JPH02171306A - Radial tire - Google Patents

Radial tire

Info

Publication number
JPH02171306A
JPH02171306A JP63326216A JP32621688A JPH02171306A JP H02171306 A JPH02171306 A JP H02171306A JP 63326216 A JP63326216 A JP 63326216A JP 32621688 A JP32621688 A JP 32621688A JP H02171306 A JPH02171306 A JP H02171306A
Authority
JP
Japan
Prior art keywords
tire
groove
cross
block
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63326216A
Other languages
Japanese (ja)
Inventor
Sei Tomioka
富岡 聖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP63326216A priority Critical patent/JPH02171306A/en
Publication of JPH02171306A publication Critical patent/JPH02171306A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0318Tread patterns irregular patterns with particular pitch sequence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • B60C11/1384Three dimensional block surfaces departing from the enveloping tread contour with chamfered block corners

Abstract

PURPOSE:To increase uniformity by equalizing a groove cross-sectional ratio in circumferential cross-section of a tire between blocks for which unit pitch lengths are different with each other and equalizing the circumferential radius on the block surface of the tire with the reference outside diameter of the tire, in the titled tire with a tread pattern for which the unit pitches of the blocks are varied with each other. CONSTITUTION:A groove cross-sectional area ratio ((groove cross-sectional area A) X 100 / (unit pitch length P) X (tread thickness D)) in circumferential cross-section of a tire is substantially equalized between blocks 1S for which unit pitch lengths are different with each other. Also, the circumferential radius Rp on the block surface of the tire is equalized with the reference outside diameter Rreg of the tire. By this, a distance (under-groove gauge) from the bottom of the grooves forming blocks to a belt layer 5 is equalized to increase uniformity. Thus, vibration during running is reduced to increase comfortability during driving and anti-wear property.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、タイヤ周方向におけるユニフォーミティに優
れ、高速走行時の振動が少なく、優れた乗り心地性を有
すると共に、耐偏摩耗性に優れたラジアルタイヤに関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a tire with excellent uniformity in the circumferential direction, low vibration during high-speed running, excellent ride comfort, and excellent uneven wear resistance. Regarding radial tires.

〔従来の技術〕[Conventional technology]

従来、第2図に示すように、縦溝2と横溝3とで区分さ
れるブロックlがタイヤ周方向に配列しているブロック
基調のパターンを有する空気入りタイヤは、パターンに
起因する騒音の発生を低減するため、一般にタイヤ周方
向におけるピッチ長をランダムならしめ、かつ、タイヤ
幅方向溝をタイヤの周方向にランダムな間隔に配置して
いる。タイヤの周方向におけるピッチ長の変化は、幅方
向に延びる溝をタイヤ周方向に如何に配置させるかによ
り決せられるが、従来から該幅方向溝は、加硫金型の凸
状骨により一般に同じ深さに形成されている。したがっ
て、タイヤ周方向における単位ピッチ長がランダムなブ
ロックパターンを有するタイヤは、この単位ピッチ長の
変化に対応してそのタイヤ周方向断面におけるブロック
の溝断面積比率(トレンドゴム断面積に対する溝面積の
占める割合)が変化してくる。
Conventionally, as shown in FIG. 2, a pneumatic tire having a block-based pattern in which blocks 1 divided by vertical grooves 2 and lateral grooves 3 are arranged in the tire circumferential direction has a tendency to generate noise due to the pattern. In order to reduce this, generally the pitch length in the tire circumferential direction is made random, and the tire width direction grooves are arranged at random intervals in the tire circumferential direction. Changes in pitch length in the circumferential direction of a tire are determined by how grooves extending in the width direction are arranged in the circumferential direction of the tire. formed at the same depth. Therefore, in a tire having a block pattern with random unit pitch length in the tire circumferential direction, the groove cross-sectional area ratio of the block in the circumferential cross section of the tire (the groove area ratio to the trend rubber cross-sectional area) corresponds to the change in the unit pitch length. percentage) will change.

