JPH02170019A - Volume measuring instrument - Google Patents

Volume measuring instrument

Info

Publication number
JPH02170019A
JPH02170019A JP63323548A JP32354888A JPH02170019A JP H02170019 A JPH02170019 A JP H02170019A JP 63323548 A JP63323548 A JP 63323548A JP 32354888 A JP32354888 A JP 32354888A JP H02170019 A JPH02170019 A JP H02170019A
Authority
JP
Japan
Prior art keywords
volume
container
measured
measurement
person
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63323548A
Other languages
Japanese (ja)
Inventor
Akihiko Yanaga
秋彦 彌永
Yoji Yukinari
行成 洋二
Masahiko Morikawa
森川 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&D Holon Holdings Co Ltd
Original Assignee
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&D Co Ltd filed Critical A&D Co Ltd
Priority to JP63323548A priority Critical patent/JPH02170019A/en
Publication of JPH02170019A publication Critical patent/JPH02170019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE:To calculate the fat rate of a person to be measured according to a correction value or volume when the volume of the object of measurement is calculated by arranging at least one of a height meter, a weight meter, and temperature sensors in a container which forms a resonance space and outputting their output signals to a measuring instrument main body. CONSTITUTION:The person M to be measured is put in the container which forms the resonance space and whose capacity is already known, and a speaker 5 oscillates a sound, whose resonance frequency is measured to find the capacity of the object person M. In the container, the weight meter 20, height meter 21, and temperature sensors 22a - 22c are provided and their measurement results are inputted to the measuring instrument 4. The measuring instrument 4 is utilized to calculate the capacity of the object person M for the principal purpose of measurement and also find secondary information on the fat rate, corpulence rate, etc., of the person M to be measured according to the found capacity by using the input height signal HS, temperature signal TS, and weight signal WS as correction values at the time of the calculation of the volume of the object of measurement.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は従来容積測定の困難であった対象物の容積を測
定する装置に係り、特に人体を始めとする生物体の容積
を、自然状態で、測定対象に苦痛を与えることなく、か
つ正確安全に測定する装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a device for measuring the volume of an object, which has been difficult to measure in the past. The present invention relates to a device for accurately and safely measuring objects without causing pain to the object to be measured.

〔従来の技術〕[Conventional technology]

人体の体脂肪率等、その体組成を測定する方法は何種か
あるが、このうち測定を比較的正確に行うためには、対
象となっている人体の容積を測定し、その容積から一定
の計算式を用いて体組成を求める方法が一般的に用いら
れている。
There are several methods for measuring the body composition of the human body, such as body fat percentage, but in order to make measurements relatively accurate, one must first measure the volume of the human body and use that volume to determine a certain amount. A commonly used method is to calculate body composition using the following formula:

即ち、対象(以下「人体」を例に説明する)の重量およ
びその容積を求め、その比から人体の密度を算出し、さ
らに実験により予め得た式を用いて、算出した密度から
例えば体脂肪率などの体組成を得る方法が用いられてい
る。
That is, the weight and volume of an object (hereinafter explained using a "human body" as an example) are determined, the density of the human body is calculated from the ratio, and then, using the formula obtained in advance through experiments, the calculated density is used to calculate, for example, body fat. Methods to obtain body composition such as body composition are used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上の方法を実施する際、対象物の重量、即ち体重は容
易かつ正確に測定することが可能であるが、人体容積は
、現在用いられている何れの測定方法を用いても問題が
多い。
When carrying out the above method, it is possible to easily and accurately measure the weight of the object, that is, the body weight, but there are many problems in measuring the human body volume using any of the currently used measurement methods.

