JPH0217034A - Electrocardiogram signal processor - Google Patents

Electrocardiogram signal processor

Info

Publication number
JPH0217034A
JPH0217034A JP63166619A JP16661988A JPH0217034A JP H0217034 A JPH0217034 A JP H0217034A JP 63166619 A JP63166619 A JP 63166619A JP 16661988 A JP16661988 A JP 16661988A JP H0217034 A JPH0217034 A JP H0217034A
Authority
JP
Japan
Prior art keywords
block
qrs
type
electrocardiogram
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63166619A
Other languages
Japanese (ja)
Inventor
Shigeru Shimizu
清水 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63166619A priority Critical patent/JPH0217034A/en
Publication of JPH0217034A publication Critical patent/JPH0217034A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To diagnose a two-time atrioventricular block Mobitz II type, a two- time atrioventicular block Wenckebach type and a sinoatrial block with high accuracy by easily separating the ham mixed in an electrocardiogram signal, the noise component of an electromyogram and drift or the like by developing a time series electrocardiogram data on a frequency region by FFT processing. CONSTITUTION:The electrocardiogram signal amplified by an electrocardiogram amplifier 1 is digitalized, for example, at a sampling interval of 16mec with resolving power of + or -10mV (12-bit) by an A/D converting part 2 and the position of QRS is detected by a QRS group detection part 3 as shown by a drawing. In an arhythmicity detection part 4, the appearing position of a QRS group (post QRS) immediately before a heartbeat falls out from the output of the QRS group detection part 3 and the position of the fallen-out QRS group (defect QRS) are detected to be informed to an FFT processing part 5. in a diagnostic part 7, the diagnosis of a two-time atrioventricular block Mobitz II type, a two-time atrioventricular block Wenckeback type and a sinoatrial block is performed on the basis of the amplitude characteristics and phase characteristics Ap(n), thetap(n), Ad(n), thetad(n) being the output of the FFT processing part and gamma0, alpha0, alpha1 being the output of a statistical processing part 6.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、心電図信号の自動解析処理を行う心電図信号
処理装置に関し、特に区分点認識を正確に行うことを可
能とした心電図信号処理装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrocardiogram signal processing device that automatically analyzes electrocardiogram signals, and particularly relates to an electrocardiogram signal processing device that can accurately recognize segmentation points. .

[従来の技術] 心電図は心臓で起こる電気現象が反映されたものであり
、心拍動の1サイクル間に、P波、QR8群、T波及び
U波等の韓波が描かれたものとなっている。この各種の
牲波のパターンを解読することにより、生体の診断情報
を得ることができる、例えば、2度房室ブロックモビッ
ツ(MobiLz) U型、2度房室ブロックベンケバ
ッファ (Wenckebach )型及び洞房ブロックの診断
について説明する。
[Prior art] An electrocardiogram reflects the electrical phenomena that occur in the heart, and depicts Korean waves such as P waves, QR8 complexes, T waves, and U waves during one cycle of heartbeat. ing. By deciphering the patterns of these various types of sacrificial waves, it is possible to obtain diagnostic information about the living body. Explain the diagnosis of sinoatrial block.

これらの診断にあっては、第4図に示すように、P波の
有無及び出現位置を正確に認識する必要がある。即ち、
第4図(a>に示すように、2度房室ブロックMobi
Lel型は、QRS群とP波の間隔(以下、PR間隔と
いう)が一定のままQRS群が欠落し、第4図(b)に
示すように、2度房室ブロックWenckebach型
は、PR間隔がしだいに延長しながらQRS群が欠落し
、第4図(C)に示すように、洞房ブロックは、P波と
QRS群が共に欠落する形をとる。
In these diagnoses, as shown in FIG. 4, it is necessary to accurately recognize the presence or absence of P waves and the location where they appear. That is,
As shown in Figure 4 (a), 2nd degree atrioventricular block Mobi
In the Lel type, the QRS complex is absent while the interval between the QRS complex and the P wave (hereinafter referred to as the PR interval) remains constant, and as shown in Figure 4 (b), in the Wenckebach type with 2nd degree atrioventricular block, the PR interval remains constant. As the sinoatrial block gradually lengthens, the QRS complex is missing, and as shown in FIG. 4(C), sinoatrial block takes the form of both the P wave and the QRS complex missing.

