of the space provided in the header, and reaches the outer periphery of the cut surface of the hollow fiber fiber bundle. Then, it becomes a spiral flow toward the center and is introduced into each hollow fiber from the cut surface. (Problems to be Solved by the Invention) However, such conventional blood processing devices have the following drawbacks. There are various practical problems in the case of long-term use over several days, such as hemodialysis (non-hepadialysis or reduced hepadialysis), continuous hemodialysis (CAVH), and extracorporeal circulation lung support (ECMO). That is, in the blood processing apparatus shown in FIG. 4, due to the structure, blood introduced from the blood inlet 20a first collides with the center of the end face of the hollow fiber, and then is dispersed into the hollow fiber at the outer periphery. Therefore, the velocity of blood flowing through the internal space of the header is high near the area immediately below the blood inlet, and decreases toward the periphery. As a result, blood may stagnate within the space of the header, and blood may stagnate around the space provided in the header. As a result, the performance of the blood processing device deteriorates, and when blood is returned, the speed of blood return differs between the center and the periphery, so blood remains inside the hollow fibers near the periphery or in areas where blood stagnates. Causes blood phenomena. On the other hand, in the device shown in FIG.
Blood is guided from the tangential direction to the outer periphery, which occupies a relatively large area on the cut surface of the hollow fiber,
After that, the thickness of the helical flow path gradually decreases, so that the velocity of blood inflow into the hollow fibers at the outer and inner circumferences reaches the fourth level.
The blood flow velocity is maintained more uniformly than in the device shown in the figure, and the blood flow velocity parallel to the cutting surface can also take on a large value.
However, the flow of blood in the space provided in the header is not a fixed flow path, and although it takes a helical flow path, the distribution of the hollow fibers accommodated in the housing, the undulations of the cut surface of the hollow fibers, and the Depending on the undulations of the contact surface with the blood, local eddy flow and associated thrombus formation and bubble retention may occur more easily, and the volume of blood filling increases as the head becomes bulkier. There was a problem. (Means for Solving the Problems) Accordingly, the object of the present invention is to provide a blood inlet header which has less accumulation of air bubbles, less occurrence of thrombi, and less blood clots, and which does not cause blockage of hollow fibers even when used continuously for a long period of time. An object of the present invention is to provide a blood processing device having the following features. The present invention provides a hollow fiber type blood processing device in which a hollow fiber bundle is housed in a cylindrical housing having a blood inlet header at one end and a blood outlet header at the other end. forming a continuous helical groove in the recess by extending a continuous helical wall whose apex substantially contacts the cut surface of the hollow fiber bundle from the center to the periphery of the recess; This hollow fiber type blood processing device is characterized in that a blood inlet opening tangentially toward the outside is provided at the end of the continuous helical groove. (Function) The blood processing device of the present invention is provided with a continuous helical wall that substantially contacts the cut surface of the hollow fiber bundle in the recess formed in the blood inlet header, and the continuous helical groove is formed in the helical wall. By forming a groove, the blood guided from the blood inlet into the recess provided in the header circulates in a helical manner along the continuous helical groove and is directed to the cut surface of the hollow fiber bundle, that is, the hollow fiber be introduced inside. At this time, blood pressure is uniformly applied to each cut surface of the hollow fibers, so that blood is uniformly introduced into the interior of the hollow fibers. Therefore, it is presumed that stagnation that causes accumulation of air bubbles and thrombus formation on the open end surface of the hollow fiber bundle, inhibition of platelet adhesion, and occlusion of the hollow fibers can be eliminated. (Example) Next, an example of the blood processing apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a partial sectional view of the device of the present invention;
FIG. 2 is a perspective view of the blood inlet header 1a, and common parts in the figure are given the same numbers as in FIG. 4. The device shown in FIG. 1 has a dynamic structure centered around the header portion. In the device of the present invention, the blood inlet header 1
The blood introduced from the blood inlet 20a of a is introduced tangentially to the end of a continuous helical groove 8 formed by a continuous helical wall 7 extending from the center of the recess in the header to the periphery. be done. As the top of the continuous helical wall 7 substantially contacts the cut surface of the hollow fiber as shown in FIG. while being introduced inside the hollow fiber. Therefore, blood is introduced into each hollow fiber almost uniformly. However, since the top of the helical wall contacts the cut surface of the hollow fiber, blood does not flow into the hollow fiber in that area. Therefore, it is preferable that the top of the helical wall be sharp and narrow. Further, a small gap may be provided within the helical groove to prevent blood from passing into the adjacent groove. Gradually reducing the depth of the helical groove as shown in FIG. 3 is a preferred method because the blood velocity can be kept constant at all locations in the continuous helical groove. Similarly to the inlet header 1a, the blood outlet header 1b also has the advantage of being compact by providing the blood outlet 20b in the tangential direction of the header, since the longitudinal dimension of the device can be reduced. In this case, it is preferable not to provide a helical wall in the recess of the blood outlet header 1b. Next, the performance of the device of the present invention and the conventional device will be compared. As the apparatus of the present invention, an apparatus was used in which the blood inlet header had a continuous helical wall as shown in FIG. 1, and the blood outlet header had no helical wall. On the other hand, as a conventional device, the devices shown in FIGS. 4 and 5 were used. (A polysulfone membrane with an inner diameter of 235 μm is used, the number of hollow fibers is 4300, and the effective membrane area is 0.5 m 2 ) Fresh bovine blood (hematocrit value 38%, total protein concentration 6 g/dl) is used in each of the above blood processing devices, and the blood flow rate is 200 ml. /min, and a transmembrane pressure difference of 100 mmHg. Table 1 shows the results of measuring the ultraviolet excess amount after 8 hours of blood flow and the number of remaining blood after blood return.

