JPH02170917A - Manufacture of thick high-tensile steel stock - Google Patents

Manufacture of thick high-tensile steel stock

Info

Publication number
JPH02170917A
JPH02170917A JP32394188A JP32394188A JPH02170917A JP H02170917 A JPH02170917 A JP H02170917A JP 32394188 A JP32394188 A JP 32394188A JP 32394188 A JP32394188 A JP 32394188A JP H02170917 A JPH02170917 A JP H02170917A
Authority
JP
Japan
Prior art keywords
temperature
steel material
steel
transformation point
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32394188A
Other languages
Japanese (ja)
Inventor
Nobutsugu Takashima
高嶋 修嗣
Takashi Shimohata
下畑 隆司
Hisayoshi Jinno
神野 久喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP32394188A priority Critical patent/JPH02170917A/en
Publication of JPH02170917A publication Critical patent/JPH02170917A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a thick high-tensile steel stock in which hardness difference in the thickness direction is infinitesimal and superior material uniformity is provided by subjecting a hot rolled steel stock of a specific thickness to heating and cooling under respectively specified conditions, applying hardening treatment to the above stock, and then subjecting the above stock to tempering treatment under specific conditions. CONSTITUTION:A hot rolled steel stock of >=50mm thickness is heated up to a temp. of the Ac3 transformation point or above, and then, the above steel stock is cooled until the surface temp. of the steel stock reaches the temp. between a temp. lower than the temp. in the center of the steel stock by 20 deg.C and the Ac3 transformation point. Subsequently, the above steel stock is subjected to hardening treatment and further to tempering treatment at a temp. between the Ac1 transformation point and 450 deg.C. By this method, the thick high-tensile steel stock in which the distribution of hardness and strength is uniformized can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、厚肉高張力γ」ヰ4の製造方法に関し、詳細
には肉厚50mm以上に仕上げられた熱間圧延鋼材から
、硬さ・強度分布が均一である事を要求される厚肉高張
カフ4tオを製造する方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing thick-walled, high-strength gamma -Relates to a method of manufacturing a thick hypertonic cuff 4t which requires uniform strength distribution.

(従来の技術) 最近、厚肉高張力f+;1 tAは、建築物の著しい高
層化などにより、一般鋼In造物用あるいはl′d溪構
造用の材料とし°ζ実用されており、その需要が増大し
てきた。
(Prior art) Recently, thick wall, high tensile strength f+;1 tA has been put into practical use as a material for general steel structures and l'd valley structures due to the remarkable increase in the height of buildings, has been increasing.

かかる厚肉高張力鋼材の製造は、鋼種によっては制′4
11I圧延法により行われる場合もあるが、殆どは熱間
圧延鋼材を一旦作った後、該S″:11材を焼入・焼戻
処1ヱする方法により行われる。この焼入・焼戻処理方
法は、熱間圧延鋼材を胱、変態点以−ヒの温度に加熱し
た後に冷却して焼入処理し、さらに焼戻処理するもので
ある。
The production of such thick-walled high-strength steel materials is subject to restrictions depending on the type of steel.
Although it is sometimes carried out by the 11I rolling method, in most cases it is carried out by a method in which hot-rolled steel material is once made and then the S'':11 material is quenched and tempered. The treatment method is to heat the hot-rolled steel material to a temperature above its transformation point, cool it, quench it, and then temper it.

尚、制御圧延法は高度の制御を要するので、技術的に難
しく、製造費が高くなるという欠点があり、焼入・焼戻
処理方法はかかる点でfli’れているので、特別な場
合を除き、焼入・焼戻処理方法が多用されている。
In addition, since the controlled rolling method requires a high degree of control, it has the drawbacks of being technically difficult and increasing production costs, and the quenching and tempering treatment method is inferior in this respect, so it cannot be used in special cases. However, quenching and tempering treatment methods are often used.

(発明が解決しようとする問題点) ところが、上記従来の焼入・焼戻処理による厚内高張力
鋼材の製造法は、f7られる錦IFオの硬さが鋼材表層
部で高く、柑j祠中心部で低くなり易く、その差が比較
的大きいので、肉+7方向での硬さ分4Iが大変不均一
になり易いという問題点がある。
(Problems to be Solved by the Invention) However, in the above-mentioned conventional method for manufacturing thick inner high-strength steel materials using quenching and tempering treatments, the hardness of the brocade IF O (f7) is high in the surface layer of the steel material, and the hardness of the steel material is high. Since it tends to be lower in the center and the difference is relatively large, there is a problem that the hardness 4I in the meat+7 direction tends to be very uneven.

これは、当然に鋼材強度や靭性などが部位により大幅に
異なり、材質が不均一なものになり易いという問題点に
緊がるものである。尚、かかる材質の不均一性の程度は
、特に低強度の厚肉高張力鋼材において顕著であり、8
0kg/mm”扱銅のものより50kg/mm”扱銅の
ものの方が著しく、又、同一強度のものでは、C当足が
低い鋼の方が著しい。
This is due to the problem that the strength and toughness of the steel material vary greatly depending on the location, and the quality of the material tends to be non-uniform. In addition, the degree of non-uniformity of such materials is particularly noticeable in low-strength thick-walled high-tensile steel materials, and 8
Steels treated with 50kg/mm" copper are significantly more sensitive than those treated with 0kg/mm" copper, and for steels with the same strength, steels with a lower C ratio are more significant.