人体の容積を測定する方法としては満水容器に人体を完
全に没し、溢れ出た水の量の測定(通常は溢水後、再度
容器を満水にするのに必要な補給量の測定)を行うこと
により測定する方法や、人体を吊り下げながら水に浸し
、その際測定した水中重量と大気中の重量とを比較する
ことにより浮力を求め、さらにその浮力から容積を算出
する方法等がある。しかしこらの方法は人体を水中に完
全に没する必要があったり、また水中重量の測定を正確
に行うため、水中に没する際に肺中の空気が浮力として
作用しないように可能な限り肺から息を抜く必要があっ
たり、更に測定時間も数十分に及ぶなどして、測定対象
者は過酷な状態を強いられ、かつ作業の安全性にも問題
があった。
A method of measuring the volume of a human body is to completely immerse the human body in a container full of water and measure the amount of water that overflows (usually by measuring the amount of water needed to refill the container after flooding). There are two methods: one method involves suspending a human body while immersing it in water, then determining buoyancy by comparing the measured underwater weight with the weight in the atmosphere, and then calculating the volume from that buoyancy. However, these methods require the human body to be completely submerged in the water, and in order to accurately measure the weight in the water, the lungs should be kept as low as possible to prevent the air in the lungs from acting as buoyancy when submerged in the water. The measurement subjects were forced into harsh conditions, as they had to take a breather and the measurement time took several tens of minutes, and there were also problems with the safety of the work.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は以上に示した従来技術の問題点に鑑み構成した
ものであり、ある閉じられた既知容積の空間を構成する
容器を形成し、かつその容器の閉じられた空間に対して
何等かの手段により共鳴を生じさせる手段と、閉じられ
た空間の残存容積の変化と共鳴周波数の変化との間に一
定の対応関係があることを利用して測定対象の容積を一
次情報として求め、かつこの測定した容積に基づいて体
脂肪率等、その他の二次情報を求める装置とから成る装
置である。この構成により、前記閉じられた空間に人体
等の測定対象を入れ、その空間の共鳴周波数を測定する
ことにより、人体等の対象物の容積や、体脂肪等測定し
た容積を元にして求める二次的情報を、測定対象が大気
中に存在する状態のままで測定する。
The present invention was constructed in view of the problems of the prior art shown above, and it forms a container constituting a certain closed space of known volume, and provides some kind of protection to the closed space of the container. The volume of the object to be measured is obtained as primary information by utilizing the fact that there is a certain correspondence between the means for causing resonance, the change in the residual volume of the closed space, and the change in the resonant frequency. This device consists of a device that obtains other secondary information such as body fat percentage based on the measured volume. With this configuration, by placing a measurement object such as a human body in the closed space and measuring the resonant frequency of that space, the volume of the object such as the human body and the volume of body fat etc. can be determined based on the measured volume. The following information is measured while the measurement target remains in the atmosphere.

〔作用〕[Effect]

予め容積が判明しており、かつ内部空間を外部から音響
的に隔絶し得る容器に測定対象を入れ、測定対象を収納
した状態でこの閉鎖空間に対してスピーカ等の音響発振
手段を介して音響を発振する。発振された音響は内部に
収納した測定対象の容積を除外した残存空間の容積の変
化に対応した周波数で共鳴するので、その共鳴周波数を
測定し、測定した共鳴周波数とを基にして対象物の容積
を算出する。
The object to be measured is placed in a container whose volume is known in advance and whose internal space can be acoustically isolated from the outside, and sound is transmitted to this closed space via an acoustic oscillator such as a speaker while the object is housed. oscillates. The oscillated sound resonates at a frequency that corresponds to the change in volume of the remaining space excluding the volume of the measurement object stored inside, so the resonant frequency is measured and the measurement target is determined based on the measured resonance frequency. Calculate the volume.

〔発明の技術的背景〕[Technical background of the invention]

本発明装置は以下の法則を前提として構成しであるので
、この法則を先ず説明する。
Since the apparatus of the present invention is constructed based on the following law, this law will be explained first.

ある閉じられた空間に対して、この空間と外部とを連通
ずる部分、即ち孔を形成した場合、その閉鎖空間には共
鳴現象が生じる。この現象はHelmholzの共鳴ま
たは共鳴箱として知られている。即ち、−船釣に、閉し
られた空間の容積を■。、音速をV、前記孔の断面積を
S、孔の長さを!とした場合、閉鎖空間内部に発生ずる
共鳴周波数W。
When a hole is formed in a closed space to communicate the space with the outside, a resonance phenomenon occurs in the closed space. This phenomenon is known as Helmholz resonance or resonance box. That is, - When fishing on a boat, the volume of the enclosed space is ■. , the speed of sound is V, the cross-sectional area of the hole is S, and the length of the hole is! In this case, the resonance frequency W generated inside the closed space.

との関係は次式で表すことができる。The relationship with can be expressed by the following equation.

以上の関係において、既知容積■。の閉鎖空間に対して
未知容積■8の測定対象を入れると、前記共鳴周波数W
0は変化(上昇)する。この変化した共鳴周波数をWX
とすると、WXは以下の式%式% 以上の式■および■から以下の式■を得る。
In the above relationship, the known volume■. When a measurement target of unknown volume ■8 is inserted into the closed space of , the resonant frequency W
0 changes (increases). This changed resonance frequency is WX
Then, WX is the following formula %Formula % From the above formulas (■) and (2), the following formula (■) is obtained.