すなわち、第2図のA−A’線矢視断面図である第3図
に示すように、従来のタイヤは、ブロック1の周方向断
面におけるピッチ長が太きい領域、Sでは、横溝3の溝
底からベルトN5までの距離に相当する溝下ゲージGs
は小さいが、ピッチ長が小さい領域りでは溝下ゲージG
Lが大きくなり、タイヤの周方向における溝下ゲージが
変動している。これは、タイヤ加硫時に金型の成形骨が
ゴムを排除しながらトレッドゴムに食い込み、溝を形成
する過程において、タイヤ周方向に配置される該幅方向
溝の粗密の状況により排除されるゴムの量が相異するこ
とによっている。そして、かかるタイヤに規定の空気を
充填すると、溝下ゲージの変動に対応してタイヤの周方
向におけるユニフォーミティが低下し、走行時に車両を
振動させたり、乗り心地性を悪化させると共に、耐摩耗
性を低下させる。
That is, as shown in FIG. 3, which is a cross-sectional view taken along line A-A' in FIG. Groove bottom gauge Gs corresponding to the distance from the groove bottom to belt N5
is small, but in the area where the pitch length is small, the groove bottom gauge G
L increases, and the groove gauge in the circumferential direction of the tire fluctuates. This is because during tire vulcanization, the forming bones of the mold dig into the tread rubber while excluding rubber, forming grooves, and the rubber is removed due to the density and density of the widthwise grooves arranged in the circumferential direction of the tire. This is due to the difference in the amount of When such a tire is filled with the specified amount of air, the uniformity in the circumferential direction of the tire decreases in response to fluctuations in the groove gauge, causing the vehicle to vibrate while driving, worsening ride comfort, and reducing wear resistance. Decreases sex.

特に、溝下ゲージ(溝底とベルトの間隔)が4ms以下
のタイヤにあっては、かかるゲージの変動は、タイヤ諸
性能にとって致命的な欠陥になっていた。
Particularly in tires where the groove bottom gauge (distance between the groove bottom and the belt) is 4 ms or less, such gauge fluctuations have become a fatal defect in tire performance.

一方、従来から種々の目的のために、幅方向溝の溝幅を
変化させたタイヤが提案されており、溝幅を変化させる
ことにより加硫時のゴムの流れの量を調節することは可
能であるが、溝幅をピッチ長に応じて変化させる程度で
は溝下ゲージのタイヤ周方向における変動を解消するに
は十分ではなかった。
On the other hand, tires with varying groove widths in the width direction have been proposed for various purposes, and it is possible to adjust the amount of rubber flow during vulcanization by changing the groove width. However, changing the groove width according to the pitch length was not sufficient to eliminate fluctuations in the groove bottom gauge in the tire circumferential direction.

本発明者は、前記溝下ゲージの変動がないタイヤを得る
ため、タイヤ加硫時にトレッド溝を形成するための金型
の成形骨がトレッドゴムを排除する割合をピッチ長の如
何にかかわらず、一定にするために、タイヤ周方向の断
面における「トレッドゴム断面積に対する溝面積の占め
る割合」に着目し、これを「溝断面積比率」と称し、こ
の「溝断面積比率」をタイヤ周上で実質的に均一にする
ことに成功し、本発明を完成するに到った。
In order to obtain a tire with no fluctuation in the groove bottom gauge, the inventor determined that the proportion of tread rubber removed by molding bones of a mold for forming tread grooves during tire vulcanization, regardless of the pitch length. In order to keep it constant, we focused on the "ratio of the groove area to the tread rubber cross-sectional area" in the tire circumferential cross-section, and called this the "groove cross-sectional area ratio". They succeeded in making the material substantially uniform and completed the present invention.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、タイヤ周方向における単位ピッチ長を
変化させたブロック基調のパターンを有するタイヤの周
方向における溝下ゲージの変動を少なくしてユニフォー
ミティを向上し、乗り心地性に優れ、耐摩耗性の低下の
少ないラジアルタイヤを提供するにある。
An object of the present invention is to improve uniformity of a tire having a block-based pattern in which the unit pitch length in the tire circumferential direction is changed by reducing fluctuations in groove gauge in the circumferential direction, and to provide excellent ride comfort and durability. An object of the present invention is to provide a radial tire with less reduction in wear properties.