本発明は、このような事情に着目してなされたものであ
って、その目的は従来のものがもつ問題点を解消し、肉
厚方向での硬さの差が極微であり、材質の均一性が優れ
た厚内高張力鋼材を製造し得る厚肉高張力鋼材の製造方
法を提供しようとするものである。
The present invention has been made in view of these circumstances, and its purpose is to solve the problems of the conventional ones, and to achieve a uniform material with minimal difference in hardness in the thickness direction. The present invention aims to provide a method for producing thick-walled high-strength steel materials that can produce thick-walled high-strength steel materials with excellent properties.

(問題点を解決するための手段) 上記目的を達成するために本発明は次のような構成の厚
肉高張力鋼材の製造方法としている。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a method for manufacturing a thick high-strength steel material having the following configuration.

即ち、第1Δ+1求項に記載の方法は、肉厚50mm以
上の熱間圧延鋼材をAC3変態点以上の温度に加熱した
後、咳n材表面温度が該鋼材中心温度より20℃低い温
度以下、  Ac、変態点以上の温度になるまで該鋼材
を冷却し、続いて該鋼材に焼入処理を施し、さらに該鋼
材にAc3変態点以下、450℃以上の温度での焼戻処
理を施すことを特徴とする厚肉高張力鋼材の製造方法で
ある。
That is, the method described in the first Δ+1 requirement is that after heating a hot-rolled steel material with a wall thickness of 50 mm or more to a temperature equal to or higher than the AC3 transformation point, the surface temperature of the material is lower than or equal to a temperature 20° C. lower than the center temperature of the steel material. Ac, the steel material is cooled to a temperature equal to or higher than the transformation point, then the steel material is subjected to a quenching treatment, and the steel material is further subjected to a tempering treatment at a temperature lower than the Ac3 transformation point and 450 ° C. or higher. This is a manufacturing method for thick-walled, high-strength steel.

第2請求項に記載の方法は、肉厚501以上の熱間圧延
鋼材をAc3変態点以上の温度に加熱した後、該鋼材表
面温度が該鋼材中心温度より20℃低い温度以下、  
Act変態点以上の温度になるまで冷却し、続いて第1
次焼入処理し、次いでAcm変態点より150”C高い
温度以下、  Ac、変態点より10℃高い温度以上の
温度に加熱した後、該鋼材表面温度が該鋼材中心温度よ
り20℃低い温度以下、  Ac、変5辺点より20℃
低い温度以」二の温度になるまで冷却し、続いて第2入
坑人処理し、更に該鋼材にAc変態点以F、  450
℃以上の温度での焼戻処理を施すことを4¥版とするI
TJ肉高張力鋼材の製造方法である。
The method according to the second claim includes heating a hot-rolled steel material having a wall thickness of 501 or more to a temperature of Ac3 transformation point or more, and then adjusting the surface temperature of the steel material to a temperature that is 20° C. lower than the center temperature of the steel material,
Cool until the temperature reaches the Act transformation point or higher, and then
After the next quenching treatment, and then heating to a temperature not higher than 150"C higher than the Acm transformation point, and not less than 10"C higher than the Acm transformation point, the surface temperature of the steel is not more than 20"C lower than the center temperature of the steel. , Ac, 20℃ from the odd 5-sided point
The steel material is cooled to a temperature below 450 F, followed by a second mine treatment, and then heated to an Ac transformation point of 450 F.
I that the 4 yen version is subjected to tempering treatment at a temperature of ℃ or higher
This is a method for manufacturing TJ high tensile strength steel.

ある。be.

(作 用) 本発明に係る厚肉高張力j’4 t、tの製造方’tl
=は、以り説明したように、対象とする鋼材の肉厚を5
0mm以上としている。これは、従来の焼入・焼戻処理
法による場合に、50cnm以上のとき、肉厚方向での
硬さの差が大きくなるという問題点が生じるからである
。11゛0150III+1未満では焼入処理の際に、
鋼(オの部位による冷却速度の差が比較的小さいため、
従来の焼入・焼戻処理法による場合でも肉厚方向での硬
さの差が比較的小さくなる。
(Function) Method of manufacturing thick-walled high-tension j'4t, t according to the present invention'tl
As explained above, = is the thickness of the target steel material by 5
It is set to be 0 mm or more. This is because when conventional hardening and tempering treatment methods are used, a problem arises in that when the thickness is 50 cm or more, the difference in hardness in the thickness direction becomes large. If it is less than 11゛0150III+1, during quenching,
Steel (because the difference in cooling rate depending on the part of E is relatively small,
Even when conventional hardening and tempering treatment methods are used, the difference in hardness in the thickness direction is relatively small.

