JPH02170018A - Volume measuring method - Google Patents

Volume measuring method

Info

Publication number
JPH02170018A
JPH02170018A JP63323547A JP32354788A JPH02170018A JP H02170018 A JPH02170018 A JP H02170018A JP 63323547 A JP63323547 A JP 63323547A JP 32354788 A JP32354788 A JP 32354788A JP H02170018 A JPH02170018 A JP H02170018A
Authority
JP
Japan
Prior art keywords
volume
sound
frequency
space
speaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63323547A
Other languages
Japanese (ja)
Inventor
Akihiko Yanaga
秋彦 彌永
Yoji Yukinari
行成 洋二
Masahiko Morikawa
森川 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&D Holon Holdings Co Ltd
Original Assignee
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&D Co Ltd filed Critical A&D Co Ltd
Priority to JP63323547A priority Critical patent/JPH02170018A/en
Publication of JPH02170018A publication Critical patent/JPH02170018A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE:To measure the volume of an object such as a human body in safety while the object is present in air by putting the object of measurement in a resonance space which has a communication part for the outside formed in part of a closed space, and applying a sound into the resonance space and measuring its resonance frequency. CONSTITUTION:A hole 2 which communicates with the outside is formed in one of the side walls of a box-shaped container 1 and the resonance space is formed in the container 1. In this space, the object M such as a human body is put, the space is isolated acoustically from the outside, and an acoustic oscillating means such as a speaker 5 sends the sound into the closed space in this state. The oscillated sound resonates at a frequency corresponding to variation in the capacity of the remaining space of the closed space excluding the capacity of the object M of measurement put inside. Here, this resonance frequency is measured and the capacity of the object M is calculated from the measured resonance frequency and the capacity of the closed space. Consequently, the object such as the human body need not be put in water and the capacity is measured accurately and safely in air.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は従来容積測定の困難であった対象物の容積を測
定する方法に係り、特に人体を始めとする生物体の容積
を、自然状態で、測定対象に苦痛を与えることなく、か
つ正確に測定する方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for measuring the volume of an object, which has conventionally been difficult to measure. , and relates to a method of measuring accurately without causing pain to the object to be measured.

〔従来の技術〕[Conventional technology]

人体の体脂肪率等、その体組成を測定する方法は何種か
あるが、このうち測定を比較的正確に行うためには、対
象となっている人体の容積を測定し、その容積から一定
の計算式を用いて体組成を求める方法が一般的に用いら
れている。
There are several methods for measuring the body composition of the human body, such as body fat percentage, but in order to make measurements relatively accurate, one must first measure the volume of the human body and use that volume to determine a certain amount. A commonly used method is to calculate body composition using the following formula:

即ち、対象(以下「人体」を例に説明する)の重量およ
びその容積を求め、その比から人体の密度を算出し、さ
らに実験により予め得たを式を用いて、算出した密度か
ら例えば体脂肪率などの体組成を得る方法が用いられて
いる。
That is, the weight and volume of an object (hereinafter explained using a "human body" as an example) are determined, the density of the human body is calculated from the ratio, and the density of the human body is calculated from the calculated density using a formula obtained in advance through experiments. Methods of obtaining body composition such as fat percentage are used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上の方法を実施する際、対象物の重量即ち体重は容易
かつ正確に測定することが可能であるが、人体容積は、
現在用いられている何れの測定方法を用いても問題が多
い。
When carrying out the above method, it is possible to easily and accurately measure the weight of the object, but the human body volume is
There are many problems with any of the measurement methods currently in use.

人体の容積を測定する方法としては満水容器に人体を完
全に没し、溢れ出た水の量の測定(通常は溢水後、再度
容器を満水にするのに必要な補給量の測定)を行うこと
により測定する方法や、人体を吊り下げながら水に浸し
、その際測定した水中重量と大気中の重量とを比較する
ことにより浮力を求め、さらにその浮力から容積を算出
する方法等がある。しかしこらの方法は人体を水中に完
全に没する必要があったり、また水中重量の測定を正確
に行うため、水中に没する際に肺中の空気が浮力として
作用しないように可能な限り肺から息を抜く必要があっ
たり、更に測定時間も数十分に°及ぶなどして、測定対
象者は過酷な状態を強いられ、かつ作業の安全性にも問
題があった。
A method of measuring the volume of a human body is to completely immerse the human body in a container full of water and measure the amount of water that overflows (usually by measuring the amount of water needed to refill the container after flooding). There are two methods: one method involves suspending a human body while immersing it in water, then determining buoyancy by comparing the measured underwater weight with the weight in the atmosphere, and then calculating the volume from that buoyancy. However, these methods require the human body to be completely submerged in the water, and in order to accurately measure the weight in the water, the lungs should be kept as low as possible to prevent the air in the lungs from acting as buoyancy when submerged in the water. The measurement subjects were forced into harsh conditions, as they had to take a breather and the measurement time took several tens of minutes, and there were also problems with the safety of the work.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は以上に示した従来技術の問題点に鑑み構成した
ものであり、ある閉じられた既知容積の空間に未知容積
の対象を入れ、その閉じられた空間に対して何等かの手
段により共鳴を生じさせると、閉じられた空間の残存容
積の変化と共鳴周波数の変化との間に一定の対応関係が
あることを利用したものであり、前記閉じられた空間に
人体等の測定対象を入れ、その空間の共鳴周波数を測定
することにより、人体等の対象物の容積を大気中に存在
する状態のままで測定する方法であることを特徴とする
The present invention was constructed in view of the problems of the prior art shown above, and involves placing an object of unknown volume in a closed space of known volume, and creating resonance with the closed space by some means. This method takes advantage of the fact that there is a certain correspondence between changes in the residual volume of a closed space and changes in the resonant frequency. , is a method of measuring the volume of an object such as a human body while it is in the atmosphere by measuring the resonance frequency of the space.