〔課題を解決するための手段〕[Means to solve the problem]

本発明タイヤは、タイヤ周方向に配列するブロックの単
位ピッチ長が変化しているブロック基調のトレッドパタ
ーンを有するタイヤにおいて、この単位ピッチ長の異な
るブロック相互間のタイヤ周方向断面における溝断面積
比率を実質的に同一にすることによって、これらブロッ
クを構成する溝の溝底からベルト層までの距離である溝
下ゲージを実質的に同一とし、かつ各ブロック表面にお
ける少なくとも一部のタイヤ周方向半径をタイヤの基準
外径と一部させて、タイヤの周方向のユニフォーミティ
を向上させたものである。
The tire of the present invention has a tire having a block-based tread pattern in which the unit pitch length of the blocks arranged in the tire circumferential direction changes, and the groove cross-sectional area ratio in the tire circumferential cross section between the blocks having different unit pitch lengths. By making them substantially the same, the groove bottom gauge, which is the distance from the bottom of the grooves constituting these blocks to the belt layer, is made substantially the same, and at least part of the radius in the tire circumferential direction on the surface of each block is made substantially the same. is made part of the standard outer diameter of the tire to improve uniformity in the circumferential direction of the tire.

本発明において、タイヤ周方向断面におけるブロックの
溝断面積比率とは、次式で定義される値である。
In the present invention, the groove cross-sectional area ratio of the block in the tire circumferential cross section is a value defined by the following formula.

(本頁以下余白) 溝断面積比率− なお、溝断面積比率とは、第5図の溝部分断面拡大図に
示すように、単位ピッチ長P(溝幅を2分割する中央線
間の距離)におけるタイヤのトレッド最外同包路面であ
るタイヤ基準外径線Qとベルト層5間において溝断面積
が占める割合をいい、特に溝断面積Aとは図中斜線を施
した部分の面積をいう。
(Margins below this page) Groove cross-sectional area ratio - The groove cross-sectional area ratio is the unit pitch length P (the distance between the center lines dividing the groove width into two), as shown in the enlarged cross-sectional view of the groove part in Figure 5. ) refers to the ratio of the groove cross-sectional area between the tire reference outer diameter line Q, which is the outermost road surface of the tire tread, and the belt layer 5, and in particular, the groove cross-sectional area A refers to the area of the shaded part in the figure. say.

本発明の特徴である、単位ピッチ長の相違するブロック
パターンのタイヤの前記溝下ゲージを実質的に同一とす
るためには、前記単位ピッチ長が相違するブロック相互
間のタイヤ周方向断面におけるブロックの溝断面積比率
の差をできるだけ小さくし、この溝断面積比率を実質的
に同一にすることである。
In order to make the groove bottom gauges of tires having block patterns with different unit pitch lengths, which is a feature of the present invention, substantially the same, it is necessary to The purpose is to minimize the difference in the groove cross-sectional area ratios and to make the groove cross-sectional area ratios substantially the same.

このブロック相互間の溝断面積比率を実質的に同一にす
るためには、タイヤ周方向における単位ピッチ長の大き
いブロックの体積を縮小して、その周方向断面における
’lfG断面積比率を大きくするか、あるいは単位ピッ
チ長の小さいブロックの体積を大きくし、その周方向断
面における溝断面積比率を小さくすること、あるいはこ
れらを組み合わせることにより達成できる。
In order to make the groove cross-sectional area ratio between the blocks substantially the same, the volume of the block with a large unit pitch length in the tire circumferential direction is reduced, and the 'lfG cross-sectional area ratio in the circumferential cross section is increased. Alternatively, this can be achieved by increasing the volume of a block with a small unit pitch length and decreasing the groove cross-sectional area ratio in its circumferential cross section, or by a combination of these.

本発明では、たとえば、第1図に示すように、タイヤ周
方向における単位ピッチ長Pの大きい領域Sのブロック
13表面を凸面化または球面化(第4図に1例を示すよ
うにカマボコ型の形状となる)して溝断面積比率を拡大
し、タイヤ周方向における単位ピッチ長Pの小さい領域
りのブロックILの溝断面積比率と実質的に同じになる
ようにし、タイヤ周方向における溝下ゲージGが実質的
に同一になるようにしている。
In the present invention, for example, as shown in FIG. 1, the surface of the block 13 in the region S having a large unit pitch length P in the tire circumferential direction is made convex or spherical (as shown in FIG. shape) and expand the groove cross-sectional area ratio so that it becomes substantially the same as the groove cross-sectional area ratio of the block IL in the area where the unit pitch length P is small in the tire circumferential direction. The gauge G is made to be substantially the same.