このように、2度房室ブロックMobjtzll型、2
皮層室ブロックWenckebach型及び洞房ブロッ
クは、心拍リズムが全く同じで、第4図に示すように、
規則的なリズムから1心拍が抜は落ちる形をとり、しか
もQR8群も変形しないため、認識が極めて困難である
Thus, 2nd degree atrioventricular block Mobjtzll type, 2
Cortical ventricular block Wenckebach type and sinoatrial block have exactly the same heart rhythm, and as shown in Figure 4,
It is extremely difficult to recognize because it takes the form of one heartbeat dropping from the regular rhythm, and the QR8 group does not change.

従来のこの種の診断を行う技術としては、心電図の原デ
ータ又はP波を強調させるようなフィルタ処理としたデ
ータ上で、ある閾値以上の蛙波を検出し、その舷波の振
幅や時間幅からP波かどうかを判定し、その出現位置に
よって診断する手段をとっていた。
Conventional techniques for making this type of diagnosis include detecting frog waves above a certain threshold on the original electrocardiogram data or on data that has been filtered to emphasize P waves, and detecting the amplitude and time width of the broad waves. The method used was to determine whether it was a P wave or not, and to make a diagnosis based on the location where the wave appeared.

[発明が解決しようとする課題] しかしながら、上述した従来の技術では、P波の認識率
が低いという欠点があり、またハム、筋電図及びドリフ
トといったノイズ成分が心電図信号に混入した場合は著
しくP波の認識率が低下するという欠点がある。従って
、2度房室ブロックMobitzll型、2皮層室ブロ
ックWenckebach型及び洞房ブロックの診断を
高精度で行えないという問題点があった。
[Problems to be Solved by the Invention] However, the above-mentioned conventional technology has the disadvantage that the recognition rate of P waves is low, and when noise components such as hum, electromyogram, and drift are mixed into the electrocardiogram signal, the electrocardiogram signal is significantly degraded. This has the disadvantage that the recognition rate of P waves decreases. Therefore, there is a problem in that diagnosis of second-degree atrioventricular block Mobitzll type, second-degree cortical ventricular block Wenckebach type, and sinoatrial block cannot be performed with high accuracy.

本発明はかかる問題点に鑑みてなされたものであって、
区分点認識を高精度で行うことができ、これにより、2
度房室ブロックMobitzlI型、2皮層室ブロック
Wenckebach型及び洞房ブロックの診断を容易
に行えるようにした心電図信号処理装置を提供すること
を目的とする。
The present invention has been made in view of such problems, and includes:
It is possible to perform segmentation point recognition with high accuracy.
It is an object of the present invention to provide an electrocardiogram signal processing device that facilitates the diagnosis of degree atrioventricular block Mobitzl type I, bicortical ventricular block Wenckebach type, and sinoatrial block.

[課題を解決するための手段] 本発明に係る心電図信号処理装置は、心電図信号をデジ
タル量に変換するA/D変換手段と、前記心電図信号に
おけるQR8群を検出することにより心拍リズムの不整
状態を検出する手段と、この手段の出力に基づき前記A
/D変換手段の出力のうちで各心拍におけるP波を含む
範囲の信号をFFT処理しこの範囲内の信号の周波数振
幅特性及び周波数位相特性を得るFFT処理部と、この
FFT処理部の出力に統計的処理を施して2度房室ブロ
ック04obitz) If型、2度房室ブロック(W
enckebach )型及び洞房ブロックを診断する
診断手段とを有している。
[Means for Solving the Problems] An electrocardiogram signal processing device according to the present invention includes an A/D conversion means that converts an electrocardiogram signal into a digital quantity, and detects the QR8 group in the electrocardiogram signal to detect an irregular state of heart rhythm. and means for detecting said A based on the output of said means.
an FFT processing unit which performs FFT processing on a signal in a range including the P wave in each heartbeat among the outputs of the /D conversion means to obtain frequency amplitude characteristics and frequency phase characteristics of the signal within this range; After statistical processing, 2nd degree atrioventricular block (04obitz) type If, 2nd degree atrioventricular block (W
enckebach) type and a diagnostic means for diagnosing sinoatrial block.