〔作用〕[Effect]

予め容積の判明している空間に測定対象を入れ、その空
間を外部から音響的に隔絶し、この状態でその閉鎖空間
に対してスピーカ等の音響発振手段により音響を発振す
る。発振された音響は内部に収納した測定対象の容積を
除外した閉鎖空間の残存空間の容積の変化に対応した周
波数で共鳴するのでその共鳴周波数を測定し、測定した
共鳴周波数と、閉鎖空間の容積を基にして対象物の容積
を算出する。
A measurement object is placed in a space whose volume is known in advance, the space is acoustically isolated from the outside, and in this state, sound is oscillated in the closed space by an acoustic oscillation means such as a speaker. The oscillated sound resonates at a frequency that corresponds to the change in volume of the remaining space in the closed space excluding the volume of the measurement object stored inside, so the resonance frequency is measured and the measured resonance frequency and volume of the closed space are measured. Calculate the volume of the object based on.

〔実施例1〕 以下本発明の実施例を図面を参考に詳細に説明する。[Example 1] Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明は以下の法則を前提として構成しているので、こ
の法則を先ず説明する。
Since the present invention is constructed based on the following law, this law will be explained first.

ある閉じられた空間に対して、この空間と外部とを連通
ずる部分、即ち孔を形成した場合、その閉鎖空間には共
鳴現象が生じる。この現象はHelmholzの共鳴ま
たは共鳴箱として知られている。即ち、−船釣に、閉じ
られた空間の容積を■。、音速をV、前記孔の断面積を
S、孔の長さを℃とした場合、閉鎖空間内部に発生する
共鳴周波数W0との関係は次式で表すことができる。
When a hole is formed in a closed space to communicate the space with the outside, a resonance phenomenon occurs in the closed space. This phenomenon is known as Helmholz resonance or resonance box. That is, - For boat fishing, the volume of the enclosed space is ■. , the speed of sound is V, the cross-sectional area of the hole is S, and the length of the hole is C., the relationship with the resonance frequency W0 generated inside the closed space can be expressed by the following equation.

以上の関係において、既知容積■。の閉鎖空間に対して
未知容積■8の測定対象を入れると、前記共鳴周波数W
0は変化(上昇)する。この変化した共鳴周波数をWX
とすると、WXは以下の式で表すことができる。
In the above relationship, the known volume■. When a measurement target of unknown volume ■8 is inserted into the closed space of , the resonant frequency W
0 changes (increases). This changed resonance frequency is WX
Then, WX can be expressed by the following formula.

以上の式■および■から以下の弐〇を得る。From the above equations ■ and ■, we obtain the following 2〇.

即ち、上記式〇から明らかなとおり測定対象の容積■8
は閉鎖空間の容積と共鳴周波数との関数として求めるこ
とができる。
That is, as is clear from the above formula 〇, the volume of the measurement object ■8
can be determined as a function of the volume of the closed space and the resonance frequency.

また対象物の温度(体温)等による空間部の大気温度の
変化を考慮すると前記測定対象容積VXは以下の式で表
すことができる。
Further, considering the change in the atmospheric temperature of the space due to the temperature (body temperature) of the object, etc., the measurement object volume VX can be expressed by the following equation.

ここでvoは測定対象を入れる前の閉鎖空間部の音速、
vXは測定対象を入れた後の音速を各々示す。
Here, vo is the sound velocity in the closed space before the measurement target is placed in it,
vX each indicates the sound velocity after the measurement target is included.

また大気中の音速は以下の式で表される。Also, the speed of sound in the atmosphere is expressed by the following formula.

Vo=331+0.6t、  (m/5ec)・・・■
なお、tは摂氏(°C)で表される大気温度である。
Vo=331+0.6t, (m/5ec)...■
Note that t is the atmospheric temperature expressed in degrees Celsius (°C).

以上に示した各式から明らがなように、一定の共鳴孔を
設けた閉鎖空間に人間等の測定対象を入れ、その測定対
象を入れる前の閉鎖空間の共鳴周波数と測定対象を入れ
た後の閉鎖空間の共鳴周波数とにより、前記式を用いて
測定対象の容積を求めることができる。
As is clear from the equations shown above, a measurement object such as a human being is placed in a closed space with a certain resonance hole, and the resonant frequency of the closed space before the measurement object is inserted and the measurement object is entered. The volume of the object to be measured can be determined using the above equation based on the resonance frequency of the closed space.