すなわち、第1図に示す本発明タイヤは、タイヤ成形用
金型として、単位ピッチ長Pの大きい、溝断面積比率の
小さい領域SのブロックISに対応する金型のブロック
成形部分の体積を縮小する、具体的には溝成形骨の間の
ブロック成形部分を凹面化してブロックの体積を縮小す
ることによって、単位ピッチ長■〕の小さい、溝断面積
比率の大きい領域りのブロックILの体積との体積差を
小さし、これら各ブロックの体積を実質的に同一になる
ようにした金型を使用することにより得られる。第6図
および第7図に、本発明タイヤの他の実施例である、前
記単位ピッチ長Pの大きいブロックの体積を縮小し、ン
背断面積比率を拡大したブロックの周方向断面形状を示
す。
That is, the tire of the present invention shown in FIG. 1 is used as a tire molding mold by reducing the volume of the block molding portion of the mold corresponding to the block IS in the region S where the unit pitch length P is large and the groove cross-sectional area ratio is small. Specifically, by making the block forming part between the groove forming bones concave and reducing the volume of the block, the volume of the block IL in the area where the unit pitch length is small and the groove cross-sectional area ratio is large. This can be obtained by using a mold in which the volume difference between the two blocks is reduced and the volumes of these blocks are made substantially the same. 6 and 7 show the circumferential cross-sectional shape of a block in which the volume of the block with the large unit pitch length P is reduced and the back cross-sectional area ratio is enlarged, which is another embodiment of the tire of the present invention. .

一方、単位ピッチ長Pの小ざいブロックの体積の大きさ
を大きくする方法としては、このブロックを形成する幅
方向溝の溝幅を狭くし、あるいは溝深さを浅くする方法
があるが、この方法だけを採用しても、実際には溝下ゲ
ージを均一化することは困難であり、これらの方法は上
記実施例と併用することが好ましい。
On the other hand, as a method of increasing the volume of a small block with a unit pitch length P, there is a method of narrowing the groove width or shallowing the groove depth of the widthwise groove forming this block. Even if only these methods are adopted, it is actually difficult to make the gage under the grooves uniform, so it is preferable to use these methods in combination with the above embodiments.

単位ピッチ長の相違するブロックのタイヤ周方向断面に
おける溝断面積比率を実質的に同一にするためには、第
1図、第6図または第7図に示したように、単位ピッチ
長の大きさに応じてブロックの表面を凹凸化または平坦
化するのが一般的であるが、好ましくは第4図イおよび
口に示すように、ブロック表面を曲面(凸面または球面
)にすることが望ましい。
In order to make the groove cross-sectional area ratios in the tire circumferential sections of blocks with different unit pitch lengths substantially the same, as shown in FIG. 1, FIG. 6, or FIG. Although it is common to make the surface of the block uneven or flat depending on the size of the block, it is preferable to make the block surface curved (convex or spherical) as shown in FIG.