かかる肉厚を<rする熱間圧延鋼材を先ずAc3変態点
以上の温度に加熱するようにしているので、鋼材の内部
、表面とも焼入に必要な前tea(オーステナイトu1
)a )になる。
Since the hot-rolled steel material with the wall thickness <r is first heated to a temperature higher than the Ac3 transformation point, the pre-tea (austenite u1
)a) becomes a).

上記加熱後、該鋼材表面温度が該鋼材中心温度より20
℃低い温度以下、  Aci変態点以上の温度になるま
で該鋼材を冷却し、続いて該鋼材に焼入処理を施すよう
にしている。この焼入処理とは、該鋼材を冷却すること
であり、通常これは空冷、水冷または油冷により行われ
る。上記加熱・冷却後の温度は、焼入処理の冷却が開始
される直前の温度であり、焼入温度と言われるものであ
る。
After the above heating, the surface temperature of the steel material is 20° below the center temperature of the steel material.
The steel material is cooled to a temperature lower than 0.degree. C. and higher than the Aci transformation point, and then the steel material is subjected to a quenching treatment. This quenching treatment involves cooling the steel material, which is usually performed by air cooling, water cooling, or oil cooling. The temperature after heating and cooling is the temperature immediately before the cooling of the quenching process is started, and is called the quenching temperature.

ここで、上記加熱・冷却後の温度、即ち、鋼11表面の
焼入温度をAcz変態点以上としているのは、鋼材の内
部、表面とも焼入に必要な前tJl織にするためである
。また、鋼材中心温度より20℃低い温度以下としてい
るのは、鋼材表面の焼入温度を口(オ中心部の焼入温度
より20℃以」−低い、温度にする事により、鋼材中心
部の硬さと鋼材表面の硬さとの差を小さくするためであ
る。尚、鋼材表面の焼入温度が!!!1材中心材中境部
温度と同等か、もしくは鋼材中心部の焼入温度より低く
ても該lが20℃未満の場合は、鋼材中心部の硬さと鋼
材表面の硬さとの差が大きくなる。
Here, the reason why the temperature after heating and cooling, that is, the quenching temperature of the surface of the steel 11 is set to be higher than the Acz transformation point is to create the pre-tJl texture necessary for quenching both inside and on the surface of the steel material. In addition, the reason why the temperature is 20°C lower than the center temperature of the steel material is that by setting the quenching temperature of the surface of the steel material to a temperature that is 20°C lower than the quenching temperature of the center part of the steel material. This is to reduce the difference between the hardness and the hardness of the steel surface.It should be noted that the quenching temperature of the steel surface must be equal to or lower than the middle temperature of the center material of the first material. However, if l is less than 20°C, the difference between the hardness at the center of the steel material and the hardness at the surface of the steel material becomes large.

このように鋼材表面の焼入温度を鋼(才中心部の焼入温
度より20℃以上低くすると、鋼材中心部の硬さと鋼材
表面の硬さとの差が小さくなるのは、鋼材表面の冷却速
度と鋼材中心部の冷却速度との差が小さくなって焼入後
の組織がより均一化されるからである。即ち、鋼材表面
の焼入温度が鋼材中心部の焼入;U度と同等か、もしく
は鋼材中心部の焼入温度より低くても段差が20℃未満
の場合は、鋼材表面の冷却速度が鋼材中心部の冷却速度
より大きくなり、段差が比較的大きいので、鋼材表層部
では極めて高硬度のマルテンサイト組織、又は、若干量
のへイナイトしか共存しないマルテンサイト組1aとな
り、鋼材中心部では鋼材表層部よりも比較的多聞のベイ
ナイト(:マルテンサイトより比較的低硬度)がマルテ
ンサイトに共存する混合組繊となる。故に、鋼材中心部
に比し表層部で極めて硬くなり、そのため硬さの差が太
きくなる。これに対し、鋼材表面の焼入温度を鋼材中心
部の焼入温度より20℃以上低くした場合は、H材表面
の冷却速度と鋼材中心部の冷却速度との差が小さくなり
、そのため鋼材中心部、鋼材表層部とも比較的多量のベ
イナイトがマルテンサイトに共存する混合fLtaとな
るからである。従って、綱材中心部と表層部との間での
硬さの差が小さくなるのである。
In this way, when the quenching temperature of the steel surface is lowered by 20°C or more than the quenching temperature of the center of the steel, the difference between the hardness of the center of the steel and the hardness of the steel surface becomes smaller because of the cooling rate of the surface of the steel. This is because the difference between the cooling rate at the center of the steel material and the cooling rate at the center of the steel material becomes smaller, and the structure after quenching becomes more uniform.In other words, the quenching temperature at the surface of the steel material is equivalent to the quenching temperature at the center of the steel material; Or, if the step is less than 20℃ even if it is lower than the quenching temperature at the center of the steel material, the cooling rate at the surface of the steel material will be greater than the cooling rate at the center of the steel material, and the step difference will be relatively large. A martensite structure with high hardness or a martensite group 1a exists in which only a small amount of heinite coexists, and in the center of the steel, there is relatively more bainite (relatively lower hardness than martensite) than in the surface layer of the steel. Therefore, the surface layer becomes extremely hard compared to the center of the steel, resulting in a large difference in hardness.On the other hand, the quenching temperature of the surface of the steel is adjusted to the quenching temperature of the center of the steel. When the temperature is lowered by 20°C or more than the input temperature, the difference between the cooling rate at the surface of the H material and the cooling rate at the center of the steel becomes small, and therefore a relatively large amount of bainite coexists with martensite in both the center and surface of the steel. Therefore, the difference in hardness between the center part and the surface part of the rope becomes small.