即ち、上記式■から明らかなとおり測定対象の容積vX
は閉鎖空間の容積と共鳴周波数との関数として求めるこ
とができる。
That is, as is clear from the above formula (■), the volume of the measurement object vX
can be determined as a function of the volume of the closed space and the resonance frequency.

また対象物の温度(体温)等による空間部の大気温度の
変化を考慮すると前記測定対象容積■8は以下の式で表
すことができる。
Furthermore, considering the change in the atmospheric temperature of the space due to the temperature (body temperature) of the object, etc., the measurement object volume (8) can be expressed by the following equation.

ここでV。は測定対象を入れる前の閉鎖空間部の音速、
vXは測定対象を入れた後の音速を各々示す。
Here V. is the sound velocity in the closed space before placing the measurement target,
vX each indicates the sound velocity after the measurement target is included.

また大気中の音速は以下の式で表される。Also, the speed of sound in the atmosphere is expressed by the following formula.

v0=331+0.6t (m/5eC)・・・■なお
、tは摂氏(°C)で表される大気温度である。
v0=331+0.6t (m/5eC)...■Note that t is the atmospheric temperature expressed in degrees Celsius (°C).

以上に示した各式から明らかなように、一定の共鳴孔を
設けた閉鎖空間に人間等の測定対象を入れ、その測定対
象を入れる前の閉鎖空間の共鳴周波数と測定対象を入れ
た後の閉鎖空間の共鳴周波数とにより、前記式を用いて
測定対象の容積を求めることができる。
As is clear from the equations shown above, when a measurement object such as a human being is placed in a closed space with a certain resonance hole, the resonant frequency of the closed space before the measurement object is inserted and the resonance frequency after the measurement object is placed. The volume of the object to be measured can be determined using the above equation based on the resonant frequency of the closed space.

本発明は上述した法則に基づき構成した容積測定装置で
あり、従来方法では容積の正確な測定が非常に困難であ
った生物体、特に人体について容積測定を容易かつ正確
に行うようにした容積測定装置である。
The present invention is a volume measuring device constructed based on the above-mentioned law, and is capable of easily and accurately measuring the volume of biological bodies, particularly human bodies, for which accurate volume measurement has been extremely difficult with conventional methods. It is a device.

〔実施例〕〔Example〕

以下本発明の実施例を図面を参考に具体的に説明する。 Embodiments of the present invention will be specifically described below with reference to the drawings.

第1図及び第2図は本発明装置の基本構成を示す。1 and 2 show the basic configuration of the apparatus of the present invention.

図中符号1は測定対象である人体を収納する容器であり
、その構成材料は音響的遮断性の高い材料を使用する。
Reference numeral 1 in the figure is a container that houses the human body to be measured, and its constituent material uses a material with high acoustic insulation.

図示の構成の場合には厚さ約3cmの木製板材を使用し
て箱状の容器1を形成しである。各板材の接続部はパツ
キン等を介在配置して継目部における音響的遮断も十分
に行うように配慮しである。なおこの木製の板の外に、
発泡スチロール等の発泡材料から成る板状物を中心に配
置し、木製合板でこの発泡材をサンドイッチした構成等
、市販されている各種の遮音材の使用が可能である。
In the illustrated configuration, the box-shaped container 1 is formed using a wooden board with a thickness of about 3 cm. At the connection of each plate, packing or the like is interposed to ensure sufficient acoustic isolation at the joint. Besides this wooden board,
It is possible to use various commercially available sound insulating materials, such as a structure in which a plate made of a foamed material such as styrofoam is placed at the center and the foamed material is sandwiched between wooden plywood.

次に、図示の構成は測定対象である人間Mが立ったまま
入る構造となっている。図示の容器では、その大きさは
、内部空間の奥行き50cm、幅50cm、高さ180
c+nに形成しである。1aはこの構成の容器の扉、■
bは扉1aを閉めた場合に、扉の密閉性を高めるための
締め付は金具である。
Next, the illustrated configuration is such that a human being M, who is the object of measurement, can enter it while standing. The illustrated container has an internal space depth of 50 cm, width of 50 cm, and height of 180 cm.
It is formed at c+n. 1a is the door of the container with this configuration, ■
b is a metal fitting that is tightened to improve the sealing performance of the door when the door 1a is closed.

次に符号2は容器lの側壁のうちの一つに形成し、容器
内部と外部とを連通ずるようにした解放孔(以下「共鳴
孔Jと称する)であり、図示の構成の場合には孔部各辺
a及びbは各々10cm、30c+nとし、奥行きCは
5c+nに形成しである。
Next, reference numeral 2 denotes a release hole (hereinafter referred to as "resonance hole J") formed in one of the side walls of the container L to communicate the inside of the container with the outside. The sides a and b of the hole are each 10 cm and 30c+n, and the depth C is 5c+n.