しかしながら、このようにタイヤ周方向断面における溝
断面積比率を実質的に同一とし、溝下ゲージが実質的に
同一になるようにした場合であっても、タイヤに正規内
圧を充填した状態における前記各ブロックの表面の少な
くとも一部は、タイヤの基準外径Rregと一致するタ
イヤ周方向半径Rpを有することが必要であり、これに
よって、ユニフォーミティを確保することができる。す
なわち、本発明タイヤに正規内圧を充填した状態を示す
第1図において、単位ピッチ長の小さい領域りのブロッ
クILは、その全表面において周方向半径RLが基準外
径Rragと合致しているが、単位ピッチ長の大きい領
域SのブロックISは、その表面の中央部でのみその周
方向半径Rp  (最大半径部分)がタイヤの基準外径
Rregと一致するだけて、この中央部表面から左右に
ずれるにしたがって次第に周方向半径Rsが小さくなっ
ている。また第6図および第7図の場合は、単位ピッチ
長の小さい領域りのブロックILは、その全表面におい
て周方向半径RLは基準外径Rregと合致しているが
、表面が凹面化または平坦化された単位ピッチ長の大き
い領域SのブロックISは、その周縁部でのみ、周方向
半径Rp  (最大半径部分)が基準外径Rregと一
致し、中央部の周方向半径Rsは変化している。
However, even if the groove cross-sectional area ratio in the tire circumferential cross section is made substantially the same and the groove bottom gauge is made to be substantially the same, the above-mentioned difference when the tire is filled with the normal internal pressure is At least a portion of the surface of each block needs to have a tire circumferential radius Rp that matches the tire reference outer diameter Rreg, thereby ensuring uniformity. That is, in FIG. 1, which shows a state in which the tire of the present invention is filled with the normal internal pressure, the block IL in the region with a small unit pitch length has a circumferential radius RL that matches the reference outer diameter Rrag on the entire surface thereof. , the block IS in the region S with a large unit pitch length has a circumferential radius Rp (maximum radius portion) only at the center of its surface that matches the reference outer diameter Rreg of the tire, and from this center surface to the left and right. As the position shifts, the circumferential radius Rs gradually becomes smaller. In addition, in the case of FIGS. 6 and 7, the circumferential radius RL of the block IL in the region with a small unit pitch length matches the reference outer diameter Rreg over the entire surface, but the surface is concave or flat. In the block IS of the region S with a large unit pitch length, the circumferential radius Rp (maximum radius portion) matches the reference outer diameter Rreg only at the peripheral edge, and the circumferential radius Rs at the center portion changes. There is.

本発明タイヤにおいて、タイヤのユニフォーミティをよ
り効果的に向上させるためには、溝下ゲージGは、41
I+IIl以下にすることが望ましい。
In the tire of the present invention, in order to more effectively improve the uniformity of the tire, the groove bottom gauge G should be 41
It is desirable to set it to I+IIl or less.

以下、実施例および従来例により、本発明を具体的に説
明する。
Hereinafter, the present invention will be specifically explained using examples and conventional examples.

なお、タイヤの振動特性および耐摩耗性は、次の方法に
より評価した。
The vibration characteristics and wear resistance of the tires were evaluated by the following method.

乗り心地性を表す振動特性: 3人の試験員により、実車走行によるフィーリングを評
価(10点満点)した。
Vibration characteristics that indicate ride comfort: Three testers evaluated the feeling by driving the vehicle (out of 10).

耐摩耗性: 大型車に試験タイヤを装着し、駆動、制動の頻度の高い
コースを5.OOOKm走行した場合の走行前と後のブ
ロック内の摩耗量差(平均)を測定し、評価した。
Wear resistance: The test tires were mounted on a large vehicle and run on a course with high frequency of driving and braking. The difference (average) in the amount of wear in the block before and after running for OOOKm was measured and evaluated.

実施例、従来例 タイヤ金型のトレッド形成面のみを変更させて、以下に
示す本発明タイヤと従来タイヤ(タイヤサイズ: 19
5/70R1490S)を作製し、たいや性能を評価し
た。すなわち、第2図に示すトレッドパターンを有し、
タイヤ周方向断面における溝断面積比率を実質的に同一
とした、第1図に示す周方向断面を有する本発明タイヤ
および第2図に示すトレッドパターンを有し、タイヤ周
方向断面における溝断面積比率が変動している、第3図
に示す周方向断面を有する従来タイヤについて、振動特
性および耐摩耗性を評価し、表1に示す結果を得た。
EXAMPLE, CONVENTIONAL EXAMPLE By changing only the tread forming surface of the tire mold, the following tires of the present invention and conventional tires (tire size: 19
5/70R1490S) was prepared and its performance was evaluated. That is, it has a tread pattern shown in FIG.
A tire of the present invention having a circumferential cross-section shown in FIG. 1 with substantially the same groove cross-sectional area ratio in the tire circumferential cross-section, and a tire having a tread pattern shown in FIG. The vibration characteristics and wear resistance of conventional tires having the circumferential cross section shown in FIG. 3 with varying ratios were evaluated, and the results shown in Table 1 were obtained.