前記焼入処理後、第1請求項に記載の方法ではAc、変
態点以下、450℃以上の温度での焼戻処理を施すよう
にしている。かかる焼戻処理の温度、即ち、焼戻温度を
Ac+変態点以下としているのは、焼戻温度が高いほど
硬さ分布が均一になるがAct変態点を超える温度にす
ると釦11オ強度が低下するからである。450℃以上
の温度としているのは、450℃未満の温度にすると焼
戻の効果が小さくなり、靭性が低下するからである。
After the hardening treatment, in the method according to the first aspect, a tempering treatment is performed at a temperature of Ac, below the transformation point, and above 450°C. The temperature of this tempering process, that is, the tempering temperature, is set below the Ac + transformation point because the higher the tempering temperature, the more uniform the hardness distribution, but when the temperature exceeds the Act transformation point, the strength of the button 11 decreases. Because it does. The reason why the temperature is set at 450°C or higher is that if the temperature is lower than 450°C, the effect of tempering becomes smaller and the toughness decreases.

第2請求項に記載の方法では、前記焼入処理(即ち、第
1次焼入処理)後、Ac3変態点より150℃高い温度
以下、  Ac、変態点より10″C高い温度以上の温
度に加熱し、次いで該鋼材表面温度が咳畑材中心温度よ
り20℃低い温度以下、  Ac、変態点より20℃低
い温度以上の温度になるまで冷却し、続いて第2次焼入
処理し、その後は前記と同様の焼戻処理を施すようにし
ている。このように第1次焼入処理と焼戻処理との間に
第2次焼入処理を行うと、肉厚方向での硬さの差をより
梅敞にし得、材質の均一・性を更に優れたものにし得る
ようになる。
In the method according to claim 2, after the quenching treatment (i.e., the first quenching treatment), the temperature is lower than or equal to 150°C higher than the Ac3 transformation point, and at a temperature higher than or equal to 10"C higher than the Ac3 transformation point. Heating, then cooling until the surface temperature of the steel material is 20°C lower than the center temperature of the cough field material, and 20°C lower than the AC transformation point, followed by a second quenching treatment, and then is subjected to the same tempering treatment as above.If the second quenching treatment is performed between the first quenching treatment and the tempering treatment, the hardness in the thickness direction will increase. It becomes possible to make the difference more uniform, and to improve the uniformity and properties of the material.

ここで、第1次焼入処理後の加熱温度に関し、これをA
c、変態点より10℃高い温度以上としているのは、確
実に鋼材の内部まで均一に加熱して鋼材強度および靭性
を確保するためである。Ac3変態点より 150℃高
い温度以下としているのは、この温度を超える温度に加
熱すると、加熱時にオーステナイト結晶粒が第1次焼入
処理前加熱時のそれよりも太き(なって、結晶粒粗大化
が生し、靭性の低下を招くからである。
Here, regarding the heating temperature after the first quenching treatment, this is A.
c. The reason why the temperature is set at 10° C. higher than the transformation point is to ensure uniform heating to the inside of the steel material and ensure the strength and toughness of the steel material. The reason why the temperature is 150°C higher than the Ac3 transformation point is that if heated to a temperature exceeding this temperature, the austenite crystal grains during heating will become thicker than those during heating before the primary quenching treatment (and the crystal grains will become thicker). This is because coarsening occurs, leading to a decrease in toughness.

前記第2次焼入処理前の冷却後の温度、即ち、鋼材表面
の焼入温度に関し、これをAc1変態点より20℃低い
温度以上としているのは、鋼材の内部、表面とも焼入に
必要な前tJulaにし、鋼(オ強度および靭性を確保
するためである。口材中心4瓜より20℃低い温度以下
としているのは、前記の如(鋼材表面の冷却速度と鋼材
中心部の冷却速度との差を小さくする事により、焼入後
の組織を均一化し、鋼材中心部と表面との硬さの差を小
さくするためである。
Regarding the temperature after cooling before the secondary quenching treatment, that is, the quenching temperature of the surface of the steel material, the reason why this temperature is set to 20°C lower than the Ac1 transformation point is because both the inside and surface of the steel material are necessary for quenching. This is to ensure the strength and toughness of the steel. This is to make the structure after quenching uniform and reduce the difference in hardness between the center of the steel material and the surface.