【表】 以上のように本発明の装置は従来装置に比較し
て、限外過量は多く、また残血本数は極度に少
ない、さらに肉眼での観察の結果、本発明の血液
処理装置ではヘツダに導入された血液が、ほぼ均
一に各中空繊維に導入されていることを確認し
た。 したがつて本発明の血液処理装置は長時間連続
して使用される体外循環肺補助や持続的血液
過、あるいは減ヘパリン透析などに好適に用いら
れる。 (発明の効果) 以上のように、本発明の血液処理装置は、ヘツ
ダ内の凹所に血液を誘導する連続ラセン状溝を設
けることによつて、中空繊維束の開口端面に平行
な血液速度を、維持することができる。かかる構
造は中空繊維内部への血液流入速度に与える影響
が少なく、ほぼ均一な流入速度が得られるため、
ヘツダ内凹所での気泡の滞留、血栓や血餅の発生
の抑止効果が強く発現し、従来装置では不可能だ
つた、長時間連続使用やノンヘパ、減ヘパ透析が
可能である。
[Table] As described above, compared to the conventional device, the device of the present invention has a large amount of ultraviolet excess, and the number of remaining blood is extremely small.Furthermore, as a result of visual observation, the blood processing device of the present invention It was confirmed that the blood introduced into each hollow fiber was almost uniformly introduced into each hollow fiber. Therefore, the blood processing apparatus of the present invention is suitably used for extracorporeal circulation pulmonary support, continuous blood perfusion, or reduced heparin dialysis that is used continuously for a long period of time. (Effects of the Invention) As described above, the blood processing device of the present invention has a continuous helical groove for guiding blood into the recess in the header, thereby increasing the blood velocity parallel to the open end surface of the hollow fiber bundle. can be maintained. Such a structure has little effect on the blood inflow speed into the hollow fiber, and a nearly uniform inflow speed can be obtained.
It has a strong effect of inhibiting the accumulation of air bubbles in the recesses within the header and the generation of blood clots and blood clots, and enables long-term continuous use and non-hepatodialysis and low-hepadialysis, which was impossible with conventional devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の血液処理装置の一部断面図で
あり、第2図はヘツダの斜視図であり、第3図は
他の実施例のヘツダ部形状を示す断面図であり、
第4図及び第5図に従来の血液処理装置の一部断
面図である。 1a,1b……血液入口、出口ヘツダ、2……
固定キヤツプ、3……ハウジング、4……液導
出口、5……中空繊維、6……隔壁、7……連続
ラセン状壁、8……連続ラセン状溝。
FIG. 1 is a partial sectional view of the blood processing apparatus of the present invention, FIG. 2 is a perspective view of the header, and FIG. 3 is a sectional view showing the shape of the header part of another embodiment.
FIGS. 4 and 5 are partial cross-sectional views of a conventional blood processing apparatus. 1a, 1b...Blood inlet, outlet header, 2...
Fixed cap, 3... Housing, 4... Liquid outlet, 5... Hollow fiber, 6... Partition wall, 7... Continuous helical wall, 8... Continuous helical groove.

