JPH0550300B2 - - Google Patents

Info

Publication number
JPH0550300B2
JPH0550300B2 JP60242475A JP24247585A JPH0550300B2 JP H0550300 B2 JPH0550300 B2 JP H0550300B2 JP 60242475 A JP60242475 A JP 60242475A JP 24247585 A JP24247585 A JP 24247585A JP H0550300 B2 JPH0550300 B2 JP H0550300B2
Authority
JP
Japan
Prior art keywords
blood
port
hollow fiber
internal space
disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60242475A
Other languages
Japanese (ja)
Other versions
JPS62101258A (en
Inventor
Hiroyuki Akasu
Akio Oomori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP60242475A priority Critical patent/JPS62101258A/en
Publication of JPS62101258A publication Critical patent/JPS62101258A/en
Publication of JPH0550300B2 publication Critical patent/JPH0550300B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • External Artificial Organs (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は血液ポート(血液出入口部)で血液の
よどみや、気泡の滞留などがなく、かつ各中空繊
維へ血液を均等に分配する事のできる、長時間使
用可能な中空繊維型血液処理装置に関するもので
ある。 (従来の技術) 従来より中空繊維を分離膜として用いた血液処
理装置は、血液透析装置や人工肝臓装置、あるい
は血漿分離装置や人工肺装置として広く用いられ
ている。 このような血液処理装置は一般に円筒型のもの
が多い。円筒型の血液処理装置を例に、その構造
を第5図に示す。 第5図において、1は血液を中空繊維5の内部
空間に導き、かつ外部と隔離するための断面が円
形の入口側血液ポートであり、血液10はポート
上部に設けた血液導入口20より導入される。1
aは中空繊維の内部空間を通過してきた血液を集
合させ一定の大きさの管に血液導出口20aより
導出し、かつ外部と隔離するための断面が円形の
出口側ポートである。2はポート1又はポート1
aが外筒3と分離しないように、また、ポート内
に導びかれた血液が外部に洩れずに中空繊維5の
内部空間に導びくためにポート1又はポート1a
をパツキン12を介して中空繊維束を固定する隔
壁6に密着させるための固定キヤツプである。外
筒3は好ましくは円筒形であつて透明で硬質の合
成繊維で作られ、その内部空間9には数百〜一万
本程度の中空繊維5が充填されている。又この外
筒3には、血液浄化用流体11の導入口4及び血
中有害物質の導出口4aが設けられている。中空
繊維5は、外筒3の内部空間9に多数充填され、
その両端は血液適合性に優れた隔壁6で液密に固
定され、しかも中空繊維5の内部空間は血液ポー
トの内部空間8と連通している。隔壁6は一般に
ポリウレタン樹脂が使用されているがこの隔壁6
によつて血液ポートの内部空間8は、外筒3の内
部空間9と隔離され、ポートの内部空間8及び外
外筒3の内部空間9は中空繊維5の壁膜を介して
のみ接触するようになつている。すなわち導入さ
れる血液10は入口側ポート内の空間8を経由し
て中空繊維の内部空間に入り、中空繊維の壁膜を
介して血液中の有害物を外筒3の内部空間9に排
出し、清浄になつた血液は出口側ポート1aの内
部の空間を経由して体内にもどされる。一方外筒
3の内部空間9に排出された有害物は必要に応じ
て導入口4より導入された血液浄化用流体11と
ともに導出口4aを経由して外部へ取り出され
る。 この様な軸対称型血液ポートの改良された例と
して、特開昭59−139274号には、第6図に示す角
度φおよびθがそれぞれ60〜85°、7°〜23°であり、
高さhが1.5〜3.5mmとなるように成形されたロー
ト状の空間を有する血液ポートが開示されてい
る。また特公昭60−5308号には非軸対称型ポート
の例として、第7図および第8図に示すように中
空繊維束の切断面に対して、水平に、接線方向か
ら血液を導入出する凹型の血液ポートが開示され
ている。 (発明が解決しようとする問題点) しかしながら、このような従来の円筒タイプの
血液処理装置は次のような欠点があり、特にヘパ
リンのような抗血液凝固剤を全く使用しないか、
あるいは使用量を減らした血液透析療法の場合
や、数日におよぶ長期使用の場合においては実用
上問題がある。すなわち第5図において、使用さ
れる血液ポート1はその構造上、ポートの入口点
Aより血液がポートに導入された際、先づ中空繊
維束の切断面の中央部に衝突し、次いで当該中空
繊維の内部空間の圧力(又は抵抗)や当該中空繊
維束を固定する隔壁によつて血液が外周部の中空
繊維へ分散される。従つてポート内部の空間を流
れる血液の速度は、血液の導入出口の直下付近の
中央部では速いが、360°の全方位に広がつて流れ
るため、その速度の減衰は急激であり、特に外周
部においては極端に遅くなり、ポートの周辺部で
は血液がよどみをつくる領域が発生する。その結
果、血液処理装置としての性能が低下すると共
に、血液処理後返血する際に、返血速度が中央部
と外周部で異なるため、外周部に近い中空繊維の
内部空間や血液がよどみをつくつた領域に残血や
凝血現象を引き起こす。特に長時間の血液処理を
行なう場合、血液速度の遅い中空糸の内部空間や
血液がよどみをつくるポート周辺部では凝血を起
こし、血液の流れが停止する部分が生じ、血液処
理が不能に陥る場合がある。こうした従来装置の
欠点を解消するため特開昭57−86359号には中空
繊維束の端面を底とする特定のロート状の内部空
間を有し、かつその頂部に血液導入口を設けた血
液ポートを用いた装置が提案されている。確かに
この装置ではポート先に供給された血液がロート
状の内部空間内で無理なく分配されるため、中空
繊維束の中央部でも外周部でもほぼ均一な速度で
血液が中空繊維中に流入するという利点はあるも
のの、ポートの内部空間における血液の流速の流
入出口からポート周辺部に向けての急激な減少
や、ポート周辺部での血液のよどみについてはま
だ不満足であつた。 特公昭60−5308号には、第7図および第8図に
示したような、入口側ポートの断面が円形になつ
ている部分の接線方向から血液が流入し、中空繊
維膜束の切断面上に沿い、らせん状にまわりなが
ら固定された中空繊維膜の切断面上、すなわち中
空繊維膜内部へ導入される型の血液ポートが示さ
れている。この場合、中空繊維膜の切断面におい
て相対的に広い面積を占める外周部に対して接線
方向から血液が導かれその後血液層厚みが中央に
向つて漸減するために外周部と内周部の中空繊維
膜群の内部空間への血液流入速度、速ち、血液ポ
ート内における血液の速度の中空繊維膜切断面に
対する垂直成分や水平成分は第5図の血液ポート
よりは均一に保たれるが、厚みの大きい外周部で
の流路が長いため、水平成分の減衰が大きく、か
つ、外周付近の血液ポート部の構造が複雑なため
かえつて滞留部を生じ易く、中空繊維の分布が悪
いと部分的過流も生じ、それらに伴う血栓形成、
および気泡の滞留を起し易いほか、ポート部がか
さ高くなり、血液充填量が増加するなどの問題が
あつた。 以上に述べたように、これら従来公知の血液ポ
ートにあつては気泡の滞留、血栓や血餅の発生、
それに伴う血液処理装置の性能劣化や残血などの
問題が十分には解決されておらず、特にヘパリン
の様な抗血液凝固剤を全く使用しないか、あるい
は使用量を減らして血液処理を行う場合や、なか
んずく数日に及ぶ長時間の血液処理を行う際など
には上記の理由による中空繊維の閉塞が激しく、
実用に耐えないという問題点があつた。 従つて本発明が解決すべき問題点は、気泡の滞
留や血栓、血餅の発生が少なく、長時間連続使用
しても中空繊維の閉塞が起こらないような改良さ
れた血液ポートを有する血液処理装置をいかにし
て得るかということである。 (問題点を解決するための手段) 前述したように従来公知の血液ポートは中空繊
維束中の個々の中空繊維膜の内部にいかに均一に
血液を流しこむかを追求してきているが、なおヘ
パリンを減らした場合や数日におよぶ長期使用を
行つた場合には血液ポート部における血栓の発
生、それに伴う血液処理装置性能の低下、血小板
の減少などが起こり、実用上満足のいくものはな
い。本発明者らはこの点を改善すべく鋭意研究を
重ねた結果、以外にも血液ポート内部空間の厚み
と、血液の導入出方向および導入出口の位置が極
めて重要であり、中空繊維膜内部への血液の均一
な流入を計る事よりも、上記問題点の解決に効果
的である事を見い出し本発明を完成するに至つ
た。 すなわち、本発明は端部が開口した中空繊維束
が収容されてなる円筒型モジユールの少なくとも
一端に、円板状の内部空間を形成するように血液
ポートを取り付けた血液処理装置であつて、該血
液ポートの円板状空間の厚みh(cm)がモジユー
ルの膜面積s(m2)に対して s0.9m2のとき、h0.237×{(s−0.9)×
4.23+1}×1/√s、s<0.9m2のとき、h0.237 ×√+0.025 なる関係を満たし、かつ、血液が該ポートの円板
状空間の外周部に近接して設けられた開口部を通
じて、円板状空間に対して上下角60°以下の接線
方向より導入または導出されるように導入口また
は導出口が設けられている事を特徴とする血液処
理装置である。 とくに、本発明の特徴とするところは、上記の
式で規定される十分に薄い円板状の血液ポート内
部空間と該空間の外周部に近接して設けられた血
液の導入口または導出口を通じ、該円板状空間に
対して上下角60°以下の接線方向より血液を導入
出する事にある。(第1図〜第4図参照)こうし
た構造の血液ポートは、ポート内部空間の厚みが
薄いため、ポート内における血液のらせん状の流
れが一層強められ、中空繊維束の開口端面上にお
ける血液の速度の端面に平行な成分(水平成分)
は従来公知の血液ポートよりも本発明の血液ポー
トの方が格段に速く、ために血液ポート内におけ
る気泡の滞留や、血栓形成の原因となる血小板の
粘着を抑止する効果が大きい。 本発明において重要な因子である血液ポート内
部空間の厚みは薄い程効果的であるが、実際には
