JPH0217012Y2 - - Google Patents

Info

Publication number
JPH0217012Y2
JPH0217012Y2 JP13263987U JP13263987U JPH0217012Y2 JP H0217012 Y2 JPH0217012 Y2 JP H0217012Y2 JP 13263987 U JP13263987 U JP 13263987U JP 13263987 U JP13263987 U JP 13263987U JP H0217012 Y2 JPH0217012 Y2 JP H0217012Y2
Authority
JP
Japan
Prior art keywords
solution
tank
sodium hypochlorite
generation tank
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13263987U
Other languages
Japanese (ja)
Other versions
JPS6437473U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13263987U priority Critical patent/JPH0217012Y2/ja
Publication of JPS6437473U publication Critical patent/JPS6437473U/ja
Application granted granted Critical
Publication of JPH0217012Y2 publication Critical patent/JPH0217012Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、主として食品の殺菌や消毒に用いら
れる次亜塩素酸ソーダを簡易に製造する次亜塩素
酸ソーダ発生器に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a sodium hypochlorite generator that easily produces sodium hypochlorite mainly used for sterilizing and disinfecting foods.

[従来の技術] 次亜塩素酸ソーダ発生器は、生成槽に受容され
た食塩水を電気分解して所定濃度の殺菌溶液を生
成する装置である。しかし、従来におけるこの種
の発生器は、溶液の貯蔵量が少なく、生成槽を大
きくすれば食塩水の電気分解に要する時間が長く
なる欠点がある。
[Prior Art] A sodium hypochlorite generator is a device that electrolyzes saline water received in a generation tank to generate a sterilizing solution of a predetermined concentration. However, conventional generators of this type have the drawback that the amount of solution stored is small, and the larger the generation tank, the longer the time required for electrolysis of the saline solution.

このため同出願人は、前回実願昭62−21067号
において第2図に示すような次亜塩素酸ソーダ発
生器を出願している。この発生器は、食塩水1を
受容する生成槽2、液内に浸漬された一対の電極
3,4、電磁弁5及び貯蔵タンク6から構成され
ている。従つて、生成槽2に一定量の食塩水1を
注入して電源を入れると、電極3,4により食塩
1は次式のように分解して次亜塩素酸ソーダ
(NaClO)が得られる。
For this reason, the same applicant applied for a sodium hypochlorite generator as shown in FIG. 2 in the previous Utility Application No. 1982-21067. This generator consists of a generation tank 2 that receives a saline solution 1, a pair of electrodes 3 and 4 immersed in the solution, a solenoid valve 5, and a storage tank 6. Therefore, when a certain amount of salt water 1 is injected into the generation tank 2 and the power is turned on, the salt 1 is decomposed by the electrodes 3 and 4 as shown in the following equation to obtain sodium hypochlorite (NaClO).

NaCl+H2O→NaClO+H2 また、所定濃度に達した溶液は、電磁弁5の開
放により順次貯蔵タンク6に送られて使用時まで
貯蔵される。
NaCl+H 2 O→NaClO+H 2 Furthermore, the solution that has reached a predetermined concentration is sequentially sent to the storage tank 6 by opening the solenoid valve 5 and stored until use.

[考案が解決しようとする問題点] しかし、次亜塩素酸ソーダは不安定であるため
時間と共に分解し易く、徐々にその濃度が低下す
る性質を有している。従つて、第2図の発生器の
場合、生成槽2からの新しい溶液が所定濃度を有
していても、これらが貯蔵タンク6に送られると
既に貯蔵されている低濃度の溶液と混合して溶液
全体の濃度も常時低下することになる。
[Problems to be solved by the invention] However, since sodium hypochlorite is unstable, it tends to decompose over time, and its concentration gradually decreases. Therefore, in the case of the generator of FIG. 2, even if the fresh solutions from the generation tank 2 have a given concentration, when they are sent to the storage tank 6 they mix with the already stored lower concentration solutions. Therefore, the concentration of the entire solution will always decrease.

本考案は、かかる事情に鑑みてなされたもので
あり、その目的は、貯蔵されている溶液の濃度低
下をできるだけ抑制し得る次亜塩素酸ソーダ発生
器を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a sodium hypochlorite generator that can suppress the decrease in the concentration of the stored solution as much as possible.