本発明は上述した法則を、従来方法では容積の正確な測
定が非常に困難であった生物体、特に人体について容積
測定を容易かつ正確に行うために応用した容積測定方法
である。
The present invention is a volume measurement method in which the above-mentioned law is applied to easily and accurately measure the volume of biological bodies, particularly human bodies, for which it has been extremely difficult to accurately measure volume using conventional methods.

以下本発明の実施例を図面を参考に具体的に説明する。Embodiments of the present invention will be specifically described below with reference to the drawings.

第1図は本発明方法を実施する装置の概略を示す。FIG. 1 schematically shows an apparatus for carrying out the method of the invention.

1は測定対象である人体を収納する容器であり、その構
成材料は音響的遮断性の高い材料を使用する。図示の構
成の場合には厚さ約30T11の木製板材を使用して箱
状の容器1を形成しである。各板材の接続部はパツキン
等を介在配置して継目部における音響的遮断も十分に行
うように配慮しである。
Reference numeral 1 denotes a container that houses the human body to be measured, and its constituent material uses a material with high acoustic insulation. In the illustrated configuration, the box-shaped container 1 is formed using a wooden board with a thickness of approximately 30T11. At the connection of each plate, packing or the like is interposed to ensure sufficient acoustic isolation at the joint.

また容器の大きさは測定対象である人間Mが立ったまま
入れる程度の大きさに形成しておく。図示の容器では、
内部空間の奥行き50cm、幅50cm、高さ180c
mに形成しである。1aはこの構成の容器の扉である。
Further, the size of the container is made so that the person M to be measured can enter it while standing. In the illustrated container,
Internal space depth 50cm, width 50cm, height 180cm
It is formed in m. 1a is the door of the container having this configuration.

次に符号2は容器1の側壁のうちの一つに形成し、容器
内部と外部とを連通ずるようにした解放孔であり、図示
の構成の場合には孔部各辺a及びbは各々10cm、 
30cmとし、奥行きCは5cmに形成しである。
Next, reference numeral 2 denotes a release hole formed in one of the side walls of the container 1 so as to communicate the inside of the container with the outside. 10cm,
The length is 30 cm, and the depth C is 5 cm.

3は容器内密閉空間と連通し、かつ外部空間とは音響的
に遮断された音響発振部であり、この音響発振部にはス
ピーカ等の音響発振装置、及び場合によってはこの音響
発振装置に加えてマイクロフォン等の音響受信装置が収
納される。4はこの音響発振部内の装置と接続する容積
測定装置である。
3 is an acoustic oscillator that communicates with the sealed space inside the container and is acoustically isolated from the external space, and this acoustic oscillator includes an acoustic oscillator such as a speaker, and in some cases, an acoustic oscillator in addition to the acoustic oscillator. A sound receiving device such as a microphone is housed in the space. Reference numeral 4 denotes a volume measuring device connected to the device inside this acoustic oscillator.

第2図は測定方法の一例を示す。FIG. 2 shows an example of the measurement method.

この方法は、音響発振装置としてスピーカを用い、共鳴
が生じた場合にスピーカのインピーダンスが高くなるこ
とを利用して、マイクロフォン等の音響受信装置を用い
ずに共鳴周波数を測定する方法である。
This method uses a speaker as an acoustic oscillator and uses the fact that the impedance of the speaker increases when resonance occurs to measure the resonant frequency without using an acoustic receiver such as a microphone.

この方法は音響発振装置であるスピーカからの発振音響
周波数を変化させながら音響を発振する一方、その周波
数変化の中でスピーカ端子の振幅が最大となった状態に
おける周波数を計測して共鳴時用波数とし、この周波数
から対象物の体積を算出する。
This method oscillates sound while changing the oscillation sound frequency from a speaker, which is an acoustic oscillator, and measures the frequency at which the amplitude of the speaker terminal is maximum during the frequency change, and then measures the frequency at which resonance occurs. Then, the volume of the object is calculated from this frequency.

即ち、容器1の密閉空間に測定対象である人間が入り、
かつ扉1aを閉めて同空間を音響的に外部と遮断したな
らば、スピーカ5がら音響を発振する。この際制御回路
6がらの指令により掃引回路7を介して周波数可変発振
器8によりスピーカ5に印加する発振音響周波数を順次
変化させる。
That is, when a person to be measured enters the closed space of the container 1,
When the door 1a is closed and the space is acoustically isolated from the outside, the speaker 5 emits sound. At this time, the oscillation acoustic frequency applied to the speaker 5 is sequentially changed by the variable frequency oscillator 8 via the sweep circuit 7 according to a command from the control circuit 6 .