血液処理装置の大きさ、血液処理の際の所要血流
量、血液粘度、抗血栓剤の使用量などの因子を考
慮して、各々の血液処理装置に適した値に設定す
る必要がある。本発明者らの研究結果によれば血
液ポートの円板状空間の厚みh(cm)がモジユー
ルの膜面積s(m2)に対して s0.9m2の時、h0.237×{(s−0.9)×4.23
+1}×1/√s s<0.9m2の時、h0.237×√+0.025 好ましくは s0.9m2の時h0.142×{(s−0.9)×4.23+
1}×1/√s s<0.9m2の時h0.142×√+0.015 なる関係を満たす事が、血液ポート部における血
栓形成や、気泡の滞留を防止する上で重要であ
る。hがこれ以上厚いと、十分な効果が発現し得
ず、ポート外周部に広いリング状の血栓形成が認
められる。上式は膜面積の異なる種々のモジユー
ルを用いて実験的に定められたものであり(通常
膜面積0.1〜10m2のモジユールが用いられる。)、
その意味は厳密には明らかでないが、中空繊維束
の開口端面上における血液の速度の水平成分が、
ある程度以上必要な事を示唆している。また、血
液ポートの内部空間の形状は実質的に一様な厚み
(h)の薄い円板状である事が本発明の要件として重
要であり、凹凸があつたり、角ばつたりしている
ものは、その部分に滞留を生じ易く、好ましくな
い。 本発明におけるもう一つの特徴は血液ポートへ
の血液導入口、または導出口が、薄い円板状のポ
ートの外周部に近接して設けられており、かつ、
その口を通じて、円板状空間に対して上下角60°
以下の接線方向から血液が導入、または導出され
る点にある。本発明において、導入口または導出
口の中心が中空繊維束の開口端面上の中心と、中
空繊維束の外周での最大距離の1/3以上の外周か
ら離れると気泡の滞留や血栓形成抑止効果が急激
に低下する。上下角が60°より大きいと、中空繊
維束開口端面上で血液に十分ならせん流をおこす
ことができず、ポート内で血栓が形成され易い。
血液の導入出口の、ポートへの開口端は、通常円
板状空間の上面側、即ち、中空繊維束開口端面と
反対側に設ける。該ポートに、水平に近い角度で
血液を導入出する時は円板状空間の側面円周上に
設けても良いが、血液導入出口のポート内への開
口端はできるだけ偏平な形状、例えば長方形の断
面、にする事が好ましい。 なお、血液ポート部材としては通常用いられて
いるポリプロピレン、ポリカーボネート、ポリメ
タクリレート等が本発明においても用いられる。
血液が接触する内面はシリコン、セグメント化ポ
リウレタン等の血液を凝固させにくいポリマーで
コーテイングしておくことが好ましい。 また、本発明において血液導入口、導出口以外
の開口部、例えば採血口、輸液口、ヘパリン注入
口、センサー挿入口、エア抜口などを血液ポート
部に設ける事は自由であるが、できるだけ少数に
限定する方が、血栓形成がおこりにくく、好まし
い。 (実施例) 実施例1〜2および比較例1〜3 内表面に薄いシリコンゴム層を有する、内径
320μ、外径480μのポリスルホン中空繊維膜4000
本を公知の方法によつて膜面積1.0m2の円筒型モ
ジユールに組み、両端を切断して直径が36mmの円
形の中空繊維束開口端面を形成し、該端面上に各
種の血液ポート(ポリカーボネート製、セグメン
ト化ポリウレタンで内面コート)を接続固定して
血液ポートの構造を異にする同型同大の血液処理
装置を得た。実験に使用した血液ポートの構造は
第3図に示す形状でh=3mmおよび2mmのもの、
比較例として、h=5mmのものと、第6図に示す
形状でφ=75°、θ=15°、d=1.5mm、h=2.0mm
のもの、および第7図に示す形状で、h=5mm、
かつ血液導入口および導出口が中空繊維束開口端
面に対して水平方向に設けられているものの5種
であつた。 平均体重3.5Kgの子豚5匹を用い、各々に前記
血液処理装置を接続して、血液の活性凝固時間を
200秒に制御しつつ、中空繊維膜内面側に平均血
流量250c.c./minで血液を流し、中空繊維膜外面
側には酸素を流しながら、3日間の体外循環を行
つた。 体外循環中における各血液処理装置の酸素可能
の変化と、対外循環終了時における血液ポート内
の血栓形成程度、および中空繊維の閉塞状況を第
1表に示した。この結果から本発明の血液処理装
置が長時間にわたり高い抗血栓性を示し、血液処
理性能も安定している事が明らかである。
(Industrial Application Field) The present invention eliminates blood stagnation and air bubble retention at the blood port (blood inlet/outlet), and can evenly distribute blood to each hollow fiber, allowing for long-term use. The present invention relates to a hollow fiber type blood processing device. (Prior Art) Conventionally, blood processing devices using hollow fibers as separation membranes have been widely used as hemodialysis devices, artificial liver devices, plasma separation devices, and artificial lung devices. Generally, many of such blood processing apparatuses are cylindrical. Taking a cylindrical blood processing device as an example, its structure is shown in FIG. In FIG. 5, reference numeral 1 denotes an inlet side blood port with a circular cross section for guiding blood into the internal space of the hollow fiber 5 and isolating it from the outside, and blood 10 is introduced from a blood inlet 20 provided at the top of the port. be done. 1
Reference character a designates an exit port with a circular cross section for collecting the blood that has passed through the internal space of the hollow fibers, leading it out through the blood outlet 20a into a tube of a certain size, and isolating it from the outside. 2 is port 1 or port 1
port 1 or port 1a so that a does not separate from the outer cylinder 3, and in order to guide the blood introduced into the port into the internal space of the hollow fiber 5 without leaking to the outside.
This is a fixing cap for bringing the hollow fiber bundle into close contact with the partition wall 6 which fixes the hollow fiber bundle via the packing 12. The outer cylinder 3 is preferably cylindrical and made of transparent, hard synthetic fibers, and its internal space 9 is filled with several hundred to ten thousand hollow fibers 5. Further, this outer cylinder 3 is provided with an inlet 4 for the blood purification fluid 11 and an outlet 4a for the harmful substances in the blood. A large number of hollow fibers 5 are filled in the internal space 9 of the outer cylinder 3,
Both ends of the hollow fiber 5 are fluid-tightly fixed by partition walls 6 having excellent blood compatibility, and the internal space of the hollow fiber 5 communicates with the internal space 8 of the blood port. The partition wall 6 is generally made of polyurethane resin;
As a result, the internal space 8 of the blood port is isolated from the internal space 9 of the outer cylinder 3, and the internal space 8 of the port and the internal space 9 of the outer cylinder 3 are in contact only through the wall membrane of the hollow fiber 5. It's getting old. That is, the introduced blood 10 enters the internal space of the hollow fibers via the space 8 in the inlet port, and harmful substances in the blood are discharged into the internal space 9 of the outer cylinder 3 through the wall membrane of the hollow fibers. The purified blood is returned to the body via the space inside the outlet port 1a. On the other hand, harmful substances discharged into the internal space 9 of the outer cylinder 3 are taken out to the outside via the outlet 4a together with the blood purification fluid 11 introduced from the inlet 4 as necessary. As an improved example of such an axially symmetric blood port, Japanese Patent Application Laid-open No. 139274/1983 discloses that the angles φ and θ shown in FIG. 6 are 60 to 85 degrees and 7 to 23 degrees, respectively.