上記第2次焼入後の1■織に関し、鋼材表面の焼入温度
がAc3変態点より高い場合は、マルテンサイトとベイ
ナイトとが共存する混合m織となる。
Regarding the 1-2 weave after the secondary quenching, if the quenching temperature of the surface of the steel material is higher than the Ac3 transformation point, it becomes a mixed M-weave in which martensite and bainite coexist.

鋼材表面の焼入温度がAcz変態点より低い場合は、ヘ
イナイトとフェライトとが共存する混合X、1llI:
、llとなる。
When the quenching temperature of the steel surface is lower than the Acz transformation point, mixture X, 1llI where haynite and ferrite coexist:
, ll.

(実施例) 第1〜2表に供試した熱間圧延鋼材の化学成分を、Ac
+及びAc、変態点と共に示す。該r4材は、組成的に
は3種類(鋼材A、B、C)に区分され、鋼材Bに比し
鋼材Aは■及びMolが高く、鋼材Cはそれらに比しさ
らに■及び−〇星が高く、且つBを含有するところに特
徴がある。該鋼材の熱間圧延は、通常の方法により行わ
れ、圧延仕上げ肉厚は50.80,100,150m1
1の4種11とした。
(Example) The chemical compositions of the hot rolled steel materials shown in Tables 1 and 2 are Ac
+ and Ac, shown together with the transformation point. The R4 material is classified into three types (steel materials A, B, and C) in terms of composition. Compared to steel material B, steel material A has higher ■ and Mol, and steel material C has higher ■ and -0 stars than those. It is characterized by having a high amount of carbon dioxide and containing B. Hot rolling of the steel material is performed by a normal method, and the finished rolling thickness is 50.80, 100, 150 m1.
1, 4 types, 11.

上記熱間圧延鋼材を、本発明に係る製造方法、即し、加
熱・冷却・焼入処理後、焼戻処理を施す方法、或いは、
加2ノさ・冷却・第1次焼入処理、加熱・冷却・第2次
焼入処理後、焼戻処理を施す方法(以降、これらを本発
明の実施例の方法という)により、厚肉高張力鋼材を製
造した。又、これと比較するために、従来の加り、す・
焼入処理後、焼戻処理を施す方法、或いは、加熱・第1
次焼入処理、加熱・第2次焼入処[1後、焼戻処理を施
す方法(以降、これらを比較例の方法という)により厚
肉高張力鋼材を製造した。これらの製造条件を第3〜4
表に示す。
The above-mentioned hot rolled steel material is subjected to the manufacturing method according to the present invention, that is, a method of subjecting it to a tempering treatment after heating, cooling and quenching treatment, or
A method of applying tempering treatment after drilling, cooling, and primary quenching, heating, cooling, and secondary quenching (hereinafter referred to as the methods of the embodiments of the present invention), thick-walled Manufactured high tensile strength steel. Also, in order to compare with this, the conventional addition, Su・
After the quenching treatment, a method of performing a tempering treatment, or a method of heating and
A thick-walled high-tensile steel material was manufactured by a method of performing a secondary quenching treatment, a heating/secondary quenching treatment, and then a tempering treatment (hereinafter, these are referred to as methods of comparative examples). These manufacturing conditions are 3rd to 4th.
Shown in the table.

製造された厚肉高張力鋼材から=工(片を採取し、肉厚
方向硬さ分布の測定および引張り試験を行った。その結
果を第5表に示す。尚、硬さ測定はビッカース硬度計を
用い、銅材断面に力を負荷して行った。引張り試験は、
試片の長手方向が圧延方向になるようにして鋼材表層部
および中心部から1采取・加工された試片を用いて行っ
た。
A piece was taken from the manufactured thick-walled high-tensile steel material, and the hardness distribution in the wall thickness direction was measured and a tensile test was performed.The results are shown in Table 5.The hardness was measured using a Vickers hardness tester. The tensile test was carried out by applying force to the cross section of the copper material.
The test was conducted using a test piece that had been cut and processed from the surface layer and the center of the steel material so that the longitudinal direction of the test piece was in the rolling direction.

第3〜5表において、実験No、1.3,5.7及び9
は本発明の実施例の方法に係るもの、実験No、2.4
.6.8及び10は比較例の方法に係るものである。
In Tables 3 to 5, Experiment No. 1.3, 5.7 and 9
is related to the method of the example of the present invention, experiment No. 2.4
.. 6.8 and 10 relate to methods of comparative examples.

実験No、lとNo、2とを比較すると、両者は組成的
に同一(鋼材A)、肉厚同一(50mm) 、最初の加
熱温度も同一(930℃)であるが、その後の製造条件
が異なっている。実験No、2は、930℃に加熱した
後、その温度(但し、鋼材中心部は925℃)を焼入温
度として焼入処理し、次いで640℃に加熱し、冷却し
て焼戻処理を施したものである。これに対し、実!JN
o、1は、930℃に加熱した後、鋼材表面温度が86
0℃,@材中心温度が905℃になるまで鋼材を冷却し
、続いてこの温度を焼入温度として焼入処理し、次いで
640℃に加熱し、冷却して焼戻処理を施したものであ
る。
Comparing Experiments No. 1 and No. 2, both have the same composition (steel material A), the same wall thickness (50 mm), and the same initial heating temperature (930°C), but the subsequent manufacturing conditions are different. It's different. In experiment No. 2, the steel was heated to 930°C, then quenched at that temperature (925°C at the center of the steel material), then heated to 640°C, cooled, and tempered. This is what I did. On the other hand, real! J.N.
o, 1 has a steel surface temperature of 86°C after heating to 930°C.
The steel material was cooled to 0°C until the center temperature of the material reached 905°C, then quenched at this temperature, then heated to 640°C, cooled, and tempered. be.