(来夏以下余白) 表1 表1から、本発明タイヤは従来タイヤに比べて、タイヤ
周方向における溝下ゲージの変動が減少したため、タイ
ヤ周方向におけるユニフォーミティが向上し、振動特性
に示される乗り心地性が向上し、耐摩耗性も改良されて
いることが判る。
(Blank below next summer) Table 1 From Table 1, compared to the conventional tire, the tires of the present invention have reduced fluctuations in the groove gauge in the tire circumferential direction, which improves the uniformity in the tire circumferential direction, which is shown in the vibration characteristics. It can be seen that ride comfort has been improved and wear resistance has also been improved.

次に、前記本発明タイヤおよび従来タイヤについてそれ
ぞれ、表2に示す通り、溝下ゲージのみを変化させ、溝
下ゲージが411Illを越えるものとしたタイヤにつ
いて、前記振動特性を評価したところ表2に示す結果が
得られた。
Next, as shown in Table 2, for the tires of the present invention and conventional tires, only the groove gauge was changed, and the vibration characteristics were evaluated for the tires in which the groove gauge exceeded 411 Ill, as shown in Table 2. The following results were obtained.

表2 表2から、溝下ゲージを4mm以上にしたタイヤでは、
溝下ゲージの変動がタイヤの振動特性に与える影響は少
ないことが確認された。
Table 2 From Table 2, for tires with a groove gauge of 4 mm or more,
It was confirmed that fluctuations in the groove gauge had little effect on the vibration characteristics of the tire.

〔発明の効果〕 本発明によれば、タイヤ周方向におけるブロック長を変
化させたブロック基調のパターンを有するラジアルタイ
ヤにおいて、タイヤ周方向断面における溝断面積比率を
実質的に同一とし、タイヤ周方向における溝下ゲージを
実質的に同一とすることによって、タイヤのユニフォー
ミティを向上し、これによりブロックパターンを有する
ラジアルタイヤの走行中の振動を少なくして乗り心地性
を向上し、耐摩耗性を改良することができる。
[Effects of the Invention] According to the present invention, in a radial tire having a block-based pattern in which the block length in the tire circumferential direction is changed, the groove cross-sectional area ratio in the tire circumferential cross section is made substantially the same, and the tire circumferential direction By making the bottom groove gauges of the tires substantially the same, the uniformity of the tire is improved, which reduces vibrations during running of radial tires with a block pattern, improves ride comfort, and improves wear resistance. It can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明タイヤの1例を示すタイヤ周方向に沿う
部分断面図、第2図はブロック基調のトレッドパターン
の1例を示す一部平面図、第3図は従来タイヤのタイヤ
周方向に沿う部分断面図(第2図のA−A’線矢視断面
に対応する)、第4図イ、口は第1図の曲面を有するブ
ロックの例を示す斜視図、第5図は溝断面積比率を説明
するだめのタイヤ周方11旧析面におりるブロックの一
部拡大断面図、第6図および第7図は本発明タイヤの他
の態様を示すタイヤ周方向に沿う部分断面図である。 1・・・フ゛ロック、2・・・縦溝、3・・・横21番
、5・・・ベルト層、G・・・溝下ゲージ、A・・骨1
4面積、P・・・ピンチ長、D・・・トレンドの厚さ、
RL 、Rs −、Rp・・・ブロック表面の周方向半
径、Rreg・・・タイヤの基準外径、Q・・・タイヤ
の基準外径線。 代理人 弁理士 小 川 信 −
FIG. 1 is a partial sectional view along the tire circumferential direction showing an example of the tire of the present invention, FIG. 2 is a partial plan view showing an example of a block-based tread pattern, and FIG. 3 is a partial cross-sectional view of a conventional tire along the tire circumferential direction. (corresponding to the section taken along line A-A' in Figure 2), Figure 4A is a perspective view showing an example of a block whose mouth has the curved surface of Figure 1, and Figure 5 shows a groove. A partially enlarged cross-sectional view of a block on the tire circumference 11 analysis surface for explaining the cross-sectional area ratio, and FIGS. 6 and 7 are partial cross-sections along the tire circumferential direction showing other aspects of the tire of the present invention. It is a diagram. 1...Flock, 2...Vertical groove, 3...Horizontal 21st, 5...Belt layer, G...Groove lower gauge, A...Bone 1
4 area, P... pinch length, D... trend thickness,
RL, Rs -, Rp...Circumferential radius of the block surface, Rreg...Reference outer diameter of the tire, Q...Reference outer diameter line of the tire. Agent Patent Attorney Nobuo Ogawa −