A blood port is disclosed that has a funnel-shaped space shaped to have a height h of 1.5 to 3.5 mm. Furthermore, in Japanese Patent Publication No. 60-5308, as an example of a non-axisymmetric port, as shown in Figures 7 and 8, blood is introduced and discharged horizontally and tangentially to the cut surface of the hollow fiber bundle. A recessed blood port is disclosed. (Problems to be Solved by the Invention) However, such conventional cylindrical blood processing devices have the following drawbacks. In particular, they do not use anticoagulants such as heparin at all, or
Alternatively, there is a practical problem in the case of hemodialysis therapy in which the amount used is reduced or in the case of long-term use over several days. In other words, in FIG. 5, the structure of the blood port 1 used is such that when blood is introduced into the port from the entrance point A of the port, it first collides with the center of the cut surface of the hollow fiber bundle, and then the blood enters the hollow fiber bundle. Blood is dispersed to the hollow fibers at the outer periphery due to the pressure (or resistance) in the inner space of the fibers and the partition wall that fixes the hollow fiber bundle. Therefore, the velocity of blood flowing through the space inside the port is high in the center area directly below the blood inlet/outlet, but as it flows in all directions of 360°, the velocity decreases rapidly, especially at the outer periphery. There is an area around the port where blood stagnates. As a result, the performance as a blood processing device deteriorates, and when blood is returned after blood processing, the blood return speed is different between the center and the outer periphery, so the internal space of the hollow fibers near the outer periphery and the blood stagnate. This causes residual blood and blood clots in the affected area. Particularly when blood processing is performed for a long period of time, blood may clot in the internal space of the hollow fiber where the blood velocity is slow or around the port where blood stagnates, resulting in areas where blood flow stops and blood processing becomes impossible. There is. In order to overcome these drawbacks of the conventional device, Japanese Patent Application Laid-Open No. 57-86359 discloses a blood port which has a specific funnel-shaped internal space whose bottom is the end face of the hollow fiber bundle, and which has a blood inlet at the top. A device using this method has been proposed. It is true that with this device, the blood supplied to the port is distributed easily within the funnel-shaped internal space, so blood flows into the hollow fibers at a nearly uniform speed both in the center and on the outer periphery of the hollow fiber bundle. Although this advantage exists, it is still unsatisfactory with regard to the rapid decrease in blood flow rate in the internal space of the port from the inflow/outlet toward the port periphery and the stagnation of blood in the port periphery. In Japanese Patent Publication No. 60-5308, as shown in Figures 7 and 8, blood flows in from the tangential direction of the circular section of the inlet port, and the cut surface of the hollow fiber membrane bundle A blood port of the type introduced above, on a cut surface of a fixed hollow fiber membrane while spiraling around, ie inside the hollow fiber membrane, is shown. In this case, blood is guided from the tangential direction to the outer periphery, which occupies a relatively large area on the cut surface of the hollow fiber membrane, and then the blood layer thickness gradually decreases toward the center, so that the outer periphery and the inner periphery are hollow. The velocity of blood flowing into the internal space of the fiber membrane group, the vertical component and the horizontal component of the blood velocity in the blood port relative to the cut plane of the hollow fiber membrane are kept more uniform than in the blood port shown in FIG. Because the flow path is long at the thick outer periphery, the attenuation of the horizontal component is large, and the structure of the blood port near the outer periphery is complex, which tends to cause stagnation, and if the distribution of hollow fibers is poor, the Overflow also occurs, resulting in thrombus formation,