一方スピーカ端子の振幅を振幅検出器9により常時検出
し、ピーク検出器1oにおいて最大振幅を検出したなら
ば制御回路6はその最大振幅時の周波数のカウント指令
を周波数カウンタ11に出ヵし、同カウンタ11はその
時点に於ける周波数をカウントする。なおスピーカ端子
の振幅の測定は、スピーカ端子の交流電圧を振幅検出器
で検出することにより実施する。振幅は共鳴点において
最大となるので、第3図の如く最大振幅り、における周
波数F、を検出し、この周波数F、に基づいて演算回路
12において測定対象の容積を演算し、その結果を表示
器13に表示する。
On the other hand, the amplitude of the speaker terminal is constantly detected by the amplitude detector 9, and when the maximum amplitude is detected by the peak detector 1o, the control circuit 6 outputs a count command for the frequency at the maximum amplitude to the frequency counter 11, and Counter 11 counts the frequency at that point. Note that the amplitude of the speaker terminal is measured by detecting the alternating current voltage of the speaker terminal with an amplitude detector. Since the amplitude is maximum at the resonance point, the frequency F at the maximum amplitude is detected as shown in Fig. 3, the volume of the measurement object is calculated in the calculation circuit 12 based on this frequency F, and the result is displayed. Display on the container 13.

次に、測定対象の容積の求め方を具体的に述べる。Next, we will specifically describe how to determine the volume of the measurement target.

まず最初に、容器1内に測定対象を収納しない状態にお
ける共鳴周波数W。および容器内容積■。
First, the resonant frequency W in a state where no object to be measured is housed in the container 1. and container volume ■.

を予め求めておき、この値を測定装置4のメモリー機構
に記憶しておく。次に未知の容積■8の測定対象を密閉
容器1内に収納した際の共鳴周波数WX (即ち第3図
の最大振幅時の周波数F、)を用いて前述の関係式 から算出する。
is determined in advance, and this value is stored in the memory mechanism of the measuring device 4. Next, calculation is made from the above-mentioned relational expression using the resonant frequency WX (ie, the frequency F at the maximum amplitude in FIG. 3) when the object to be measured with the unknown volume 8 is housed in the closed container 1.

〔実施例2〕 更に他の条件も含めてより精密に測定する場合には次の
方法による。
[Example 2] In the case of more precise measurement including other conditions, the following method is used.

即ち、容器1内に測定対象を収納しない状態における共
鳴周波数W。、既知容積■5の物体の共鳴周波数W、、
を求めておき、これらから下記式を用いて閉鎖空間の容
積■。を求める。
That is, the resonant frequency W in a state where no object to be measured is housed in the container 1. , Resonance frequency W of an object with known volume ■5, ,
Calculate the volume of the closed space using the formula below. seek.

■。■.

はつぎのとおりである。is as follows.

即ち、閉鎖空間の容積は、立方体等、空間の各辺を計測
し、その計測結果から算出できる場合でも、測定誤差お
よび壁面を構成する部材の歪み等のため計算によっては
必ずしも正確な容積を求めることはできないこと、およ
び閉鎖空間を構成する壁面の少なくとも一部が曲面とな
っている場合にはこの方法では正確な容積を求めること
は事実上できないためである。これに対して上述の式に
よりもとめる方法は装置の分解能を高めれば非常に正確
に容積を求めることが可能である。
In other words, even if the volume of a closed space can be calculated from the measurement results by measuring each side of the space, such as a cube, it is not always possible to obtain an accurate volume by calculation due to measurement errors and distortions of the members that make up the walls. This is because it is impossible to obtain an accurate volume using this method if at least a portion of the wall surface constituting the closed space is a curved surface. On the other hand, the method of determining the volume using the above-mentioned formula allows the volume to be determined very accurately if the resolution of the device is increased.

以上の点から下記式■により測定対象の容積を求める。From the above points, calculate the volume of the object to be measured using the following formula (■).

なお、以上の方法を具体的な装置で操作する場合として
は次のような操作方法が考えられる。
In addition, when operating the above method using a specific device, the following operation method can be considered.

まず測定対象を収納しない状態で零キャリブレーション
スイッチを押し、容器1内に測定対象を収納しない状態
における共鳴周波数W0を自動的に測定し、その結果を
装置のメモリに記憶する。
First, the zero calibration switch is pressed with no object to be measured stored in the container 1, and the resonant frequency W0 is automatically measured with no object to be measured in the container 1, and the result is stored in the memory of the apparatus.

次に、既知容積(例えば容積50j2)の物体を前記容
器1に収納し、この状態でキャリブレーションスイッチ
を押す。これにより前記既知容積の物体の共鳴周波数W
、、をメモリに記憶させ、以後は同装置が前記手順によ
り共鳴容器の体積■。を算出する。続いて測定対象を容
器1内に入れ、前記手順を自動的に行うことにより測定
対象の容積を求める。
Next, an object with a known volume (for example, volume 50j2) is placed in the container 1, and in this state, the calibration switch is pressed. As a result, the resonant frequency W of the object of known volume
, , are stored in the memory, and thereafter the device calculates the volume of the resonant container by following the above procedure. Calculate. Subsequently, the object to be measured is placed in the container 1, and the volume of the object to be measured is determined by automatically performing the above procedure.