Claims (1)

【特許請求の範囲】[Claims] 1 一端に血液入口ヘツダと、他端に血液出口ヘ
ツダを備えた筒状ハウジング内に中空繊維束が収
容された中空繊維型血液処理装置において、該血
液入口ヘツダ内に形成された凹所に、該凹所の中
心部から周辺部にかけて、頂部が中空繊維束の切
断面に実質的に当接する連続ラセン状壁を延在さ
せて、該凹所内に連続ラセン状溝を形成するとと
もに、該連続ラセン状溝の端部に外部に向けて接
線方向に開口する血液導入口を設けたことを特徴
とする中空繊維型血液処理装置。
1. In a hollow fiber blood processing device in which a hollow fiber bundle is housed in a cylindrical housing having a blood inlet header at one end and a blood outlet header at the other end, in a recess formed in the blood inlet header, A continuous helical wall whose apex substantially abuts the cut surface of the hollow fiber bundle extends from the center to the periphery of the recess to form a continuous helical groove within the recess, and A hollow fiber type blood processing device characterized in that a blood inlet opening tangentially toward the outside is provided at an end of a spiral groove.
JP5547986A 1986-03-12 1986-03-12 Hollow fiber type blood treatment apparatus Granted JPS62211072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5547986A JPS62211072A (en) 1986-03-12 1986-03-12 Hollow fiber type blood treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5547986A JPS62211072A (en) 1986-03-12 1986-03-12 Hollow fiber type blood treatment apparatus

Publications (2)

Publication Number Publication Date
JPS62211072A JPS62211072A (en) 1987-09-17
JPH0217179B2 true JPH0217179B2 (en) 1990-04-19

Family

ID=12999750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5547986A Granted JPS62211072A (en) 1986-03-12 1986-03-12 Hollow fiber type blood treatment apparatus

Country Status (1)

Country Link
JP (1) JPS62211072A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626978U (en) * 1992-09-04 1994-04-12 株式会社タカラ Balance game toys

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139741A (en) * 1988-12-29 1992-08-18 Terumo Kabushiki Kaisha Blood processing apparatus of hollow fiber type
JPH0614965B2 (en) * 1989-01-10 1994-03-02 テルモ株式会社 Oxygenator
US20120234746A1 (en) * 2009-09-14 2012-09-20 John Howard Filter blood fluid channel methods, devices, and systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030224A (en) * 1983-07-28 1985-02-15 Sanyo Electric Co Ltd Noise signal removing circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030224A (en) * 1983-07-28 1985-02-15 Sanyo Electric Co Ltd Noise signal removing circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626978U (en) * 1992-09-04 1994-04-12 株式会社タカラ Balance game toys

Also Published As

Publication number Publication date
JPS62211072A (en) 1987-09-17

Similar Documents

Publication Publication Date Title
KR100649260B1 (en) Dual-stage filtration cartridge
US3728256A (en) Crossflow capillary dialyzer
US4125468A (en) Hollow-fiber permeability apparatus
JPH01148266A (en) Blood filter
CA1089370A (en) Hollow fiber permeability apparatus
TW539558B (en) Hemodialyzer headers
US3373876A (en) Artificial body organ apparatus
US4231877A (en) Blood dialyzer
US4082670A (en) Hollow fiber permeability apparatus
JPH0217179B2 (en)
JPS644789B2 (en)
JPS6343672A (en) Hollow fiber type blood treatment apparatus
JPH0217180B2 (en)
JPS6030224B2 (en) Blood processing device with hollow fiber membrane bundle
JP4328902B2 (en) Online large-volume fluid replacement hemodialyzer
JPS605308B2 (en) Blood processing device consisting of hollow fiber membrane bundle
JP4807912B2 (en) Hollow fiber membrane module and manufacturing method thereof
JP4144844B2 (en) Hollow fiber membrane dialysis filter
JPS6323099Y2 (en)
JPH09108338A (en) Blood port and blood processing device using the same
JPH0550299B2 (en)
JPH01151908A (en) Hollow yarn type fluid processor
JPH0550300B2 (en)
JPH0229961Y2 (en)
JPS609820B2 (en) Hollow fiber membrane mass transfer device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term