In addition to easily causing air bubbles to accumulate, there were other problems such as the port becoming bulky and increasing the amount of blood filled. As mentioned above, these conventionally known blood ports are susceptible to air bubble retention, thrombus and blood clot formation,
Problems associated with this, such as performance deterioration of blood processing equipment and residual blood, have not been fully resolved, especially when blood processing is performed without using anticoagulants such as heparin, or with reduced usage. In particular, when performing long-term blood processing over several days, the hollow fibers become severely blocked due to the above reasons.
There was a problem that it was not practical. Therefore, the problem to be solved by the present invention is to provide a blood treatment method that has an improved blood port that reduces the accumulation of air bubbles, thrombus, and blood clots, and prevents blockage of hollow fibers even after long-term continuous use. The question is how to obtain the device. (Means for Solving the Problems) As mentioned above, conventionally known blood ports have sought to uniformly flow blood into the interior of each hollow fiber membrane in a hollow fiber bundle, but heparin When the amount of blood is reduced or when used for a long period of time over several days, thrombus formation occurs at the blood port, resulting in a decrease in the performance of the blood processing device, a decrease in platelets, etc., and this is not practically satisfactory. As a result of intensive research by the present inventors to improve this point, we found that the thickness of the internal space of the blood port, the direction of blood introduction/output, and the position of the introduction/exit are extremely important. The present inventors have discovered that measuring the uniform inflow of blood is more effective in solving the above problems, and have completed the present invention. That is, the present invention is a blood processing device in which a blood port is attached to at least one end of a cylindrical module in which a hollow fiber bundle with an open end is housed so as to form a disc-shaped internal space, When the thickness h (cm) of the disc-shaped space of the blood port is s0.9m 2 with respect to the membrane area s (m 2 ) of the module, h0.237×{(s−0.9)×
4.23+1}×1/√s, when s< 0.9m2 , the relationship h0.237×√+0.025 is satisfied, and the blood is provided close to the outer periphery of the disc-shaped space of the port. This blood processing device is characterized in that an inlet or an outlet is provided so that the blood is introduced into or led out from a tangential direction of 60 degrees or less with respect to a disc-shaped space through an opening. In particular, the present invention is characterized by a sufficiently thin disc-shaped blood port internal space defined by the above formula and a blood inlet or outlet provided close to the outer periphery of the space. , Blood is introduced and extracted from the tangential direction of the disc-shaped space at an angle of 60 degrees or less. (Refer to Figures 1 to 4) In a blood port having such a structure, the internal space of the port is thin, so the spiral flow of blood within the port is further strengthened, and the blood flows on the open end surface of the hollow fiber bundle. Component of velocity parallel to the end surface (horizontal component)
The blood port of the present invention is much faster than the conventionally known blood ports, and therefore has a great effect of suppressing the accumulation of air bubbles in the blood port and the adhesion of platelets that cause thrombus formation. The thinner the thickness of the internal space of the blood port, which is an important factor in the present invention, the more effective it is, but in reality, the size of the blood processing device, the required blood flow rate during blood processing, the viscosity of blood, and the use of antithrombotic agents. It is necessary to set a value suitable for each blood processing device, taking into consideration factors such as the amount. According to the research results of the present inventors, when the thickness h (cm) of the disc-shaped space of the blood port is s0.9m 2 with respect to the membrane area s (m 2 ) of the module, h0.237×{(s −0.9)×4.23
+1}×1/√s When s<0.9m 2 , h0.237×√+0.025 Preferably When s0.9m 2 , h0.142×{(s−0.9)×4.23+
1}×1/√s When s<0.9m 2 , h0.142×√+0.015 It is important to satisfy the following relationship in order to prevent thrombus formation and bubble retention at the blood port portion. If h is thicker than this, a sufficient effect cannot be achieved, and a wide ring-shaped thrombus is formed on the outer periphery of the port. The above formula was determined experimentally using various modules with different membrane areas (modules with membrane areas of 0.1 to 10 m2 are usually used),