3は容器内密閉空間と連通し、かつ外部空間とは音響的
に遮断された音響発振部であり、この音響発振部にはス
ピーカ5等の音響発振装置、及び場合によってはこの音
響発振装置に加えてマイクロフォン等の音響受信装置が
収納される。4はこの音響発振部内の装置と接続する容
積測定装置本体である。
3 is an acoustic oscillator that communicates with the sealed space inside the container and is acoustically isolated from the external space, and this acoustic oscillator includes an acoustic oscillator such as a speaker 5, and in some cases, an acoustic oscillator such as a speaker 5. In addition, an acoustic receiving device such as a microphone is housed. Reference numeral 4 denotes the main body of the volume measuring device, which is connected to the device in the acoustic oscillation section.

第2図は測定装置の構成の基本例を示す。FIG. 2 shows a basic example of the configuration of the measuring device.

この装置では、音響発振装置としてスピーカを用い、共
鳴が生じた場合にスピーカのインピーダンスが高くなる
ことを利用して、マイクロフォン等の音響受信装置を用
いずに共鳴周波数を測定するように構成しである。
This device uses a speaker as an acoustic oscillator, and uses the fact that the impedance of the speaker increases when resonance occurs to measure the resonant frequency without using an acoustic receiving device such as a microphone. be.

なお、この構成の外にスピーカに音響信号を印加する発
振器と、このスピーカからの音響を測定するマイクロフ
ォンとにより帰還型発振器の正帰還ループを形成し、こ
の帰還型発振器から発振される周波数を共鳴周波数とし
て計測するよう構成したり、音響印加用スピーカを共振
器とみなし、ブリッジ型発振器を構成し、このブリッジ
型発振器から発振される振動周波数を共鳴周波数として
計測するように構成したもの等が考えられる。
In addition to this configuration, a positive feedback loop of a feedback oscillator is formed by an oscillator that applies an acoustic signal to the speaker and a microphone that measures the sound from this speaker, and the frequency oscillated from this feedback oscillator is resonated. Possible configurations include a configuration in which the frequency is measured as a frequency, or a configuration in which the sound applying speaker is regarded as a resonator, a bridge type oscillator is configured, and the vibration frequency oscillated from this bridge type oscillator is measured as a resonant frequency. It will be done.

第2図に示す構成は音響発振装置であるスピーカからの
発振音響周波数を変化させながら音響を発振する一方、
その周波数変化の中でスピーカ端子の振幅が最大となっ
た状態における周波数を計測して共鳴時用波数とし、こ
の周波数から対象物の体積を算出するようにした装置の
構成を示す。
The configuration shown in FIG. 2 oscillates sound while changing the oscillation sound frequency from the speaker, which is an acoustic oscillator.
The configuration of an apparatus is shown in which the frequency at which the amplitude of the speaker terminal becomes maximum during the frequency change is measured and used as the resonance wave number, and the volume of the object is calculated from this frequency.

この構成を、装置の使用例と共に説明する。This configuration will be explained along with an example of how the device is used.

先ず容器1の密閉空間に測定対象である人間が入り、か
つ扉1aを閉め、更に締付金具1bにより扉1aを密閉
することにより、この空間を音響的に外部と遮断し、続
いてスピーカ5がら音響を発振する。この際制御回路6
からの指令により掃引回路7を介して周波数可変発振器
8によりスピーカ5に印加する発振音響周波数を順次変
化させる。一方スピーカ端子の振幅を振幅検出器9によ
り常時検出し、ピーク検出器10において最大振幅を検
出したならば制御回路6はその最大振幅時の周波数のカ
ウント指令を周波数カウンタ11に出力し、同カウンク
11はその時点に於ける周波数をカウントする。なおス
ピーカ端子の振幅の測定は、スピーカ端子の交流電圧を
振幅検出器で検出することにより実施する。振幅は共鳴
点において最大となるので、第3図の如く最大振幅D1
における周波数F、を検出し、この周波数F、即ち共鳴
周波数に基づいて演算回路12において測定対象の容積
を演算し、その結果を表示器13に表示する。
First, a person to be measured enters the sealed space of the container 1, closes the door 1a, and then seals the door 1a with the fastening fitting 1b to acoustically isolate this space from the outside. It oscillates a sound. At this time, the control circuit 6
The oscillation acoustic frequency applied to the speaker 5 is sequentially changed by the variable frequency oscillator 8 via the sweep circuit 7 in response to commands from the oscillator. On the other hand, the amplitude of the speaker terminal is constantly detected by the amplitude detector 9, and when the maximum amplitude is detected by the peak detector 10, the control circuit 6 outputs a count command for the frequency at the maximum amplitude to the frequency counter 11, 11 counts the frequency at that point. Note that the amplitude of the speaker terminal is measured by detecting the alternating current voltage of the speaker terminal with an amplitude detector. Since the amplitude is maximum at the resonance point, the maximum amplitude D1 is as shown in Fig. 3.
Based on this frequency F, that is, the resonant frequency, the arithmetic circuit 12 calculates the volume of the object to be measured, and the result is displayed on the display 13.