[作用] 本発明においては、心拍リズム不整部分のみがFFT処
理され、この部分の心電図信号を周波数領域に展開する
ことになる。従って、心電図信号に混入しているハム、
筋電図及びドリフト等のノイズ成分を容易に分離でき、
P波近傍の区分点認識を高精度にて行うことができる。
[Operation] In the present invention, only the heart rhythm arrhythmia portion is subjected to FFT processing, and the electrocardiogram signal of this portion is expanded into the frequency domain. Therefore, the hum mixed into the ECG signal,
Noise components such as electromyogram and drift can be easily separated,
Demarcation points near P waves can be recognized with high accuracy.

これにより、2度房室ブロックMobitzl型、2皮
層室ブロックWenckebach型及び洞房ブロック
の診断を高精度で行うことができる。
Thereby, diagnosis of second-degree atrioventricular block Mobitzl type, second-degree cortical ventricular block Wenckebach type, and sinoatrial block can be performed with high accuracy.

[実施例] 次に本発明の実施例について添付の図面を参照して説明
する。
[Example] Next, an example of the present invention will be described with reference to the accompanying drawings.

第1図は本発明の実施例を示すブロック図である。第1
図に示すように、本実施例は、図示しない誘導電極にて
誘導された心電図信号を入力し、後段の処理に適するレ
ベルに増幅する心電図アンプ1と、心電図アンプ1の出
力をデジタル信号に変換するA/D変換部2と、第2図
に示す1心拍の心電図波形におけるQRS群を検出する
QRSR3比検出と、このQRS群検出部3の出力に基
づき第2図に示す心拍リズムの不整部分を検出するため
FFT処理範囲を検出するリズム不整検出部4と、第2
図におけるFFT処理範囲をFFT(高速フーリエ変換
)処理するFFT処理部5と、FFT処理部5の出力に
対し相関係数及び回帰直線係数の統計処理を施す統計処
理部6と、統計処理部6の出力に基づき3図の処理第フ
ローを実施し診断を行う診断部7とから構成される。
FIG. 1 is a block diagram showing an embodiment of the present invention. 1st
As shown in the figure, in this embodiment, an electrocardiogram amplifier 1 inputs an electrocardiogram signal induced by an induction electrode (not shown) and amplifies it to a level suitable for subsequent processing, and converts the output of the electrocardiogram amplifier 1 into a digital signal. QRSR3 ratio detection that detects the QRS complex in the electrocardiogram waveform of one heartbeat shown in FIG. 2, and an irregular part of the heart rhythm shown in FIG. a rhythm irregularity detection unit 4 that detects an FFT processing range in order to detect
An FFT processing unit 5 that performs FFT (fast Fourier transform) processing on the FFT processing range in the figure; a statistical processing unit 6 that performs statistical processing of correlation coefficients and regression line coefficients on the output of the FFT processing unit 5; The diagnosis section 7 executes the processing flow shown in FIG. 3 based on the output of the diagnosis section 7 to perform diagnosis.

次に、上記の如く構成された本実施例装置の動作につい
て説明する。即ち、心電図アンプ1により増幅された心
電図信号は、A/D変換部2により、例えばサンプリン
グ間隔:16”l、秒(msec)、及び分解能S±1
0mV (12ビツト)によってデジタル化されると共
に、QRSR3比検出により第2図に示すようにQRS
の位置が検出される。
Next, the operation of the apparatus of this embodiment configured as described above will be explained. That is, the electrocardiogram signal amplified by the electrocardiogram amplifier 1 is processed by the A/D converter 2 at a sampling interval of 16"l, a second (msec), and a resolution S±1.
It is digitized by 0 mV (12 bits) and the QRS is detected by QRSR3 ratio detection as shown in Figure 2.
The position of is detected.

リズム不整検出部4では、QRSR3比検出の出力から
心拍が抜は落ちる直前のQRS群(以下、postQ 
RSという)の出現位置と、抜は落ちたQRS群(以下
、defecLQ RSという)の位置とを検出し、F
 F T処理部5に通知する。
The rhythm irregularity detection unit 4 detects the QRS complex immediately before the heartbeat falls (hereinafter referred to as postQ) from the output of the QRSR3 ratio detection.
The appearance position of the QRS complex (hereinafter referred to as defecLQ RS) and the position of the QRS complex (hereinafter referred to as defecLQ RS) are detected, and the F
The FT processing unit 5 is notified.