Although its meaning is not strictly clear, the horizontal component of the blood velocity on the open end surface of the hollow fiber bundle is
It suggests that something more than a certain amount is necessary. Additionally, the shape of the internal space of the blood port has a substantially uniform thickness.
The thin disk shape (h) is important as a requirement of the present invention, and those with unevenness or rough edges are undesirable because they tend to accumulate in those areas. Another feature of the present invention is that the blood inlet or outlet to the blood port is provided close to the outer periphery of the thin disc-shaped port, and
Through its mouth, the upper and lower angles are 60° to the disc-shaped space.
It is at the point where blood is introduced or extracted from the following tangential directions: In the present invention, if the center of the inlet or outlet is separated from the center of the opening end surface of the hollow fiber bundle and the outer periphery by 1/3 or more of the maximum distance on the outer periphery of the hollow fiber bundle, air bubbles will be retained and thrombus formation will be inhibited. decreases rapidly. If the vertical angle is larger than 60°, a sufficient spiral flow cannot be generated in the blood on the opening end surface of the hollow fiber bundle, and a thrombus is likely to form within the port.
The opening end of the blood introduction/outlet to the port is usually provided on the upper surface side of the disc-shaped space, that is, on the opposite side to the opening end surface of the hollow fiber bundle. When blood is introduced into the port at an angle close to horizontal, it may be provided on the side circumference of the disc-shaped space, but the opening end of the blood introduction outlet into the port should be as flat as possible, for example, rectangular. It is preferable to have a cross section of Note that polypropylene, polycarbonate, polymethacrylate, etc. which are commonly used as blood port members can also be used in the present invention.
The inner surface that comes into contact with blood is preferably coated with a polymer that does not easily coagulate blood, such as silicone or segmented polyurethane. In addition, in the present invention, openings other than the blood inlet and outlet, such as a blood collection port, an infusion port, a heparin injection port, a sensor insertion port, an air vent, etc., may be provided in the blood port portion, but as few as possible. It is preferable to limit the amount to 100% because thrombus formation is less likely to occur. (Example) Examples 1 to 2 and Comparative Examples 1 to 3 Inner diameter with a thin silicone rubber layer on the inner surface
Polysulfone hollow fiber membrane 4000 with 320μ and outer diameter 480μ
The book was assembled into a cylindrical module with a membrane area of 1.0 m 2 by a known method, and both ends were cut to form a circular hollow fiber bundle opening end face with a diameter of 36 mm. Various blood ports (polycarbonate A blood processing device of the same type and size with different blood port structures was obtained by connecting and fixing the inner surface coated with segmented polyurethane. The structure of the blood port used in the experiment is shown in Figure 3, with h = 3 mm and 2 mm.
As a comparative example, one with h = 5 mm and the shape shown in Figure 6 with φ = 75°, θ = 15°, d = 1.5 mm, and h = 2.0 mm.
and the shape shown in Fig. 7, h = 5 mm,
In addition, there were five types in which the blood inlet and outlet were provided horizontally with respect to the opening end surface of the hollow fiber bundle. Using 5 piglets with an average weight of 3.5 kg, each was connected to the blood processing device and the activated clotting time of the blood was measured.
Extracorporeal circulation was performed for 3 days while controlling the blood flow rate to be 200 seconds, flowing blood at an average blood flow rate of 250 c.c./min on the inner surface of the hollow fiber membrane, and flowing oxygen on the outer surface of the hollow fiber membrane. Table 1 shows changes in the oxygen capacity of each blood processing device during extracorporeal circulation, the degree of thrombus formation in the blood port at the end of extracorporeal circulation, and the state of occlusion of hollow fibers. From these results, it is clear that the blood processing device of the present invention exhibits high antithrombotic properties over a long period of time and has stable blood processing performance.