上記の如く製造条件を異にして得られた厚肉高張力鋼材
についての肉厚方向硬さ分布を第1図に示す。図中Oは
実験No、l、・は実験No、 2についての結果であ
る。実験No、2のものは、鋼材表層部での硬さが鋼材
中心部の硬さに比し高く、その差は11νで72である
。これに対し、実験No、lのものは、肉厚方向での硬
さ分布が均一化され、鋼材表層部の硬さと鋼(オ中心部
の硬さとの差はIlvで24であり、極めて小さくなっ
ている。又、引張り試験の結果、第5表に示す如く、鋼
4A、&層部と鋼材中心部との間での引張強さ及び耐力
の差は、実験No、2のものでは7kg/mm2及び5
kg/mm2であるが、実験N。
FIG. 1 shows the hardness distribution in the thickness direction of thick high-strength steel materials obtained under different manufacturing conditions as described above. In the figure, O is the experiment No., l, . is the result for experiment No. 2. In Experiment No. 2, the hardness at the surface layer of the steel material is higher than the hardness at the center of the steel material, and the difference is 11ν, which is 72. On the other hand, in experiments No. 1, the hardness distribution in the thickness direction was made uniform, and the difference between the hardness of the surface layer of the steel and the hardness of the center of the steel material was 24 in Ilv, which was extremely small. In addition, as shown in Table 5, the tensile test results show that the difference in tensile strength and yield strength between the steel 4A layer and the center of the steel material is 7 kg for Experiment No. 2. /mm2 and 5
kg/mm2, but experiment N.

、lのものは いづれも1.5 kg/mm”であり、
極めて小さくなっている事が判る。1〕記結果は、本発
明に係る方lhは従来法に比較して肉厚方向での硬さの
差および鋼材強度の差を極微にし、材質の均一性を向上
し得ることを示ず−・例である。
, l are all 1.5 kg/mm",
It can be seen that it has become extremely small. 1) The results do not show that the method lh according to the present invention can minimize the difference in hardness and the difference in steel material strength in the wall thickness direction and improve the uniformity of the material compared to the conventional method.・This is an example.

実験No、3及びNo、4は、上記実験No、l及びN
o、2の場合よりも肉厚を大きくしたものである(10
0mm)。尚、焼戻処理の温度は上記実験No、1及び
No、2の場合よりも少し低くした。又、No、3の焼
入温度はNo、lのそれに比し少し高くした。実験No
、3と実験No、4とを比較すると、鋼材表層部とII
 t4中心部との間での硬さ、引張強さ及び耐力の差は
、第5表に示す如く実X2No、3の方が実験No、4
より極めて小さい。
Experiment No. 3 and No. 4 are the above experiments No. 1 and N.
o, the wall thickness is larger than that of 2 (10
0mm). Incidentally, the temperature of the tempering treatment was slightly lower than that in Experiment No. 1 and No. 2 above. Further, the quenching temperature for No. 3 was slightly higher than that for No. 1. Experiment No.
, 3 and Experiment No. 4, it is found that the steel surface layer and II
As shown in Table 5, the difference in hardness, tensile strength, and yield strength between the center part of t4 is that actual X2 No. 3 is better than experimental No. 4.
much smaller.

実験No、9及びNo、 10は、上記実験No、]及
びNo、2の場合に比し、さらに肉厚を太きく L(1
5f)mm)、又、最初の加熱温度および焼入温度を低
くしたものである。実験No、9と実験No、 10と
を比較すると、鋼材表層部と鋼材中心部との間での硬さ
、引張強さ及び耐力の差は、第5表に示す如く実験No
、9の方が実験No、 10より極めて小さい。
In experiments No. 9 and No. 10, the wall thickness was further increased L(1
5f) mm), and the initial heating temperature and quenching temperature are lowered. Comparing Experiment No. 9 and Experiment No. 10, the difference in hardness, tensile strength, and yield strength between the surface layer of the steel and the center of the steel is as shown in Table 5.
, 9 is extremely smaller than experiment No. 10.