次に、測定対象の容積の求め方を具体的に述べる。Next, we will specifically describe how to determine the volume of the measurement target.

まず最初に、容器1内に測定対象を収納しない状態にお
ける共鳴周波数W。および容器内容積■。
First, the resonant frequency W in a state where no object to be measured is housed in the container 1. and container volume ■.

を予め求めておき、この値を測定装置本体4のメモリー
機構に記憶しておく。次に未知の容積VXの測定対象を
密閉容器1内に収納した際の共鳴周波数WX (即ち第
3図の最大振幅時の周波数F)を用いて前述の関係式 から算出する。
is determined in advance, and this value is stored in the memory mechanism of the main body 4 of the measuring device. Next, calculation is made from the above-mentioned relational expression using the resonant frequency WX (ie, the frequency F at the maximum amplitude in FIG. 3) when the object to be measured with the unknown volume VX is housed in the closed container 1.

第4図は本発明の第2の実施例を示す。FIG. 4 shows a second embodiment of the invention.

この実施例では主たる測定目的である測定対象の容積に
外に、測定した一次情報である容積に基づいて肥満率、
体脂肪率等、その他の二次情報を得ることが可能なよう
にしである。
In this example, in addition to the volume of the measurement target, which is the main purpose of measurement, the obesity rate is calculated based on the volume, which is the primary information measured.
This makes it possible to obtain other secondary information such as body fat percentage.

符号20は重量計であり、容器内に入った測定対象者M
の体重を測定する。21は身長計であり、被測定者M自
身が測定したり、または容器1の扉を閉める前に介添え
人が測定する。測定結果は、その数値を読んで、測定装
置4に操作者が入力する外、身長計21に位置センサを
設けることによりその測定結果を直接測定装置に信号出
力するようにしてもよい。22a、22b、22cは容
器1内部の各所に配置した温度センサである。測定装置
4に対してはこれら各装置から出力された身長信号H3
、温度信号TS、体重信号WSが各々出力される。測定
装置はこれらの信号を例えば測定対象の容積算出時の補
正値として用いたり、また求めた容積に基づいて被測定
者の脂肪率等、二次情報を求める際に利用する。
Reference numeral 20 is a weighing scale, in which a person M to be measured is placed in a container.
Measure the weight of the person. Reference numeral 21 denotes a height meter, which is measured by the person M himself or by an attendant before closing the door of the container 1. The measurement results may be read by an operator and input into the measurement device 4, or the height meter 21 may be provided with a position sensor to directly output the measurement results as a signal to the measurement device. 22a, 22b, and 22c are temperature sensors placed at various locations inside the container 1. The height signal H3 output from each of these devices is sent to the measuring device 4.
, temperature signal TS, and weight signal WS are output. The measuring device uses these signals, for example, as correction values when calculating the volume of the measurement object, or when obtaining secondary information such as the subject's fat percentage based on the obtained volume.

第5図を用いて第4図に示す装置の作動状態及び同装置
の変形例を説明する。
The operating state of the device shown in FIG. 4 and a modification of the device will be explained using FIG. 5.

先ず測定対象者の容積は前述の方法により算出する。こ
の際、身長計21で測定した身長信号H3、容器内温度
を測定した温度信号TSを測定装置の中処理装置30に
入力する。この場合、測定装置本体4の測定モードを被
測定者のr容積表示jから例えばr脂肪率表示」に切り
換えておくと、中央処理装置30は算出した被測定者の
容積(−次情報)を基にして、体重信号WSに基づき被
測定者の脂肪率(二次情報)を算出する。この際、デー
タベース31(図示の構成ではデータベースは装置内に
組み込まれているが、装置外部のデータベースにアクセ
スするように構成することももとより可能である)に入
力しである年齢別、性別、人種別のデータを用いて脂肪
率算出の補正値とすることにより、脂肪率算出をより正
確にすることができる。
First, the volume of the person to be measured is calculated by the method described above. At this time, a height signal H3 measured by the height meter 21 and a temperature signal TS obtained by measuring the temperature inside the container are input to the intermediate processing device 30 of the measuring device. In this case, if the measurement mode of the measuring device main body 4 is switched from the r volume display j of the subject to, for example, the r fat percentage display, the central processing unit 30 will display the calculated volume of the subject (-next information). Based on this, the subject's fat percentage (secondary information) is calculated based on the body weight signal WS. At this time, information by age, gender, and person is entered into the database 31 (in the illustrated configuration, the database is built into the device, but it is of course possible to configure the device to access a database external to the device). By using type data as a correction value for fat percentage calculation, fat percentage calculation can be made more accurate.