【表】 ◎…極めて少ない ○…少ない △…や
や多い ×…多い
実施例3〜5および比較例4〜6 第2表は第3図に示す型の血液ポートを取り付
けた、0.3m2、2.0m2、5.0m2の人工肺モジユールに
ついて、山羊を用いて2日間の体外循環を行つた
後の、血液ポート部における血栓形成の程度を示
したものである。
[Table] ◎...Extremely less ○...Less △...Slightly more ×...More Examples 3 to 5 and Comparative Examples 4 to 6 This figure shows the degree of thrombus formation at the blood port after 2 days of extracorporeal circulation using a goat for an oxygenator module of 5.0 m 2 and 5.0 m 2 .

【表】 実施例6〜7および比較例7 h=2mm、上下角θが70°、50°、30°の、第1図
に示される血液ポートを有する1m2の中空繊維膜
型人工肺3種について、子豚3匹を用いて実施例
1と同様にして血液の体外循環を行つた。第3表
に体外循環終了時における血液ポート部の血栓形
成程度を示した。この結果より、上下角θが70°
では血液ポート部での血栓形成が抑制されにくい
事が明らかである。
[Table] Examples 6 to 7 and Comparative Example 7 1 m 2 hollow fiber membrane oxygenator 3 having a blood port shown in FIG. 1 with h=2 mm and vertical angles θ of 70°, 50°, and 30° Regarding the seeds, extracorporeal blood circulation was performed in the same manner as in Example 1 using three piglets. Table 3 shows the degree of thrombus formation at the blood port at the end of extracorporeal circulation. From this result, the vertical angle θ is 70°
It is clear that thrombus formation at the blood port is difficult to suppress.