[問題点を解決するための手段] 上記目的を達成するため、本考案の次亜塩素酸
ソーダ発生器は、食塩水を受容する生成槽と、生
成槽内に配置され食塩水を電気分解して次亜塩素
酸ソーダを発生させる一対の電極と、生成槽に取
付けられて内部溶液を冷却する冷却手段と、生成
された溶液を貯蔵する複数の貯蔵タンクと、生成
槽からの溶液を各貯蔵タンクへ交互に送る第1切
替手段と、先に貯蔵されているタンクの溶液を優
先して排出させる第2切替手段とから構成されて
いる。
[Means for Solving the Problems] In order to achieve the above object, the sodium hypochlorite generator of the present invention includes a generation tank that receives saline water, and a generation tank that is placed in the generation tank and electrolyzes the saline water. a pair of electrodes that generate sodium hypochlorite, a cooling means that is attached to the generation tank to cool the internal solution, a plurality of storage tanks that store the generated solution, and a storage tank that stores the solution from the generation tank. It consists of a first switching means that alternately sends the solution to the tank, and a second switching means that preferentially discharges the solution stored in the tank first.

[作用] これらの構成により、まず生成槽に一定量の食
塩水を注入して電源を入れると、一対の電極に電
流が流れて食塩水の電気分解が開始される。この
間、冷却手段が生成槽内を一定温度以下に維持
し、不安定な次亜塩素酸ソーダの分解を阻止す
る。
[Operation] With these configurations, when a certain amount of saline water is first injected into the generation tank and the power is turned on, a current flows through the pair of electrodes and electrolysis of the saline water is started. During this time, the cooling means maintains the inside of the production tank below a certain temperature to prevent decomposition of the unstable sodium hypochlorite.

所定時間が経過するとタイマ等によつて電極へ
の通電が断たれ、所定濃度の殺菌溶液が生成され
る。次いで第1切替手段が作動して前回送り込ま
れた貯蔵タンクと反対側の貯蔵タンクに生成溶液
が送られ、続いて、第2切替手段が既に貯蔵され
ているタンク側の溶液を排出可能にする。
When a predetermined period of time has elapsed, the power to the electrodes is cut off by a timer or the like, and a sterilizing solution of a predetermined concentration is produced. Next, the first switching means is actuated to send the produced solution to the storage tank opposite to the storage tank to which it was previously sent, and then the second switching means allows the solution in the tank where it is already stored to be discharged. .

[実施例] 第1図、第3図及び第4図には、各々本考案が
適用された次亜塩素酸ソーダ発生器10(以下発
生器という)が示されており、第1図は貯蔵タン
ク部分の簡略図、第3図は一部切欠正面図、第4
図は縦断側面図である。
[Example] Fig. 1, Fig. 3, and Fig. 4 each show a sodium hypochlorite generator 10 (hereinafter referred to as a generator) to which the present invention is applied, and Fig. 1 shows a storage A simplified diagram of the tank part, Figure 3 is a partially cutaway front view, Figure 4 is a partially cutaway front view.
The figure is a longitudinal side view.

この発生器10は、外側がケーシング17で被
覆され、ケーシング17の右側上方に生成槽12
が収容されている。生成槽12には、食塩と清水
を混合した食塩水11が満たされており、食塩水
11中に上方から一対のチタン製電極13,14
が浸漬されている。各電極13,14は、通電さ
れると食塩水11を電気分解し、その上端がブロ
ツク18に連結されている。ブロツク18には、
横方向に延びたプラグ19が固着され、プラグ1
9を本体側のコンセント20に差込むことによつ
て電気的に接続される。
This generator 10 is covered with a casing 17 on the outside, and a generation tank 12 is provided on the upper right side of the casing 17.
is accommodated. The generation tank 12 is filled with a saline solution 11 that is a mixture of salt and fresh water, and a pair of titanium electrodes 13 and 14 are inserted into the saline solution 11 from above.
is immersed. Each electrode 13, 14 electrolyzes the saline solution 11 when energized, and its upper end is connected to a block 18. In block 18,
A laterally extending plug 19 is fixed, and the plug 1
9 into the outlet 20 on the main body side, electrical connection is established.

生成槽12の上方は、樹脂製の蓋21で閉鎖さ
れ、この蓋21の2箇所にガス抜き孔21A(第
4図)が形成されている。また、各ガス抜き孔2
1Aには、通気性の栓22が各々挿入され、この
実施例では、栓22にウレタン発泡材を用いてい
る。
The upper part of the generation tank 12 is closed with a lid 21 made of resin, and gas vent holes 21A (FIG. 4) are formed in two places in the lid 21. In addition, each gas vent hole 2
A breathable plug 22 is inserted into each of the holes 1A, and in this embodiment, the plug 22 is made of urethane foam material.