FFT処理部5では、A/D変換部2の出力である心電
図データに対しFFT処理を行う。このFFT処理部5
におけるFFT処理を行う範囲Xは、リズム不整検出部
の出力であるpostQ RSとdefeetQ RS
の位置から夫々60ミリ秒離れた点を終点とし、300
”!1秒の範囲について256ボイン1〜のFFT処理
を行い、postQ RSの振幅特性AP (n)(n
=0.1,2. ・−255> 、postQR8の位
相特性θp (n)(n=0.1.2−・・255 )
 、defectQRsの振幅特性Ad(n)(n−0
,1,2,=−255)及びdefectQ RSの位
相特性θd (n)(n=0.1,2.−255)が求
められる。
The FFT processing section 5 performs FFT processing on the electrocardiogram data output from the A/D conversion section 2. This FFT processing section 5
The range X in which FFT processing is performed in
The end point is a point 60 milliseconds away from the position of 300
”! Perform FFT processing of 256 boins 1 to 1 second for the range of 1 second, and calculate the amplitude characteristics of postQ RS AP (n) (n
=0.1,2.・-255>, phase characteristic θp (n) of postQR8 (n=0.1.2-・255)
, the amplitude characteristics of defectQRs Ad(n)(n-0
, 1, 2, = -255) and the phase characteristics θd (n) (n = 0.1, 2. -255) of the defect Q RS.

統計処理部6では、FFT処理部5の出力であるpos
tQ R,Sの位相特性θp (n)とdefectQ
 R8の位相特性θd(n)の差θp (n)θd (
n)とnに関する相関係数YO及び回帰直線θp(n)
−θd(n)=α。n+α1の係数α。、α1が算出さ
れる。但し、γ0.α0α、を求める際は、P波の周波
数帯域(4乃至8Hz)のnを使用する必要がある0本
実施例のnの上限と下限は次のように求められる。
In the statistical processing unit 6, pos which is the output of the FFT processing unit 5
tQ R,S phase characteristic θp (n) and defectQ
Difference between phase characteristics θd(n) of R8 θp (n) θd (
n) and correlation coefficient YO and regression line θp(n) regarding n
−θd(n)=α. Coefficient α of n+α1. , α1 are calculated. However, γ0. When determining α0α, it is necessary to use n in the P-wave frequency band (4 to 8 Hz).The upper and lower limits of n in this embodiment are determined as follows.

但し、62.5Hzはサンプリング周波数である。However, 62.5Hz is the sampling frequency.

診断部7では、FFT処理部5の出力であるAp(n)
、θp (n)、Ad (n)、θd(n)及び統計処
理部6の出力であるγ0.α0.α1に基づいて、2度
房室ブロックMobitzll型、2度房室ブロック1
llenckebach型及び洞房ブロックの診断を行
う、第3図は診断部7のフローチャートを示す。
In the diagnosis unit 7, Ap(n) which is the output of the FFT processing unit 5
, θp (n), Ad (n), θd(n) and γ0. which is the output of the statistical processing unit 6. α0. Based on α1, 2nd degree atrioventricular block Mobitzll type, 2nd degree atrioventricular block 1
FIG. 3 shows a flowchart of the diagnostic section 7 for diagnosing llenckebach type and sinoatrial block.