次に温度信号TSは主として被測定物の発熱による容器
内温度の変化に基づ(音速の変化により、容積測定精度
が低下するのを防止するために必要となるデータである
Next, the temperature signal TS is mainly based on changes in the temperature inside the container due to heat generation of the object to be measured (data necessary to prevent the volume measurement accuracy from decreasing due to changes in the speed of sound).

即ち、容器1内に何も収納しない時の温度を温度センサ
22a〜22cを用いて測定し、その測定温度をtoと
する。次に同センサにより測定対象を収納した状態の温
度を測定し、その温度をtつとすると、以下の式により
測定中の温度差による共鳴周波数の変動を補正すること
ができ、容積測定精度の低下を防止することができる。
That is, the temperature when nothing is stored in the container 1 is measured using the temperature sensors 22a to 22c, and the measured temperature is set as to. Next, use the same sensor to measure the temperature of the object to be measured, and let that temperature be t.The following equation can be used to correct the fluctuation of the resonance frequency due to the temperature difference during measurement, which reduces the volume measurement accuracy. can be prevented.

次に第5図において符号33はカセントテーブレコーダ
等の音楽発振装置である。被測定者は密閉空間内に収容
されるので、この容器に入る際に不安を感じたり、容器
入って扉を閉められ、外界から隔離された際には更に大
きな不安感を感じる可能性がある。この場合、液浸1定
者が容器に入る前から、この音楽発振器33を用いて、
前記スピーカ5を介してハックグラウンドミュージク(
BC,M)を流しておくことにより、被測定者の精神の
安定化を図ることができる。また装置の操作者はマイク
ロフォン34から、前記スピーカ5を経て被測定者に適
切な指示をあたえることができる。
Next, in FIG. 5, reference numeral 33 is a music oscillation device such as a cassette table recorder. The person to be measured is housed in a closed space, so they may feel anxious when entering the container, and they may feel even more anxious when the door is closed and they are isolated from the outside world. . In this case, the music oscillator 33 is used before the immersion person enters the container.
Hack ground music (
By flowing BC, M), it is possible to stabilize the mind of the person to be measured. Furthermore, the operator of the apparatus can give appropriate instructions to the person to be measured from the microphone 34 via the speaker 5.

このようにして準備が整ったならば、BGMのモードか
ら測定モードに切り換え、容器内に測定用音響を印加す
る。
When preparations are completed in this manner, the mode is switched from the BGM mode to the measurement mode, and measurement sound is applied inside the container.

第6図は本発明の第3の実施例を示す。FIG. 6 shows a third embodiment of the invention.

この実施例は、測定者は座位で測定可能なよう構成しで
ある。即ち符号35は座位測定用容器であり、40は被
測定者Mが腰掛ける腰掛である。
This embodiment is configured so that the measurer can take measurements in a sitting position. That is, numeral 35 is a container for measuring the sitting position, and 40 is a stool on which the person M to be measured sits.

なおこの場合、腰掛を除去した容器内部空間の容積を予
め測定しておく必要があるのは当然である。
In this case, it goes without saying that the volume of the internal space of the container from which the seat is removed must be measured in advance.

なお、座位の場合には容器の高さが低くなるので天井部
に扉35aを形成した方が被測定者の出入りは容易であ
る。また36は共鳴孔である。
Note that when the subject is in a sitting position, the height of the container is low, so it is easier for the subject to enter and exit if a door 35a is formed on the ceiling. Further, 36 is a resonance hole.

第7図は第4の実施例を示す。FIG. 7 shows a fourth embodiment.

この実施例では被測定者Mは寝た状態で測定しし得るよ
う容器が形成しである。
In this embodiment, the container is formed so that the measurement can be performed while the person M is lying down.

37は容器本体であり、図示の構成では脚41によりや
や斜めに配置され、内部の被測定者Mに無理がかからな
いようになっている。37aは容器37の扉、38はこ
の扉37aに形成した共鳴孔である。
Reference numeral 37 denotes a container body, which in the illustrated configuration is arranged slightly diagonally by legs 41 so as not to put strain on the person M inside. 37a is a door of the container 37, and 38 is a resonance hole formed in this door 37a.