なお、測定対象が生体等の内部発熱物体である場合や、
測定対象の温度が室温と相違している場合には密閉空間
内の温度変化に基づく音速の変化により共鳴周波数に変
動が生じる。従ってより正確に測定する場合にはこの温
度変化も考慮する必要がある。
In addition, when the measurement target is an internal heat generating object such as a living body,
If the temperature of the object to be measured is different from room temperature, the resonant frequency will fluctuate due to a change in the speed of sound based on the temperature change in the closed space. Therefore, for more accurate measurements, it is necessary to take this temperature change into account.

温度測定のうち最も簡単な方法としては前記容器内に温
度針を配置し、この測定結果を補正値として用いる方法
がある。しかし容器内の温度分布は均一ではないので、
測定点が少ない場合には対象物の容積測定精度を却って
低下させてしまう可能性もある。従って発明者らは次の
方法を実施することにより容器内の平均温度を測定し、
好結果を得た。
The simplest method of temperature measurement is to place a temperature needle inside the container and use the measurement result as a correction value. However, the temperature distribution inside the container is not uniform, so
If the number of measurement points is small, there is a possibility that the accuracy of measuring the volume of the object will be reduced. Therefore, the inventors measured the average temperature inside the container by implementing the following method,
Good results were obtained.

即ち、前記容器1の天井部に小型のスピーカ5を配置し
、このスピーカ配置面に対向する容器床面にマイクロフ
ォンを配置することにより、スピーカからの発振時とマ
イクロフォンの受信時との時間差から容器内の音速を測
定して容器内の平均化した音速を求めるようにしている
That is, by placing a small speaker 5 on the ceiling of the container 1 and placing a microphone on the floor of the container opposite to the speaker placement surface, the time difference between the time of oscillation from the speaker and the time of reception from the microphone can be avoided. The average sound speed inside the container is determined by measuring the sound speed inside the container.

以上の方法では閉鎖空間内になにも収納しない時の温度
を1.測定対象を収納した状態の温度をtXとすると、
以下の式により測定中の温度差による共鳴周波数の変動
を補正することができる。
In the above method, the temperature when nothing is stored in the closed space is 1. If the temperature when the measurement target is stored is tX,
Fluctuations in resonance frequency due to temperature differences during measurement can be corrected using the following equation.

表 なお温度センサ(ザーミスタ等)を用いる場合には、配
置個数や配置位置を工夫することにより容器内の正確な
温度分布を測定し、この温度分布から比較的正確な平均
温度を求めることは可能である。
Note that when using temperature sensors (thermistors, etc.), it is possible to accurately measure the temperature distribution inside the container by adjusting the number and position of the sensors, and to obtain a relatively accurate average temperature from this temperature distribution. It is.

〔試験1〕 発明者等は既知容積(25j2)の対象物を前記容器1
内に順次収納することよりこれら対象物の容積と、その
際の共鳴周波数を測定した。その結果を以下の表に示す
[Test 1] The inventors placed an object of known volume (25j2) in the container 1.
The volumes of these objects and their resonance frequencies were measured by sequentially storing them in the chamber. The results are shown in the table below.

ここで、上記表のうちA欄は「密閉空間における対象物
の容積」をB欄は対象物収容時の共鳴周波数を各々示す
Here, in the above table, column A shows the "volume of the object in the closed space" and column B shows the resonant frequency when the object is accommodated.

以上の点を、1ogWとIlog (Vo  Vx )
の対数関係のグラフを描くと傾き1/2の良好な直線関
係が得られた。
The above points are 1ogW and Ilog (Vo Vx)
When a graph of the logarithmic relationship was drawn, a good linear relationship with a slope of 1/2 was obtained.

〔試験2〕 男女合わせて6人に付き第1図に示すに構成の装置を用
いて各々その体積を測定した。測定した結果は以下の表
に示すが、測定対象者のうち何人かにつき従来の方法(
前述した如く測定に時間がかかり、かつ測定対象者には
少なからぬ苦痛を与えるが、測定精度は比較的高いこと
が確認されている)により容積測定を行ったが、この結
果と、本発明方法を用いた結果とはほぼ同一となり、本
発明測定方法の正確さが確認された。
[Test 2] The volume of each of six men and women was measured using the apparatus shown in FIG. 1. The measurement results are shown in the table below, but some of the subjects were tested using the conventional method (
As mentioned above, although it takes time to measure and causes considerable pain to the person to be measured, it has been confirmed that the measurement accuracy is relatively high.This result and the method of the present invention The results were almost the same as those obtained using the method, confirming the accuracy of the measurement method of the present invention.

表    2 〔実施例2〕 第4図は第2の実施例を示す。Table 2 [Example 2] FIG. 4 shows a second embodiment.