【表】 ○…少ない △…やや多い ×…多い
(発明の効果) 以上のように、本発明の血液処理装置は、血液
ポートの内部空間を十分に薄い円板状とし、中空
繊維束外周に近接した位置に、中空繊維束開口端
面に対し60°以下の角度で血液が流入出するよう
に、血液の導入口、または導出口を設ける事によ
つて開口端面に水平な血流速度を、従来装置に比
較して格段に大きくしたものである。 こうした構造は意外にも中空繊維内部への血液
流入速度に与える影響が小さく、ほぼ均一な流入
速度が得られるため血液ポート内部での気泡の滞
留、血栓や血餅の発生の抑止効果が強く発現し、
その結果、従来のものでは不可能だつた、長時間
連続使用可能な、またヘパリンのような抗血栓剤
を減らした場合や、用いない場合でも実用に耐え
る血液処理装置が得られる。 すなわち本発明は長期連続使用を目指す各種人
工臓器や、血液処理器、あるいはヘパリンのよう
な抗血栓剤を使用し難い状況にある患者の血液処
理器などに効果を奏するものである。
[Table] ○...Less △...Slightly more ×...More (Effects of the invention) As described above, the blood processing device of the present invention has the internal space of the blood port formed into a sufficiently thin disc shape, and the outer periphery of the hollow fiber bundle. By providing a blood inlet or outlet in close proximity to the hollow fiber bundle opening end surface so that blood flows in and out at an angle of 60° or less to the opening end surface, the blood flow velocity is horizontal to the opening end surface. This device is significantly larger than conventional devices. Surprisingly, this structure has a small effect on the blood inflow speed into the hollow fiber, and a nearly uniform inflow speed is obtained, which has a strong effect of suppressing the accumulation of air bubbles and the formation of blood clots and blood clots inside the blood port. death,
As a result, it is possible to obtain a blood processing device that can be used continuously for a long period of time, which was not possible with conventional devices, and that can be used in practice even when the amount of antithrombotic agents such as heparin is reduced or is not used. That is, the present invention is effective for various artificial organs intended for long-term continuous use, blood processing devices, and blood processing devices for patients in situations where it is difficult to use antithrombotic agents such as heparin.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の血液処理装置における血液ポ
ートの一例を示す断面図であり、第2図は、その
上面図である。第3図は本発明の血液処理装置に
おける血液ポートの他の一例を示す断面図であ
り、第4図はその上面図である。第5図は従来の
血液処理装置の血液ポート部分を示す一部断面図
であり、第6図は従来の血液処理装置の血液ポー
ト部分の他の一例を示すモデル図であり、第7図
は従来の血液処理装置の他の一例を示す一部断面
図であり、第8図はその−面の断面図であ
る。 図において、h……血液ポートの高さ、1,1
a……入口側および出口側血液ポート、2……キ
ヤツプ、3……外筒、4,4a……血液浄化用流
体の導入口および導出口、5……中空繊維、6…
…隔壁、7……中空繊維群の切断面、8……血液
ポートの内部空間、9……外筒の内部空間、10
……血液、11……血液浄化用流体、12……パ
ツキン、20,20a……血液導入口および血液
導出口、21……Oリング。
FIG. 1 is a sectional view showing an example of a blood port in the blood processing apparatus of the present invention, and FIG. 2 is a top view thereof. FIG. 3 is a sectional view showing another example of the blood port in the blood processing apparatus of the present invention, and FIG. 4 is a top view thereof. FIG. 5 is a partial sectional view showing the blood port portion of a conventional blood processing device, FIG. 6 is a model diagram showing another example of the blood port portion of the conventional blood processing device, and FIG. FIG. 8 is a partial sectional view showing another example of a conventional blood processing apparatus, and FIG. 8 is a sectional view taken from the negative side thereof. In the figure, h... Height of blood port, 1,1
a... Inlet side and outlet side blood ports, 2... Cap, 3... Outer cylinder, 4, 4a... Blood purification fluid inlet and outlet, 5... Hollow fiber, 6...
...Partition wall, 7...Cut surface of hollow fiber group, 8...Inner space of blood port, 9...Inner space of outer cylinder, 10
...Blood, 11...Blood purification fluid, 12...Packing, 20, 20a...Blood inlet and blood outlet, 21...O ring.