生成槽12の外側には、冷却チユーブ23が巻
装され、冷却チユーブ23は、第3図下方左側の
コンプレツサ24及び凝縮器25に接続されてい
る。従つて、コンプレツサ24が作動すると、冷
却チユーブ23内の冷媒が循環移動して生成槽1
2及び食塩水11を冷却する。冷媒が吸収した熱
は、凝縮器25と送風機26(第4図)によつて
外部に排出される。また、生成槽12の外側は、
発泡ウレタン等の断熱材27で被覆され、内外の
熱移動が阻止されるようになつている。
A cooling tube 23 is wound around the outside of the generation tank 12, and the cooling tube 23 is connected to a compressor 24 and a condenser 25 on the lower left side in FIG. Therefore, when the compressor 24 operates, the refrigerant in the cooling tube 23 circulates and moves to the generation tank 1.
2 and the saline solution 11 are cooled. The heat absorbed by the refrigerant is discharged to the outside by a condenser 25 and a blower 26 (FIG. 4). Moreover, the outside of the generation tank 12 is
It is covered with a heat insulating material 27 such as urethane foam to prevent heat transfer inside and outside.

生成槽12の底部には、継手28、パイプ29
及び第1三方弁30から出た2本のパイプ31
A,31Bが各々貯蔵タンク32A,32Bに接
続されている。また、貯蔵タンク32A,32B
の底部から延びた各パイプ33A,33Bは、第
2三方弁34で合流し、1本のパイプ35となつ
て蛇口36に接続されている。
A joint 28 and a pipe 29 are provided at the bottom of the generation tank 12.
and two pipes 31 coming out of the first three-way valve 30
A and 31B are connected to storage tanks 32A and 32B, respectively. In addition, storage tanks 32A, 32B
The pipes 33A and 33B extending from the bottom of the pipes join together at the second three-way valve 34 to form one pipe 35 and are connected to a faucet 36.

第1三方弁30は、生成槽12からの溶液をパ
イプ31A,31Bを通じて貯蔵タンク32A,
32Bへ交互に送り込む。また、第2三方弁34
は、パイプ33A,33Bを通じて貯蔵タンク3
2A,32Bの溶液をパイプ35へ交互に接続す
る。第1三方弁30と第2三方弁34は、互いに
反対側の通路、具体的には第1三方弁30がパイ
プ31A側を開いたときは、第2三方弁34がパ
イプ33B側を開くようになつている。
The first three-way valve 30 allows the solution from the generation tank 12 to pass through the pipes 31A, 31B to the storage tank 32A,
32B alternately. In addition, the second three-way valve 34
is connected to the storage tank 3 through pipes 33A and 33B.
Solutions 2A and 32B are connected to pipe 35 alternately. The first three-way valve 30 and the second three-way valve 34 are arranged in opposite passages, specifically, when the first three-way valve 30 opens the pipe 31A side, the second three-way valve 34 opens the pipe 33B side. It's getting old.

この実施例では、電動切替式の三方弁30,3
4を用いており、第1図に示すようにコントロー
ラ41で三方弁30,34の切替動作を制御して
いる。貯蔵タンク32A,32Bの外側には、冷
却チユーブ42が巻装され、更にその周囲は断熱
材43で被覆されて液温が一定値以下に維持され
る。
In this embodiment, electric switching type three-way valves 30, 3
As shown in FIG. 1, a controller 41 controls the switching operation of the three-way valves 30 and 34. A cooling tube 42 is wrapped around the outside of the storage tanks 32A, 32B, and its surroundings are further covered with a heat insulating material 43 to maintain the liquid temperature below a certain value.

一方、発生器10の正面上方には、第3図に示
すように操作盤37が固着され、操作盤37上に
電源スイツチ38、異常ランプ39及びタイマ1
6が設けられている。異常ランプ39は、プラグ
19の差込み不良や電流の異常があつた場合に点
灯し、タイマ16は電極13,14への通電時間
をセツトするものである。
On the other hand, an operation panel 37 is fixed to the upper front of the generator 10, as shown in FIG.
6 is provided. The abnormality lamp 39 lights up when the plug 19 is inserted incorrectly or there is an abnormality in the current, and the timer 16 sets the time for which the electrodes 13 and 14 are energized.