その他図示しないが、容器をサウナ風呂として利用する
よう構成し、被測定者がサウナ風呂に入浴中に容積体脂
肪等の測定が可能なようにすることもできる。
Although not shown in the drawings, the container may be configured to be used as a sauna bath, so that volumetric body fat and the like can be measured while the person being measured takes a sauna bath.

以上測定対象を人体として本発明の詳細な説明したが、
もとより測定対象を人体に限定する趣旨ではなく、本発
明装置を用いることにより動物や、各種の物体等、測定
対象を限定することなく、殆どの対象に対して利用可能
である。
The present invention has been described in detail above with the human body as the measurement target.
Of course, it is not intended to limit the measurement target to the human body, but by using the device of the present invention, it can be used for almost any target, such as animals and various objects, without limiting the measurement target.

〔効果〕〔effect〕

ある閉じられた既知容積の空間を構成する容器を形成し
、かつその容器の閉じられた空間に対して何等かの手段
により共鳴を生じさせる手段と、閉じられた空間の残存
容積の変化と共鳴周波数の変化との間に一定の対応関係
があることを利用して測定対象の容積を求めかつこの測
定した容積に基づいて体脂肪率等、その他の情報を求め
る装置とから成り、前記閉じられた空間に人体等の測定
対象を入れ、その空間の共鳴周波数を測定することによ
り、人体等の対象物の容積や、体脂肪等測定した容積を
元にして求める二次的情報を、測定対象が大気中に存在
する状態のままで測定する装置であるので、測定対象で
ある人体等の生物体に苦痛を与えることなく安全かつ正
確に、しかも短時間で測定対象の容積や、その容積に基
づく二次的情報を得ることができる。
A means for forming a container constituting a closed space of known volume, and generating resonance by some means in the closed space of the container, and a change in the remaining volume of the closed space and resonance. It consists of a device that determines the volume of the object to be measured by utilizing a certain correspondence relationship between the change in frequency and other information such as body fat percentage based on this measured volume. By placing an object to be measured, such as a human body, in a space and measuring the resonant frequency of that space, secondary information can be obtained based on the volume of the object, such as the human body, and the measured volume, such as body fat. This device measures the volume of the object while it is still in the atmosphere, so it can measure the volume of the object to be measured and its volume safely, accurately, and in a short period of time without causing pain to the human or other biological body being measured. You can obtain secondary information based on

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置のうち、容器の構成の詳細を示す図
、第2図の容積測定装置本体の構成例を示す回路図、第
3図はスピーカの振動周波数と振幅との関係を示す線図
、第4図は本発明の第2の実施例を示すセンサの配置状
態およびセンサ信号の系統を示す図、第5図は第4図に
示す構成の回路図、第6図は第3の実施例を示す容器断
面図、第7図は第4の実施例を示す容器断面図である。 1.35.37・・・容器 2.36.38・・・・共鳴孔 4・・・測定装置本体  5・・・スピーカH5・・・
身長測定信号  WS・・・体重測定信号  TS・・
・温度測定信号
Fig. 1 is a diagram showing the details of the configuration of the container in the device of the present invention, Fig. 2 is a circuit diagram showing an example of the configuration of the volume measuring device main body, and Fig. 3 is a diagram showing the relationship between the vibration frequency and amplitude of the speaker. 4 is a diagram showing the sensor arrangement and sensor signal system according to the second embodiment of the present invention, FIG. 5 is a circuit diagram of the configuration shown in FIG. 4, and FIG. FIG. 7 is a sectional view of a container showing the fourth embodiment. 1.35.37... Container 2.36.38... Resonance hole 4... Measuring device body 5... Speaker H5...
Height measurement signal WS...Weight measurement signal TS...
・Temperature measurement signal

Claims (5)