Claims (1)

【特許請求の範囲】 1 端部が開口した中空繊維束が収容されてなる
円筒形モジユールの少なくとも一端に、円板状の
内部空間を形成するように血液ポートを取り付け
た血液処理装置であつて、該血液ポートの円板状
空間の厚みh(cm)が、モジユールの膜面積s
(m2)に対して s0.9m2のとき、h0.237×{(s−0.9)×
4.23+1}×1/√、s<0.9m2のとき、h0.237 ×√+0.025 なる関係を満たし、かつ、血液が該ポートの円板
状空間の外周部に近接して設けられた開口部を通
じて、円板状空間に対して上下角60°以下の接線
方向より導入、または導出されるように導入口ま
たは導出口が設けられていることを特徴とする血
液処理装置。
[Scope of Claims] 1. A blood processing device in which a blood port is attached to at least one end of a cylindrical module in which a hollow fiber bundle with an open end is housed so as to form a disc-shaped internal space. , the thickness h (cm) of the disc-shaped space of the blood port is the membrane area s of the module
When s0.9m 2 for (m 2 ), h0.237×{(s−0.9)×
4.23+1}×1/√, when s< 0.9m2 , the relationship h0.237×√+0.025 is satisfied, and the blood is provided close to the outer periphery of the disc-shaped space of the port. A blood processing device characterized in that an inlet or an outlet is provided so that the blood is introduced into or led out from a tangential direction at an angle of 60 degrees or less with respect to a disc-shaped space through an opening.
JP60242475A 1985-10-28 1985-10-28 Blood treatment apparatus having improved blood port Granted JPS62101258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60242475A JPS62101258A (en) 1985-10-28 1985-10-28 Blood treatment apparatus having improved blood port

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60242475A JPS62101258A (en) 1985-10-28 1985-10-28 Blood treatment apparatus having improved blood port

Publications (2)

Publication Number Publication Date
JPS62101258A JPS62101258A (en) 1987-05-11
JPH0550300B2 true JPH0550300B2 (en) 1993-07-28

Family

ID=17089637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60242475A Granted JPS62101258A (en) 1985-10-28 1985-10-28 Blood treatment apparatus having improved blood port

Country Status (1)

Country Link
JP (1) JPS62101258A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5877145B2 (en) * 2011-12-21 2016-03-02 川澄化学工業株式会社 Body fluid port and body fluid treatment device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786360A (en) * 1980-11-20 1982-05-29 Kogyo Gijutsuin Blood treatment device manufactured by hollow fiber membrane bundle
JPS5786361A (en) * 1980-11-20 1982-05-29 Kogyo Gijutsuin Blood treatment device with hollow fiber membrane bundle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786360A (en) * 1980-11-20 1982-05-29 Kogyo Gijutsuin Blood treatment device manufactured by hollow fiber membrane bundle
JPS5786361A (en) * 1980-11-20 1982-05-29 Kogyo Gijutsuin Blood treatment device with hollow fiber membrane bundle

Also Published As

Publication number Publication date
JPS62101258A (en) 1987-05-11

Similar Documents

Publication Publication Date Title
CN102014985B (en) Degassing device
KR101099962B1 (en) Fluid distribution module and extracorporeal blood circuit including such a module
AU2004294685B2 (en) Degassing device and end-cap assembly for a filter including such a degassing device
US4690762A (en) Apparatus for removing bubbles from a liquid
CA1177718A (en) Line for use in body fluid treatment
EP0001736A1 (en) An apparatus for dialysis of solution
EP0908191A1 (en) Hollow fiber membrane oxygenator
JP3284568B2 (en) Inlet header for oxygenator and oxygenator using it
JPH0550300B2 (en)
WO2000012154A1 (en) Blood processing device
JPS6030224B2 (en) Blood processing device with hollow fiber membrane bundle
JPH0550299B2 (en)
JPH0229961Y2 (en)
JPS605308B2 (en) Blood processing device consisting of hollow fiber membrane bundle
JPS62211072A (en) Hollow fiber type blood treatment apparatus
JPS6343672A (en) Hollow fiber type blood treatment apparatus
JPH09108338A (en) Blood port and blood processing device using the same
JPS6264372A (en) Membrane type artificial lung
JPS6343670A (en) Hollow fiber type blood treatment apparatus
JP2554958B2 (en) Blood processing equipment
JP3841488B2 (en) Blood reservoir, blood reservoir with blood transfer mechanism, and heart-lung machine
JPH0613843U (en) Blood processing module
JPH01151908A (en) Hollow yarn type fluid processor
JPS6343671A (en) Hollow fiber type blood treatment apparatus
JPS6254510B2 (en)