定電流装置15は、電源(図示せず)と各電極
13,14との間に設置され、電源電圧の変動に
関係なく常時一定の電流を電極13,14に送
る。生成槽12の下面には温度センサ40が取付
けられ。液温に応じてコンプレツサ24及び送風
機26が制御される。
The constant current device 15 is installed between a power source (not shown) and each electrode 13, 14, and always sends a constant current to the electrodes 13, 14 regardless of fluctuations in the power source voltage. A temperature sensor 40 is attached to the bottom surface of the generation tank 12. The compressor 24 and the blower 26 are controlled according to the liquid temperature.

以上のように構成された本実施例の次亜塩素酸
ソーダ発生器10は、次のように作動する。
The sodium hypochlorite generator 10 of this embodiment configured as described above operates as follows.

まず、ケーシング上方の蓋21を開けて食塩と
清水を生成槽12に入れ、よく攪拌してから電極
13,14をセツトして蓋21を閉じる。あるい
は、蓋21に取付けられた栓22を外してホツパ
(図示せず)の下端をガス抜き孔21Aに挿入し、
予め用意された食塩水11を注入してもよい。
First, the lid 21 above the casing is opened, salt and fresh water are put into the generation tank 12, and after stirring well, the electrodes 13 and 14 are set and the lid 21 is closed. Alternatively, remove the plug 22 attached to the lid 21 and insert the lower end of the hopper (not shown) into the gas vent hole 21A,
A saline solution 11 prepared in advance may be injected.

また、待機状態では、第1三方弁30が閉鎖さ
れており、生成槽12の食塩水11が何れの貯蔵
タンク32A,32Bにも流入しない。第2三方
弁34は、溶液が貯蔵されている貯蔵タンク32
B(第1図)側を開放させ、蛇口36からいつで
も溶液を取出せるようになつている。
Further, in the standby state, the first three-way valve 30 is closed, and the saline solution 11 in the generation tank 12 does not flow into either of the storage tanks 32A, 32B. The second three-way valve 34 is connected to a storage tank 32 in which the solution is stored.
The B side (FIG. 1) is opened so that the solution can be taken out from the faucet 36 at any time.

次いで、タイマ16を所定時間にセツトする
と、電源からの電流は定電流装置15で整流及び
安定化された後に各電極13,14に送られ、食
塩水11の電気分解が開始される。
Next, when the timer 16 is set to a predetermined time, the current from the power source is rectified and stabilized by the constant current device 15, and then sent to each electrode 13, 14, and electrolysis of the saline solution 11 is started.

生成槽12内の食塩水11は、電気分解によつ
て次亜塩素酸ソーダNaClOと水素ガスH2に変わ
るが、これらは不安定であるため若干の塩素系ミ
ストも発生する。このうち水素ガスは栓22の微
細孔を通じて外部に流出し、ミストは栓22の微
細孔を通れないので一部は栓22の下面に付着
し、残りははね返されて生成槽12に戻される。
The salt water 11 in the generation tank 12 is converted into sodium hypochlorite NaClO and hydrogen gas H2 by electrolysis, but since these are unstable, some chlorine mist is also generated. Of these, hydrogen gas flows out through the fine holes in the stopper 22, and since the mist cannot pass through the fine holes in the stopper 22, part of it adheres to the bottom surface of the stopper 22, and the rest is repelled and returned to the generation tank 12.

また、この発熱反応で溶液及び生成槽12の温
度が上昇すると、温度センサ40がこれを検出し
てコンプレツサ24が作動する。従つて、冷媒が
冷却チユーブ23を循環して生成槽12を冷却
し、次亜塩素酸ソーダが分解するのを抑制しなが
ら溶液の濃度が徐々に高められる。更に電源側で
電圧降下が生じても定電流装置15が電極13,
14に常時一定の電流、具体的には17〜18Aの電
流を供給するので、電気分解速度が電源電圧の変
動に影響されることがない。
Further, when the temperature of the solution and the production tank 12 rises due to this exothermic reaction, the temperature sensor 40 detects this and the compressor 24 is activated. Therefore, the refrigerant circulates through the cooling tube 23 to cool the generation tank 12, and the concentration of the solution is gradually increased while suppressing decomposition of the sodium hypochlorite. Furthermore, even if a voltage drop occurs on the power supply side, the constant current device 15
Since a constant current, specifically a current of 17 to 18 A, is always supplied to 14, the electrolysis rate is not affected by fluctuations in the power supply voltage.

この実施例では、液温を15〜16℃に維持してお
り、この状態でタイマ16を12時間に設定したと
ころ濃度約4%の次亜塩素酸ソーダ溶液が得られ
た。
In this example, the liquid temperature was maintained at 15 to 16°C, and when the timer 16 was set for 12 hours in this state, a sodium hypochlorite solution with a concentration of about 4% was obtained.