この実施例では、帰還型発振器の正帰還ループ内に共鳴
周波数測定回路を接続することより共鳴周波数を測定す
るように構成しである。
This embodiment is configured to measure the resonant frequency by connecting a resonant frequency measuring circuit within the positive feedback loop of the feedback oscillator.

この構成の場合にはスピーカ5を音響発振源としてその
音をマイクロフォン14でピックアンプし、帰還型発振
器15を構成する。この構成の場合には帰還型発振器1
5は結局共鳴周波数で音響発振することになるので、そ
の周波数を共鳴周波数として直接周波数カウンタ11で
カウントすることができる。
In this configuration, the speaker 5 is used as an acoustic oscillation source, and the sound is pick-amplified by the microphone 14 to form a feedback oscillator 15. In this configuration, the feedback oscillator 1
5 ends up causing acoustic oscillation at the resonant frequency, so that frequency can be directly counted by the frequency counter 11 as the resonant frequency.

〔実施例3〕 第5図は第3の実施例を示す。[Example 3] FIG. 5 shows a third embodiment.

この構成では加振用スピーカ5をLC共振器とみなし、
図示の如くブリッジ型発振器を構成する。
In this configuration, the excitation speaker 5 is regarded as an LC resonator,
A bridge type oscillator is constructed as shown in the figure.

この回路構成も前記第2の実施例と同様、共鳴周波数で
発振することになるので、その発振周波数を周波数カウ
ンタ11でカウントすることにより直接共鳴周波数を測
定することができる。
Like the second embodiment, this circuit configuration also oscillates at the resonant frequency, so by counting the oscillation frequency with the frequency counter 11, the resonant frequency can be directly measured.

〔試験3〕 出願人等は第1図に示す容器1におけるスピーカの位置
及び共鳴孔2の位置と、共鳴状態との関係を試験した。
[Test 3] Applicants tested the relationship between the position of the speaker and the position of the resonance hole 2 in the container 1 shown in FIG. 1, and the resonance state.

なお、この場合、容器1内の音場が均一で、かつ共鳴時
の容器内共鳴が定常波発生以下の最大共鳴周波数となる
ようスピーカと共鳴孔の位置を各々設定することが望ま
しい。なお試験の際、スピーカの位置は容器1の側壁及
び天井B 部および床部のいずれでも実施可能であることは確認し
たが、この試験ではスピーカ3の位置は容器1の天井面
とし、この天井面に固定し、共鳴孔2の位置を、側壁上
部(符号Aで示す)、側壁中央部(符号Bで示す)、床
面(符号Cで示す)の3個所とし、各位WA−Cの何れ
かに共鳴孔を配置した状態で、容器高さ方向に於ける音
響レベルを測定した。
In this case, it is desirable to set the positions of the speaker and the resonance hole so that the sound field inside the container 1 is uniform and the resonance inside the container at the time of resonance has a maximum resonant frequency below the generation of a standing wave. During the test, it was confirmed that the speaker could be placed on the side wall of container 1, on the ceiling B, or on the floor. However, in this test, the speaker 3 was placed on the ceiling of container 1, and The resonance hole 2 is fixed to the surface at three locations: the upper part of the side wall (indicated by the symbol A), the center part of the side wall (indicated by the symbol B), and the floor surface (indicated by the symbol C). The sound level in the height direction of the container was measured with the resonance hole placed in the container.

第7図は容器内に人体を収納しない状態での各共鳴孔位
置における音響レベルの変化を、また第8図は人体を収
納した状態での音響レベルの変化を各々示す。第7図の
如く人体を収納しない状態ではBの位置に共鳴孔を配置
した構成が、容器内の位置に係わりく平均した音響レベ
ルとなっており、良好な結果を得ることができた。しか
し人体を収納した際には、このBの位置では第8図に示
すようにその測定位置によって音響レベルは大きく変動
してしまった。これに対してAの位置に配置した場合に
は測定値に係わりなくほぼ等しい音響レベルであった。
FIG. 7 shows the change in the sound level at each resonance hole position with no human body accommodated in the container, and FIG. 8 shows the change in the sound level with the human body accommodated in the container. As shown in FIG. 7, when no human body is housed, the configuration in which the resonance hole is placed at position B has an average sound level regardless of the position within the container, and good results were obtained. However, when the human body was stored, the sound level at position B varied greatly depending on the measurement position, as shown in FIG. On the other hand, when placed at position A, the sound level was almost the same regardless of the measured value.

なお、Cの位置では人体の収納の如何に係わりなく音響
レベルの変動が大きく良好な結果は得られなかった。こ
の試験結果から共鳴孔の位置はAの位置で示されるよう
に容器高さ方向において、その開口位置が測定者のほぼ
頭の位置あたりが好適であることが分かった。また、共
鳴孔を複数個設けても、スピーカを複数個設けても問題
が生じないことも確認した。
Note that at position C, the sound level fluctuated greatly regardless of how the human body was stored, and good results could not be obtained. From the results of this test, it was found that the opening position of the resonance hole in the height direction of the container, as shown by position A, is preferably approximately at the position of the head of the person being measured. It was also confirmed that no problem would occur even if a plurality of resonance holes were provided or a plurality of speakers were provided.