実験No、5とNo、6とを比較すると、両h−は組成
的に同一(I材B)、肉厚同一・(50mm) 、?i
初の加熱温度も同一(910℃)であるが、その後の製
造条件が異なっている。実験No、6は、910℃に加
熱した後は、その温度を焼入温度として第1次焼入処理
し、次いで790℃に加熱し、その温度を焼入温度とし
て第2次焼入処理し、その後550℃に加熱し、冷却し
て焼戻処理を施したものである。これに対し、実験No
、5は、910 ℃に加熱した後は、鋼材表面温度が8
50℃,@材中心温度が890℃になるまで鋼材を冷却
し、続いてこの温度を焼入温度として第1次焼入処理し
、次いで790℃に加熱した後、鋼材表面温度が750
℃,鋼材中心温度が780℃になるまで鋼材を冷却し、
続いてこの温度を焼入温度として第2次焼入処理し、そ
の後550℃に加熱し、冷却して焼戻処理を施したもの
である。
Comparing Experiment No. 5 and No. 6, both h- have the same composition (I material B), the same wall thickness (50 mm), ? i
The initial heating temperature was also the same (910°C), but the subsequent manufacturing conditions were different. In experiment No. 6, after heating to 910°C, the first quenching process was performed using that temperature as the quenching temperature, and then the second quenching process was performed by heating to 790°C and using that temperature as the quenching temperature. , and then heated to 550°C, cooled and tempered. On the other hand, experiment No.
, 5, after heating to 910 °C, the steel surface temperature is 8
50℃, the steel material is cooled until the center temperature of the material reaches 890℃, followed by the first quenching treatment using this temperature as the quenching temperature, and then heated to 790℃, until the steel surface temperature reaches 750℃.
℃, cool the steel material until the center temperature of the steel material reaches 780°C,
Subsequently, this temperature was used as the quenching temperature to perform a second quenching treatment, and then the material was heated to 550° C., cooled, and tempered.

る。Ru.

上記両者の材質を比較すると、鋼材表層部と鋼材中心部
との間での硬さ、引張強さ及び耐力の差は、第5表に示
す如く実験N015の方が実験N006より極めて小さ
い。
Comparing the above two materials, the difference in hardness, tensile strength, and yield strength between the surface layer of the steel and the center of the steel is extremely smaller in Experiment No. 015 than in Experiment No. 006, as shown in Table 5.

実験No、7及びNo、8は、上記実験N095及びN
016に比し、肉厚を太きく L(80+os)、又、
最初の加熱温度、第1次焼入塩度、第1次焼入処理後の
加熱温度および第2次焼入塩度を高(したものである。
Experiments No. 7 and No. 8 are the above experiments No. 095 and No.
Compared to 016, the wall thickness is thicker L (80+os), and
The initial heating temperature, the first quenching salinity, the heating temperature after the first quenching treatment, and the second quenching salinity are increased.

実験No、7と実験No、8とを比較すると、鋼材表層
部と鋼材中心部との間での硬さ、引張強さ及び耐力の差
は、第5表に示す如く実験No、7の方が実験N018
より極めて小さい。
Comparing Experiment No. 7 and Experiment No. 8, the difference in hardness, tensile strength, and yield strength between the surface layer of the steel and the center of the steel is greater in Experiment No. 7, as shown in Table 5. is experiment N018
much smaller.

以上の比較検討結果は、本発明に係る厚肉高張第 表 (以下、余白) (以下、余白) (以下、余白) (以下、余白) 力鋼材の製造方法は従来法に比較してjγ肉高張力鋼材
の肉厚方向での硬さの差および鋼材強度の差を極めて小
さくし得る事を裏付けている。
The above comparative study results show that the method for manufacturing thick-walled high-tension steel materials according to the present invention (hereinafter referred to as "margin") (hereinafter referred to as "margin") (hereinafter referred to as "margin") (hereinafter referred to as "margin") This proves that the difference in hardness and strength of high-strength steel in the thickness direction can be made extremely small.

(発明の効果) 本発明に係るIγ肉肉眼張力鋼材製造方法によれば、肉
厚方向での硬さの差が極微であり、材質の均一性が優れ
た厚肉高張力鋼材を製造し得るようになる。
(Effects of the Invention) According to the method for manufacturing Iγ macroscopic tensile steel materials according to the present invention, it is possible to manufacture thick high-strength steel materials in which the difference in hardness in the wall thickness direction is extremely small and the material uniformity is excellent. It becomes like this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例の方法により製造された厚肉
高張力鋼材(実験No、lのもの)および比較例の方法
により製造された厚肉高張力鋼材(実験No、2のもの
)についての各々の肉厚方向硬さ分布を示す図である。 特許出願人 株式会社 神戸製鋼所 代 理 人  弁理士 金丸 章−
Figure 1 shows a thick-walled high-tensile steel material (experiment No. 1) manufactured by the method of the example of the present invention and a thick-walled high-tensile steel material (experiment No. 2) manufactured by the method of the comparative example. ) is a diagram showing each thickness direction hardness distribution. Patent applicant: Kobe Steel, Ltd. Representative Patent attorney: Akira Kanemaru

Claims (2)