タイマ16による設定時間が経過すると、第1
図に示すようにコントローラ41から第1三方弁
30及び第2三方弁34に動作信号が送られ、第
1三方弁30がパイプ31A側を一定時間開放
し、第2三方弁34がパイプ33B側を開放す
る。従つて、貯蔵タンク32B内の溶液が排出可
能になると共に、貯蔵タンク32Aに新たな生成
溶液が貯蔵され、使用者が蛇口36(第3図)を
開けると貯蔵タンク32Bの溶液がパイプ33
B、第2三方弁34及びパイプ35を通じて放出
される。
When the time set by the timer 16 has elapsed, the first
As shown in the figure, an operation signal is sent from the controller 41 to the first three-way valve 30 and the second three-way valve 34, the first three-way valve 30 opens the pipe 31A side for a certain period of time, and the second three-way valve 34 opens the pipe 33B side. to open. Therefore, the solution in the storage tank 32B can be drained, and a newly produced solution is stored in the storage tank 32A, and when the user opens the faucet 36 (FIG. 3), the solution in the storage tank 32B flows into the pipe 33.
B, discharged through the second three-way valve 34 and pipe 35;

次に生成槽12で2度目の溶液が生成されてタ
イマ16が切れると、今度は第1三方弁30がパ
イプ31B側を一定時間開放し、第2三方弁34
がパイプ33A側を開放する。従つて、前回貯蔵
されている貯蔵タンク32A内の溶液が排出可能
となり、使用によつて減少または空になつた貯蔵
タンク32Bに新たな生成溶液が貯蔵される。
Next, when the second solution is generated in the generation tank 12 and the timer 16 expires, the first three-way valve 30 opens the pipe 31B side for a certain period of time, and the second three-way valve 34
opens the pipe 33A side. Therefore, the previously stored solution in the storage tank 32A can be discharged, and a new produced solution is stored in the storage tank 32B, which has decreased or become empty due to use.

前回の貯蔵溶液が優先的に放出されるので、一
部の溶液が長時間残つてその濃度が大きく低下し
たり、低濃度の溶液に新たな溶液が混入すること
がなくなる。また、冷却チユーブ42と断熱材4
3が貯蔵タンク32A,32Bの貯蔵溶液を一定
温度以下に保つので、次亜塩素酸ソーダの分解が
より抑えられる。
Since the previously stored solution is preferentially released, there is no possibility that a part of the solution will remain for a long time and its concentration will drop significantly, or that a new solution will not be mixed into a low concentration solution. In addition, the cooling tube 42 and the heat insulating material 4
3 keeps the storage solutions in the storage tanks 32A and 32B below a certain temperature, so decomposition of sodium hypochlorite is further suppressed.

[考案の効果] 以上詳述したように、本考案の次亜塩素酸ソー
ダ発生器は、食塩水を受容する生成槽と、生成槽
内に配置され食塩水を電気分解して次亜塩素酸ソ
ーダを発生させる一対の電極と、生成槽に取付け
られて内部溶液を冷却する冷却手段と、生成され
た溶液を貯蔵する複数のタンクと、生成槽からの
溶液を各貯蔵タンクへ交互に送る第1切替手段
と、先に貯蔵されているタンクの溶液を優先して
排出させる第2切替手段とから構成され、古い溶
液が先に排出されると共に新たな溶液が別の貯蔵
タンクに送られるので、貯蔵溶液全体の濃度低下
を抑制できる効果がある。
[Effects of the invention] As detailed above, the sodium hypochlorite generator of the present invention includes a generation tank that receives saline water, and a generation tank that electrolyzes the saline water and generates hypochlorous acid. A pair of electrodes for generating soda, a cooling means attached to the generation tank for cooling the internal solution, a plurality of tanks for storing the generated solution, and a second tank for alternately sending the solution from the generation tank to each storage tank. The storage tank is composed of a first switching means and a second switching means that preferentially discharges the solution in the tank that is stored first, and the old solution is discharged first and the new solution is sent to another storage tank. This has the effect of suppressing a decrease in the concentration of the entire storage solution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る次亜塩素酸ソーダ発生器
の簡略図、第2図は従来における同発生器の簡略
図、第3図は第1図の発生器全体を示す一部切欠
正面図、第4図は第3図−線に沿う断面図で
ある。 10……次亜塩素酸ソーダ発生器、11………
食塩水、12……生成槽、13,14……電極、
23……冷却チユーブ、32A,32B……貯蔵
タンク、30……第1三方弁、34……第2三方
弁。
Fig. 1 is a simplified diagram of the sodium hypochlorite generator according to the present invention, Fig. 2 is a simplified diagram of the conventional generator, and Fig. 3 is a partially cutaway front view showing the entire generator of Fig. 1. , FIG. 4 is a sectional view taken along the line of FIG. 3. 10……Sodium hypochlorite generator, 11……
Salt solution, 12... Generation tank, 13, 14... Electrode,
23... Cooling tube, 32A, 32B... Storage tank, 30... First three-way valve, 34... Second three-way valve.