以上本発明の構成を測定対象を人体を例として説明した
が、もとよりこれに限定する趣旨ではなく、動物や、各
種の物体等、測定対象を限定することなく利用可能であ
る。
Although the configuration of the present invention has been described above using the human body as an example of the measurement target, it is not intended to be limited to this, and the present invention can be applied to animals, various objects, etc. without limitation.

また本発明方法は、主として測定対象の容積を測定する
ことにあるが、測定した容積をもとに、例えば測定対象
の脂肪率、比重等の2次的なデータを得ることができる
のは当然である。
Furthermore, although the method of the present invention mainly measures the volume of the object to be measured, it is of course possible to obtain secondary data such as the fat percentage and specific gravity of the object to be measured based on the measured volume. It is.

〔効果〕〔effect〕

本発明は以上詳細に説明したように、ある閉じられた既
知容積の空間に未知容積の対象を入れ、その閉じられた
空間に対して何等かの手段により共鳴を生じさせると、
閉じられた空間の残存容積の変化と共鳴周波数の変化に
一定の対応関係があることを利用し、前記閉じられた空
間に人体等の測定対象を入れ、その空間の共鳴周波数を
測定することにより、人体等の対象物の容積を大気中に
存在する状態のままで測定することが可能となったので
、測定対象である人体等の生物体に苦痛をあたえること
なく安全かつ正確に、しかも短時間で測定対象の容積を
測定することができる。
As explained in detail above, the present invention provides the following effects: When an object of unknown volume is placed in a closed space of known volume and resonance is caused in the closed space by some means,
Taking advantage of the fact that there is a certain correspondence between changes in the residual volume of a closed space and changes in the resonant frequency, by placing a measurement object such as a human body in the closed space and measuring the resonant frequency of that space. , it has become possible to measure the volume of an object such as a human body while it is still in the atmosphere, so it can be done safely, accurately, and quickly without causing pain to the living body being measured. The volume of the object to be measured can be measured in terms of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る方法を実施するための装置の斜視
図、第2図は容積測定用の回路を回路の一例を示す図、
第3図はスピーカ端子の振幅と振動周波数との関係を示
す線図、第4図は第2の実施例方法を実施するための装
置回路図、第5図は第3の実施例方法を実施するだめの
装置回路図、第6図は容器に対する共鳴孔の配置関係を
示す容器斜視図、第7図は人体を収容しない状態におけ
る共鳴容器の各位置での容器高さ方向の音響レベルの変
化を示す線図、第8図は人体収容時の共鳴容器の各位置
での容器高さ方向の音響レベルの変化を示す線図である
。 1・・・容器  2・・・共鳴孔 4・・・容積測定装置  5・・・スピーカ11・・・
周波数カウンタ  14・・・マイクロフォン  15
・・・帰J■型発振器嘱 今腎 撃
FIG. 1 is a perspective view of an apparatus for carrying out the method according to the present invention, FIG. 2 is a diagram showing an example of a circuit for volume measurement,
Fig. 3 is a diagram showing the relationship between the amplitude of the speaker terminal and the vibration frequency, Fig. 4 is a circuit diagram of a device for implementing the method of the second embodiment, and Fig. 5 is a diagram for implementing the method of the third embodiment. Figure 6 is a perspective view of the container showing the arrangement of the resonant holes relative to the container, and Figure 7 is the change in sound level in the height direction of the resonant container at each position in the resonant container when no human body is accommodated. FIG. 8 is a diagram showing changes in the sound level in the container height direction at each position of the resonant container when a human body is accommodated. 1... Container 2... Resonance hole 4... Volume measuring device 5... Speaker 11...
Frequency counter 14...Microphone 15
・・・Return J■ type oscillator Kakinakiki

Claims (6)