Claims (1)

【特許請求の範囲】[Claims] タイヤ周方向における単位ピッチ長を変化させてブロッ
クを配列したブロック基調のトレッドパターンを有する
タイヤにおいて、前記単位ピッチ長の異なるブロック相
互間のタイヤ周方向断面における溝断面積比率を実質的
に同一にし、かつ前記各ブロック表面において、その少
なくとも一部のタイヤ周方向半径をタイヤの基準外径と
一致せしめたことを特徴とするラジアルタイヤ。
In a tire having a block-based tread pattern in which blocks are arranged with varying unit pitch lengths in the tire circumferential direction, groove cross-sectional area ratios in the tire circumferential cross section between blocks having different unit pitch lengths are substantially the same. , and a radius in the tire circumferential direction of at least a portion of the surface of each block is made to match a reference outer diameter of the tire.
JP63326216A 1988-12-26 1988-12-26 Radial tire Pending JPH02171306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63326216A JPH02171306A (en) 1988-12-26 1988-12-26 Radial tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63326216A JPH02171306A (en) 1988-12-26 1988-12-26 Radial tire

Publications (1)

Publication Number Publication Date
JPH02171306A true JPH02171306A (en) 1990-07-03

Family

ID=18185288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63326216A Pending JPH02171306A (en) 1988-12-26 1988-12-26 Radial tire

Country Status (1)

Country Link
JP (1) JPH02171306A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618360A (en) * 1993-12-22 1997-04-08 Sumitomo Rubber Industries, Ltd. Pneumatic tire including pitches
US5628843A (en) * 1993-12-29 1997-05-13 Sumitomo Rubber Industries, Ltd. Pneumatic tire with groove having three different cross-sectional shapes
JP2005082017A (en) * 2003-09-09 2005-03-31 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2007283813A (en) * 2006-04-13 2007-11-01 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2016088109A (en) * 2014-10-29 2016-05-23 東洋ゴム工業株式会社 Pneumatic tire
JP2017071302A (en) * 2015-10-07 2017-04-13 株式会社ブリヂストン tire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618360A (en) * 1993-12-22 1997-04-08 Sumitomo Rubber Industries, Ltd. Pneumatic tire including pitches
US5628843A (en) * 1993-12-29 1997-05-13 Sumitomo Rubber Industries, Ltd. Pneumatic tire with groove having three different cross-sectional shapes
JP2005082017A (en) * 2003-09-09 2005-03-31 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2007283813A (en) * 2006-04-13 2007-11-01 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2016088109A (en) * 2014-10-29 2016-05-23 東洋ゴム工業株式会社 Pneumatic tire
JP2017071302A (en) * 2015-10-07 2017-04-13 株式会社ブリヂストン tire

Similar Documents

Publication Publication Date Title
JP5111540B2 (en) Pneumatic tire
JP3869102B2 (en) Pneumatic tire
JP5927196B2 (en) Pneumatic tires for motorcycles
JPH0699705A (en) Pneumatic tire
JP3901743B2 (en) Pneumatic tire
JPS60240507A (en) Low noise multi-siping tire
EP0591002B1 (en) Pneumatic tires
JPS585803B2 (en) low noise lug tires
JP2001055012A (en) Pneumatic tire
RU2245257C2 (en) High-efficiency type for automobile
EP0812708A1 (en) Pneumatic radial tires
JP3883297B2 (en) Pneumatic radial tire
JPH02171306A (en) Radial tire
JPH092020A (en) Pneumatic tire
JPS58167207A (en) Pneumatic tyre
JP2900264B2 (en) Pneumatic tire
JP3898268B2 (en) Manufacturing method of tire vulcanization mold
JP3096923B2 (en) Pneumatic tires for passenger cars
JP2973023B2 (en) Pneumatic tire
JP3665157B2 (en) Pneumatic tire
JPS63188505A (en) Low noise pneumatic tire
JP4857703B2 (en) Pneumatic tire
JP5515873B2 (en) Pneumatic tire and tire mold
CN1224387A (en) Tire tread having flow-through grooves
JPS61125902A (en) Pneumatic tire