Claims (1)

【実用新案登録請求の範囲】 (1) 食塩水を受容する生成槽と、生成槽内に配置
され食塩水を電気分解して次亜塩素酸ソーダを
発生させる一対の電極と、生成槽に取付けられ
て内部溶液を冷却する冷却手段と、生成された
溶液を貯蔵する複数の貯蔵タンクと、生成槽か
らの溶液を各貯蔵タンクへ交互に送る第1切替
手段と、先に貯蔵されているタンクの溶液を優
先して排出させる第2の切替手段と、から成る
次亜塩素酸ソーダ発生器。 (2) 第1切替手段が電動式の三方弁である実用新
案登録請求の範囲第(1)項に記載の次亜塩素酸ソ
ーダ発生器。 (3) 第2切替手段が電動式の三方弁である実用新
案登録請求の範囲第(1)項に記載の次亜塩素酸ソ
ーダ発生器。
[Scope of claim for utility model registration] (1) A generation tank that receives saline water, a pair of electrodes placed in the generation tank that electrolyzes the saline water to generate sodium hypochlorite, and a pair of electrodes that are attached to the generation tank. a cooling means for cooling the internal solution, a plurality of storage tanks for storing the generated solution, a first switching means for alternately sending the solution from the generation tank to each storage tank, and a tank in which the solution was previously stored. a second switching means for preferentially discharging the solution of the sodium hypochlorite generator. (2) The sodium hypochlorite generator according to claim (1), wherein the first switching means is an electric three-way valve. (3) The sodium hypochlorite generator according to claim (1), wherein the second switching means is an electric three-way valve.
JP13263987U 1987-08-31 1987-08-31 Expired JPH0217012Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13263987U JPH0217012Y2 (en) 1987-08-31 1987-08-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13263987U JPH0217012Y2 (en) 1987-08-31 1987-08-31

Publications (2)

Publication Number Publication Date
JPS6437473U JPS6437473U (en) 1989-03-07
JPH0217012Y2 true JPH0217012Y2 (en) 1990-05-11

Family

ID=31389788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13263987U Expired JPH0217012Y2 (en) 1987-08-31 1987-08-31

Country Status (1)

Country Link
JP (1) JPH0217012Y2 (en)

Also Published As

Publication number Publication date
JPS6437473U (en) 1989-03-07

Similar Documents

Publication Publication Date Title
US3361663A (en) Sanitizing system
US9222180B2 (en) Deodorization and sterilization apparatus
JP2013071103A (en) Electrolytic water generating device and electrolytic water generating method
JPH0217012Y2 (en)
US6869518B2 (en) Electrochemical generation of chlorine dioxide
JPH07299457A (en) Electrolyzed water producing device
JPH0217011Y2 (en)
JPH0238936Y2 (en)
KR100997011B1 (en) Spraying method of sterilized isotonic solution
JPH0238937Y2 (en)
JPH0238935Y2 (en)
JPH0217010Y2 (en)
JPH0238939Y2 (en)
JP3802815B2 (en) Sterilization and deodorization method and storage with sterilization and deodorization function
JPH0217009Y2 (en)
JPH0238938Y2 (en)
JP3906732B2 (en) Electrolyzed water generator
JP2001225074A (en) Electrolytic acidic water discharge device, electrolytic acidic water making apparatus and electrolytic acidic water making set
JPH0985250A (en) Electrolytic water preparation device
JPH0852476A (en) Superoxidized water forming device
JP2004181441A (en) Electrolytic water generator submerged in container
JP2001225071A (en) Head type electrolytic acidic water maker
CN215479921U (en) Water treatment equipment
JP3905583B2 (en) Ionized water generator with pH adjusting substance addition tank
JPH063492U (en) Electrolytic water conditioner with calcium solution tank