第4図(c)に示すように、洞房ブロックでは、P波及
びQRS群が共に欠落するため、第3図グ】如く、処理
SL、S2によりAd (n)がn=16乃至32につ
いて所定の設定値以下の場合に診断される。第4図(a
)に示すように、2度房室ブロックMobitZII型
は、QRS群とPR間隔が一定のままQRS群が欠落す
るため、第3図の如く処理Sl 、S3 、S4 、S
5により、n=16乃至32についてAp (n)とA
d <n)が略々等しく、かつθp(n)とθd(n)
が略々等しい場合に診断される。第4図(b)に示すよ
うに、2皮層室ブロックWenckebach型は、P
R間隔がしだいに延長しながらQRS群が欠落するため
、第3図の如く処理s、、s、、s4.S6.S7゜S
8により、γ0が1に近い値を示し、α1がOに近い値
を示し、Ap (n)とAd (n)が略々等しい場合
に診断される。
As shown in FIG. 4(c), in the sinoatrial block, both the P wave and the QRS complex are missing, so Ad(n) is set to a predetermined value for n=16 to 32 by processing SL and S2, as shown in FIG. 3(g). A diagnosis is made if the value is below the set value. Figure 4 (a
), in second-degree atrioventricular block MobitZII, the QRS complex and PR interval remain constant and the QRS complex is missing, so the treatments Sl , S3 , S4 , S
5, Ap (n) and A for n=16 to 32
d < n) are approximately equal, and θp(n) and θd(n)
The diagnosis is made when the two conditions are approximately equal. As shown in FIG. 4(b), the two-cortical chamber block Wenckebach type is P
Since the QRS complex is missing as the R interval gradually increases, the processes s, s, s4 . S6. S7゜S
8, a diagnosis is made when γ0 shows a value close to 1, α1 shows a value close to O, and Ap (n) and Ad (n) are approximately equal.

以上のように本実施例によれば、QRS群検出部3及び
リズム不整検出部4により、各心拍におけるP波近傍を
FFT処理するようにしたので、ノイズ成分がないデー
タでの解析を行うことかできる。従って、P波の有無及
び出現位置を認識した上で、心拍リズムが全く同じで、
規則的なリズムから1心拍が抜は落ちる形をとり、しか
もQR8群も変形しない2度房室ブロックMobiLz
l型、2皮層室ブロックWenckebach型及び洞
房ブロックを高精度で診断できるようになる。
As described above, according to this embodiment, the QRS complex detection section 3 and the rhythm irregularity detection section 4 perform FFT processing on the vicinity of the P wave in each heartbeat, so analysis can be performed using data free of noise components. I can do it. Therefore, after recognizing the presence or absence of P waves and their appearance position, if the heart rhythm is exactly the same,
2nd degree atrioventricular block MobiLz where one heartbeat drops from the regular rhythm and the QR8 complex does not change
Type I, Wenckebach type 2 cortical chamber block, and sinoatrial block can be diagnosed with high accuracy.

[発明の効果] 以上説明したように本発明は、FFT処理によって時系
列心電図データを周波数vA域に展開ずろことにより、
心電図信号に混入しているハム、筋電図及びドリフト等
のノ・fズ成分を容易に分離できるため、2度房室ブロ
ックMobitzll型、2皮層室ブロックWenck
ebach型及び洞房ブロックの診断を高精度で行うこ
とができるという効果がある。
[Effects of the Invention] As explained above, the present invention expands time-series electrocardiogram data into the frequency vA range by FFT processing, thereby achieving
Since it is possible to easily separate the noise components such as hum, electromyogram, and drift mixed in the electrocardiogram signal, it is possible to easily separate the noise components such as hum, electromyogram, and drift that are mixed in the electrocardiogram signal.
This method has the advantage that diagnosis of Ebach type and sinoatrial block can be performed with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の心電図信号処理装置の実施例を示すブ
ロック図、第2図は同実施例においてFFT処理範囲を
示すために引用した心電図波形の模式図、第3図は第1
図中の診断部7の構成を示すフローチャート図、第4図
は従来の技術で引用した心電図波形の模式図である。 1;心電図アンプ、2 、A/D変換部、3;QRS群
検比検出部;リズム不整検出部、5;FFT処理部、6
;統計処理部、7;診断部用願人 日本電気株式会社
FIG. 1 is a block diagram showing an embodiment of the electrocardiogram signal processing device of the present invention, FIG. 2 is a schematic diagram of an electrocardiogram waveform cited to show the FFT processing range in the same embodiment, and FIG.
A flowchart diagram showing the configuration of the diagnostic section 7 in the figure, and FIG. 4 is a schematic diagram of an electrocardiogram waveform cited in the conventional technique. 1; Electrocardiogram amplifier; 2; A/D conversion unit; 3; QRS complex ratio detection unit; rhythm irregularity detection unit; 5; FFT processing unit; 6
;Statistical Processing Department, 7;Diagnosis Department Applicant: NEC Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)心電図信号をデジタル量に変換するA/D変換手
段と、前記心電図信号におけるQRS群を検出すること
により心拍リズムの不整状態を検出する手段と、この手
段の出力に基づき前記A/D変換手段の出力のうちで各
心拍におけるP波を含む範囲の信号をFFT処理しこの
範囲内の信号の周波数振幅特性及び周波数位相特性を得
るFFT処理部と、このFFT処理部の出力に統計的処
理を施して2度房室ブロックモビッツII型、2度房室ブ
ロックベンケバッファ型及び洞房ブロックを診断する診
断手段とを具備したことを特徴とする心電図信号処理装
置。
(1) A/D conversion means for converting an electrocardiogram signal into a digital quantity; means for detecting an irregular state of heart rhythm by detecting the QRS complex in the electrocardiogram signal; and the A/D conversion means based on the output of this means. Among the outputs of the conversion means, a signal in a range including the P wave in each heartbeat is subjected to FFT processing to obtain the frequency amplitude characteristics and frequency phase characteristics of the signal within this range. 1. An electrocardiogram signal processing device comprising diagnostic means for diagnosing second-degree atrioventricular block Movitz type II, second-degree atrioventricular block Behnke buffer type, and sinoatrial block.
JP63166619A 1988-07-04 1988-07-04 Electrocardiogram signal processor Pending JPH0217034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63166619A JPH0217034A (en) 1988-07-04 1988-07-04 Electrocardiogram signal processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63166619A JPH0217034A (en) 1988-07-04 1988-07-04 Electrocardiogram signal processor