【特許請求の範囲】[Claims] (1)密閉空間の一部に外部との連通部を形成すること
により、この空間を共鳴空間とし、この共鳴空間に対し
て人体等の測定対象を収容し、かつこの状態で共鳴空間
内に音響を印加することにより測定対象収容時の共鳴周
波数を測定し、この共鳴周波数に基づき測定対象の容積
を求めることを特徴とする容積測定方法。
(1) By forming a communication part with the outside in a part of the sealed space, this space is made into a resonant space, and a measuring object such as a human body is accommodated in this resonant space, and the object to be measured, such as a human body, is placed inside the resonant space in this state. A volume measuring method characterized by measuring a resonant frequency when a measuring object is accommodated by applying sound, and determining the volume of the measuring object based on this resonant frequency.
(2)前記音響を印加する装置をスピーカとし、かつこ
のスピーカに対する加振周波数を可変とし、更にスピー
カ端子におけるインダクタンスを測定し、このインダク
タンスが最大となった時点における周波数を計測して前
記共鳴周波数とすることを特徴とする特許請求の範囲第
(1)項記載の容積測定方法。
(2) Use the device that applies the sound as a speaker, make the excitation frequency for this speaker variable, further measure the inductance at the speaker terminal, measure the frequency at the time when this inductance reaches the maximum, and calculate the resonance frequency. A volume measuring method according to claim (1), characterized in that:
(3)スピーカに加振用電流を印加する発振器と、この
スピーカから発振された音響を測定するマイクロフォン
とにより帰還型発振器の正帰還ループを形成し、この帰
還型発振器から発振される周波数を共鳴周波数として計
測することを特徴とする特許請求の範囲第(1)項記載
の容積測定方法。
(3) A positive feedback loop of a feedback oscillator is formed by an oscillator that applies excitation current to the speaker and a microphone that measures the sound emitted from this speaker, and the frequency oscillated from this feedback oscillator resonates. The volume measuring method according to claim (1), characterized in that the volume is measured as a frequency.
(4)音響印加用のスピーカを共振器とみなして、ブリ
ッジ型発振器を構成し、このブリッジ型発振器から発振
される振動周波数を共鳴周波数として計測することを特
徴とする特許請求の範囲第(1)項記載の容積測定方法
(4) A bridge-type oscillator is constructed by regarding a speaker for applying sound as a resonator, and the vibration frequency oscillated from the bridge-type oscillator is measured as a resonance frequency. Volume measurement method described in ).
(5)測定対象収納時の共鳴空間の温度変化を測定し、
この変化した温度条件下に於ける共鳴空間内の音速を求
め、この音速を測定対象の容積演算時の補正値として用
いることを特徴とする特許請求の範囲第(1)項ないし
第(4)項の何れかに記載の容積測定方法。
(5) Measure the temperature change in the resonant space when the measurement object is stored,
Claims (1) to (4) characterized in that the speed of sound in the resonant space under this changed temperature condition is determined and this speed of sound is used as a correction value when calculating the volume of the measurement object. Volume measurement method according to any of the paragraphs.
(6)スピーカ等の音響発振源から既知の距離において
発振音響を受信し、音響発振時と受信時の時間差を測定
し、その時間差により共鳴空間内の平均温度および/ま
たは音速を求めることを特徴とする特許請求の範囲第(
5)項記載の容積測定方法。
(6) Receive oscillated sound at a known distance from an acoustic oscillation source such as a speaker, measure the time difference between the time of sound oscillation and reception, and determine the average temperature and/or sound speed in the resonant space from the time difference. The scope of claim No. (
Volume measurement method described in section 5).
JP63323547A 1988-12-23 1988-12-23 Volume measuring method Pending JPH02170018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63323547A JPH02170018A (en) 1988-12-23 1988-12-23 Volume measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63323547A JPH02170018A (en) 1988-12-23 1988-12-23 Volume measuring method

Publications (1)

Publication Number Publication Date
JPH02170018A true JPH02170018A (en) 1990-06-29

Family

ID=18155917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63323547A Pending JPH02170018A (en) 1988-12-23 1988-12-23 Volume measuring method

Country Status (1)

Country Link
JP (1) JPH02170018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7310999B2 (en) 2005-09-16 2007-12-25 Greg Miller Body volume measurement apparatus and method of measuring the body volume of a person

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7310999B2 (en) 2005-09-16 2007-12-25 Greg Miller Body volume measurement apparatus and method of measuring the body volume of a person

Similar Documents

Publication Publication Date Title
US3220258A (en) Sensing the presence or absence of material
Carstensen Measurement of dispersion of velocity of sound in liquids
US4235099A (en) Ultrasonic apparatus and method for measuring the density of liquid
US5043707A (en) Level indicator for liquid reservoirs
US4640130A (en) Method and apparatus for acoustically measuring the volume of an object
JP2011509123A5 (en)
US5210718A (en) Calibration of seismic streamers in a helmholz resonator
US8652552B2 (en) Apparatus and a method for estimating the air humidity within an oven cavity
KR20010090704A (en) Measuring the speed of sound of a gas
US4329875A (en) Ultra sensitive liquid level detector and method
US5824892A (en) Acoustic device for measuring volume difference
JPH02170018A (en) Volume measuring method
JP2012013692A (en) Precise measuring method for density of sample
US3028749A (en) Ultrasonic fluid density measuring system
JP7390664B2 (en) Volume measuring device and volume measuring method
JPS5915837A (en) Viscosity measuring apparatus for high temperature fluid
JP2009109296A (en) Ultrasonic liquid level meter
KR19980044099A (en) Ultrasonic Sound Pressure Gauge in Cleaning Tank
Quadt et al. Response of an oscillating superleak transducer to a pointlike heat source
JPS6067839A (en) Cylinder vibration type density meter
GB1202281A (en) Improvements in or relating to testing apparatus for gases
JPS6117286B2 (en)
RU2163361C1 (en) Method determining time constants of mechanical and electromechanical oscillatory systems with presence of two integrating amplifiers in measurement circuit
JPH02161323A (en) Mass measuring instrument
SU590608A1 (en) Acoustic level meter