【特許請求の範囲】[Claims] (1)共鳴空間を形成する既知容積の容器と、この共鳴
空間に音響を印加する手段と、測定対象を収容した状態
の共鳴空間の共鳴周波数を測定する手段と、この共鳴周
波数及び測定対象を収納しない状態の共鳴空間の共鳴周
波数により、測定対象の容積を一次情報として求めるよ
う構成したことを特徴とする容積測定器装置。
(1) A container of known volume forming a resonant space, means for applying sound to the resonant space, means for measuring the resonant frequency of the resonant space containing the measurement object, and a method for measuring the resonant frequency and the measurement object. A volume measuring device characterized in that the volume of a measurement target is determined as primary information based on the resonance frequency of a resonance space in an unaccommodated state.
(2)前記容器内に、身長計、重量計、温度センサのう
ち少なくとも一つを配置し、これらの測定信号を測定装
置本体に出力するよう構成したことを特徴とする特許請
求の範囲第(2)項記載の容積測定器装置。
(2) At least one of a height meter, a weight meter, and a temperature sensor is disposed in the container, and the measurement signals thereof are output to the main body of the measuring device. 2) Volume measuring device as described in section 2).
(3)測定装置本体に対して音楽発振装置及びマイクロ
フォン等の通話装置のうち少なくとも一方を接続したこ
とを特徴とする特許請求の範囲第(1)項または第(2
)項記載の容積測定器装置。
(3) Claims (1) or (2) characterized in that at least one of a music oscillation device and a communication device such as a microphone is connected to the main body of the measuring device.
) Volume measuring device as described in paragraph 1.
(4)前記容器を、測定対象が座位で収容されるよう構
成したことを特徴とする特許請求の範囲第(1)項ない
し第(3)項の何れかに記載の容積測定器装置。
(4) The volume measuring device according to any one of claims (1) to (3), wherein the container is configured such that the object to be measured is accommodated in a sitting position.
(5)前記容器を、測定対象が寝た状態で収容されるよ
う構成したことを特徴とする特許請求の範囲第(1)項
ないし第(3)項の何れかに記載の容積測定器装置。
(5) The volume measuring device according to any one of claims (1) to (3), wherein the container is configured so that the object to be measured is accommodated in a lying state. .
JP63323548A 1988-12-23 1988-12-23 Volume measuring instrument Pending JPH02170019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63323548A JPH02170019A (en) 1988-12-23 1988-12-23 Volume measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63323548A JPH02170019A (en) 1988-12-23 1988-12-23 Volume measuring instrument

Publications (1)

Publication Number Publication Date
JPH02170019A true JPH02170019A (en) 1990-06-29

Family

ID=18155929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63323548A Pending JPH02170019A (en) 1988-12-23 1988-12-23 Volume measuring instrument

Country Status (1)

Country Link
JP (1) JPH02170019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385069A (en) * 1992-08-06 1995-01-31 Hydronautics Research, Inc. Device for determining the volume of objects using a chamber with two resonators to compensate for temperature and humidity effects
JP2002282216A (en) * 2001-03-23 2002-10-02 Osaka Gas Co Ltd Health care apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385069A (en) * 1992-08-06 1995-01-31 Hydronautics Research, Inc. Device for determining the volume of objects using a chamber with two resonators to compensate for temperature and humidity effects
JP2002282216A (en) * 2001-03-23 2002-10-02 Osaka Gas Co Ltd Health care apparatus

Similar Documents

Publication Publication Date Title
US5060506A (en) Method and apparatus for monitoring the content of binary gas mixtures
US4640130A (en) Method and apparatus for acoustically measuring the volume of an object
US8381574B2 (en) Reduction of pressure induced temperature influence on the speed of sound in a gas
Frank et al. Diffusion of neon isotopes in fused quartz
Millero et al. Speed of sound in seawater as a function of temperature and salinity at one atmosphere
EP0538360B1 (en) Method and apparatus for body volume measuring
US5385069A (en) Device for determining the volume of objects using a chamber with two resonators to compensate for temperature and humidity effects
SE7708809L (en) ELECTRONIC TEMPERATURE METHOD DEVICE
JPH0247690B2 (en)
JPH02170019A (en) Volume measuring instrument
US6079266A (en) Fluid-level measurement by dynamic excitation of a pressure- and fluid-load-sensitive diaphragm
Schwerthoeffer et al. Concentration detection in water-glucose mixtures for medical applications using ultrasonic velocity measurements
Sheng et al. Body volume and fat-free mass determinations by acoustic plethysmography
Lu et al. Parametric phase-delay estimation of sound transmitted through intact human lung
JPS57106825A (en) Recording weigh-in meter of electronic system
JPH05228148A (en) Ultrasonic transmission inspecting system
Baubin et al. Measuring forces and frequency during active compression decompression cardiopulmonary resuscitation: a device for training, research and real CPR
US20090271130A1 (en) Method for measuring suspended sediment concentration in water
JPH02170018A (en) Volume measuring method
JPH06327674A (en) Measurement method for sound velocity in tissue
JPH05223616A (en) Gas type volumeter
JPS5857693B2 (en) thermometer
JPS6344127A (en) Volumeter
JPH0951883A (en) Body fat measuring instrument
JP2001252256A (en) Adipometry and adipometer