Publications (1)

Publication Number Publication Date
JPH0217034A true JPH0217034A (en) 1990-01-22

Family

ID=15834657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63166619A Pending JPH0217034A (en) 1988-07-04 1988-07-04 Electrocardiogram signal processor

Country Status (1)

Country Link
JP (1) JPH0217034A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576506A (en) * 1991-09-17 1993-03-30 Kazuji Takemoto Electrocardiograph for surface of body
JP2013518676A (en) * 2010-02-02 2013-05-23 シー・アール・バード・インコーポレーテッド Apparatus and method for locating catheter navigation and tip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576506A (en) * 1991-09-17 1993-03-30 Kazuji Takemoto Electrocardiograph for surface of body
JP2013518676A (en) * 2010-02-02 2013-05-23 シー・アール・バード・インコーポレーテッド Apparatus and method for locating catheter navigation and tip

Similar Documents

Publication Publication Date Title
US3978856A (en) Heart beat waveform monitoring apparatus
EP1363533B1 (en) Determining heart rate
US6597943B2 (en) Method of using spectral measures to distinguish among atrialfibrillation, atrial-flutter and other cardiac rhythms
US5036857A (en) Noninvasive diagnostic system for coronary artery disease
US5025784A (en) Apparatus and method for detecting and processing impedance rheogram
JPH0347098B2 (en)
WO2011015935A1 (en) Medical decision support system
WO1986001993A1 (en) Artifact detector in the measurement of living body signals
Manikandan et al. Robust heart sound activity detection in noisy environments
EP0748637A2 (en) Pacemaker pulse detection and artifact rejection
US6668189B2 (en) Method and system for measuring T-wave alternans by alignment of alternating median beats to a cubic spline
JP4841028B2 (en) Method and apparatus for automatically detecting and interpreting an electrocardiogram at a pace determined by a pacemaker
US6616608B2 (en) Periodic-physical-information measuring apparatus
US7197358B2 (en) Identifying infants at risk for sudden infant death syndrome
JP4718033B2 (en) ECG information processing apparatus and ECG information processing method
JP4528583B2 (en) Biological load inspection device
Kannathal et al. Analysis of electrocardiograms
JPH0217034A (en) Electrocardiogram signal processor
US5697378A (en) Method and apparatus for using multiple leads for QRS detection
JPH04253843A (en) Electrocardiogram analyzer
Govrin et al. Cross-correlation technique for arrythmia detection using PR and PP intervals
JPH0571249B2 (en)
Akula et al. Automation algorithm to detect and quantify Electrocardiogram waves and intervals
JPS63290544A (en) Stertor detector
Zhang et al. QRS complex detection of ECG signal by using teager energy operator