【特許請求の範囲】[Claims] (1)肉厚50mm以上の熱間圧延鋼材をAc_3変態
点以上の温度に加熱した後、該鋼材表面温度が該鋼材中
心温度より20℃低い温度以下、Ac_3変態点以上の
温度になるまで該鋼材を冷却し、続いて該鋼材に焼入処
理を施し、さらに該鋼材にAc_1変態点以下、450
℃以上の温度での焼戻処理を施すことを特徴とする厚肉
高張力鋼材の製造方法。
(1) After heating a hot-rolled steel material with a wall thickness of 50 mm or more to a temperature equal to or higher than the Ac_3 transformation point, the surface temperature of the steel material is 20°C lower than the center temperature of the steel material or lower, and continues until the temperature reaches the Ac_3 transformation point or higher. The steel material is cooled, and then the steel material is subjected to a quenching treatment, and the steel material is further heated to a temperature below the Ac_1 transformation point, at 450°C.
A method for producing thick-walled, high-strength steel material, characterized by subjecting the material to tempering treatment at a temperature of ℃ or higher.
(2)肉厚50mm以上の熱間圧延鋼材をAc_3変態
点以上の温度に加熱した後、該鋼材表面温度が該鋼材中
心温度より20℃低い温度以下、Ac_3変態点以上の
温度になるまで冷却し、続いて第1次焼入処理し、次い
でAc_3変態点より150℃高い温度以下Ac_1変
態点より10℃高い温度以上の温度に加熱した後、該鋼
材表面温度が該鋼材中心温度より20℃低い温度以下、
Ac_1変態点より20℃低い温度以上の温度になるま
で冷却し、続いて第2次焼入処理し、さらに該鋼材にA
c_1変態点以下、450℃以上の温度での焼戻処理を
施すことを特徴とする厚肉高張力鋼材の製造方法。
(2) After heating a hot rolled steel material with a wall thickness of 50 mm or more to a temperature above the Ac_3 transformation point, cool it until the surface temperature of the steel material is 20°C lower than the center temperature of the steel material and a temperature above the Ac_3 transformation point. Then, the steel material is subjected to a primary quenching treatment, and then heated to a temperature that is 150°C higher than the Ac_3 transformation point or 10°C higher than the Ac_1 transformation point, and then the surface temperature of the steel material is 20°C higher than the center temperature of the steel material. below low temperature,
The steel material is cooled to a temperature 20°C lower than the Ac_1 transformation point, then subjected to secondary quenching treatment, and then A
c_1 A method for producing a thick high-strength steel material, characterized by subjecting it to a tempering treatment at a temperature below the transformation point and above 450°C.
JP32394188A 1988-12-21 1988-12-21 Manufacture of thick high-tensile steel stock Pending JPH02170917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32394188A JPH02170917A (en) 1988-12-21 1988-12-21 Manufacture of thick high-tensile steel stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32394188A JPH02170917A (en) 1988-12-21 1988-12-21 Manufacture of thick high-tensile steel stock

Publications (1)

Publication Number Publication Date
JPH02170917A true JPH02170917A (en) 1990-07-02

Family

ID=18160339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32394188A Pending JPH02170917A (en) 1988-12-21 1988-12-21 Manufacture of thick high-tensile steel stock

Country Status (1)

Country Link
JP (1) JPH02170917A (en)

Similar Documents

Publication Publication Date Title
JP3113137B2 (en) Manufacturing method of high toughness rail with pearlite metal structure
US6719860B1 (en) Method of producing ultra-fine grain structure for unalloyed or low-alloyed steel
JPH02170917A (en) Manufacture of thick high-tensile steel stock
JPS6169928A (en) Manufacture of steel plate for ironing by continuous annealing
JPH07258787A (en) Production of hard steel wire rod for cold wire drawing excellent in wire drawability and fatigue characteristic
US3196053A (en) Production of heat-treated sheets
JP2815028B2 (en) Method for producing steel pipe having yield point elongation, low yield ratio and excellent low temperature toughness
JPH08269619A (en) High carbon hot rolled steel sheet excellent in hardenability and cold workability
JPS58141328A (en) Manufacture of high strength high toughness steel
JPS6046318A (en) Preparation of steel excellent in sulfide cracking resistance
JPH0233768B2 (en)
JP2005320596A (en) Material
JPS6369914A (en) Production of bar and wire rod having excellent wear resistance
JPH06306483A (en) Production of high strength steel wire rod excellent in cold wire drawability
JP2003213333A (en) Method of producing low yield ratio and high tensile strength steel having reduced difference in material in sheet thickness direction
JPH02213415A (en) Production of bar steel having high strength and high toughness
JPS6324012A (en) Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method
JP2023061553A (en) Manufacturing method of martensitic stainless steel material
JPS63223124A (en) Manufacture of high-strength thick steel plate excellent in toughness at low temperature
JPS6046317A (en) Preparation of steel excellent in sulfide cracking resistance
JPH08269541A (en) Production of hot rolled high carbon steel plate excellent in hardenability and workability
JP2957717B2 (en) Manufacturing method of high strength seamless steel pipe with low yield ratio
JPH02221324A (en) Spheroidizing treatment of hypereutectoid steel
KR20130052215A (en) Method for minimizing crystal gain of low-carbon steel by asymmetric rolling
JPH04173918A (en) Production of carburized and case-hardened steel