JPH02169541A - Production of racemic chrysanthemum-monocaboxylic acids - Google Patents

Production of racemic chrysanthemum-monocaboxylic acids

Info

Publication number
JPH02169541A
JPH02169541A JP63324485A JP32448588A JPH02169541A JP H02169541 A JPH02169541 A JP H02169541A JP 63324485 A JP63324485 A JP 63324485A JP 32448588 A JP32448588 A JP 32448588A JP H02169541 A JPH02169541 A JP H02169541A
Authority
JP
Japan
Prior art keywords
oxygen
chrysanthemum
hydrogen bromide
acids
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63324485A
Other languages
Japanese (ja)
Other versions
JP2600354B2 (en
Inventor
Koju Hagitani
弘寿 萩谷
Masami Fukao
正美 深尾
Hiroko Sakane
坂根 寛子
Takeo Suzukamo
鈴鴨 剛夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP63324485A priority Critical patent/JP2600354B2/en
Publication of JPH02169541A publication Critical patent/JPH02169541A/en
Application granted granted Critical
Publication of JP2600354B2 publication Critical patent/JP2600354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To efficiently obtain the objective compounds in the same manner as that in the case of a coexisting assistant, such as peroxide or azo compound, by the coexistence of a specific amount of oxygen in a reaction system for reacting optically active chrysanthemum-monocarboxylic acids with hydrogen bromide and producing the corresponding racemic modification. CONSTITUTION:Optically active chrysanthemum-monocarboxylic acids expressed by the formula (R is H, 1-20C alkyl, cycloalkyl or aralkyl; * indicates asymmetric carbon) are reacted with hydrogen bromide to provide the corresponding racemic modification. In the process, the above-mentioned reaction is carried out in the presence of oxygen and the total molar amount of the oxygen is simultaneously >=1/70, preferably (1/150)-(1/2) based on the chrysanthemum- monocarboxylic acids. Thereby, the objective compounds useful as a raw material for pyrethroid-based insecticides are industrially and advantageously obtained. Not only the hydrogen bromide which is normally used as an industrial raw material and readily handleable for moisture, etc., can be utilized but also inexpensive and easily handleable oxygen or air can be used in place of the afore-mentioned assistant by the above-mentioned method.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は第−菊酸類のラセミ化方法に関し、詳(式中、
Rは水素原子、炭素数1〜20のアルキル基、シクロア
ルキル基またはアラルキル基を表わし、*は不斉炭素を
表わす、) で示される光学活性な菊酸類に臭化水素を作用せしめて
対応するラセミ体を製造する方法において、酸素の共存
下に実施し、全酸素使用量が菊酸類に対して1 /17
0モル倍以上であることを特徴とするラセミ菊酸類の製
造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for racemizing chrysanthemum acids,
R represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group, or an aralkyl group, and * represents an asymmetric carbon. In a method for producing a racemate, it is carried out in the presence of oxygen, and the total amount of oxygen used is 1/17 compared to chrysanthemum acids.
The present invention relates to a method for producing racemic chrysanthemum acids, characterized in that the amount is 0 times or more by mole.

〈従来の技術・発明が解決しようとする課題〉第−菊酸
は、低毒速効性殺虫剤としてを用なピレトリン、アレス
リン、フタルスリンなどのいわゆるピレスロイド系殺虫
剤としてよく知られているエステル類の酸成分を構成す
るものであり、前記−数式(1)で示される菊酸類は、
これらのピレスロイド系殺虫剤の原料として有用である
<Prior art/problems to be solved by the invention> Chrysanthemum acid is a compound of esters that are well known as pyrethroid insecticides such as pyrethrin, allethrin, and phthalthrin, which are used as low-toxicity and fast-acting insecticides. The chrysanthemum acids that constitute the acid component and are represented by the above-mentioned formula (1) are:
It is useful as a raw material for these pyrethroid insecticides.

前記一般式(1)で示される菊酸類にはシス、トランス
の幾何異性体があり、またその各々に(+)および(−
)の光学異性体があることから、合計4種の異性体が存
在する。一般に、これらの異性体の中、トランス体から
導びかれるピレスロイド系のエステルぼけ対応するシス
体から導びかれるピレスロイド系エステル類よりも強い
殺虫活性を示し、さらに(+)体のエステル類が対応す
る(=)体のエステル類よりも遥かに高い活性を示すこ
とが知られている。
The chrysanthemum acids represented by the general formula (1) have cis and trans geometric isomers, and each of them has (+) and (-
), there are a total of 4 types of isomers. Generally, among these isomers, the pyrethroid esters derived from the trans isomer exhibit stronger insecticidal activity than the corresponding pyrethroid esters derived from the cis isomer, and the (+) esters also exhibit stronger insecticidal activity than the corresponding pyrethroid esters derived from the cis isomer. It is known that it exhibits much higher activity than the (=) form of esters.

菊酸は通常シス体、トランス体の混合したラセミ体、即
ち(±)体として製造され、これを光学活性な有機塩基
を用いて光学分割することにより(+)体が得られ、よ
り高活性な殺虫性化合物の製造に使用されている。ここ
で光学分割された残りの(−)体には、そのピレスロイ
ド系のエステルとしての活性が殆んどなく、従ってこの
無効な(−)体を効率よくラセミ化し、上記の光学分割
の原料として供し得るようにすることは、特に工業的規
模での(+)体の生産時においては大きな課題となる。
Chrysanthemum acid is usually produced as a racemic mixture of cis and trans forms, that is, the (±) form, and by optically resolving this using an optically active organic base, the (+) form can be obtained, resulting in higher activity. used in the production of insecticidal compounds. The remaining (-) isomer optically resolved here has almost no activity as a pyrethroid ester, so this ineffective (-) isomer can be efficiently racemized and used as a raw material for the above optical resolution. This poses a major challenge, especially when producing (+) bodies on an industrial scale.

しかしながら、前記のように、一般式(Nで示されるシ
クロプロパンカルボン酸にはC1位とC1位に2個の不
斉炭素を有するため、そのラセミ化には種々の困難を伴
なう。
However, as mentioned above, since the cyclopropanecarboxylic acid represented by the general formula (N) has two asymmetric carbon atoms at the C1 and C1 positions, its racemization is accompanied by various difficulties.

これ迄、菊酸類のラセミ化方法としては(−)−トラン
ス菊酸のC3位のイソブテニル基を酸化してケトアルコ
ール基に導いた後、01位のカルボン酸をエステル化し
、これをアルカリ金属アルコレートと溶媒の存在下に加
熱反応させる方法(特公昭39−15977号公報)、
あるいは(−)−トランス菊酸を光増感剤の存在下に紫
外線を照射する方法(特公昭47−30697号公報)
が知られているが、前者は多くの反応工程を要すること
、また後者は反応率が劣るうえ光源の電力消費量が大き
く、また光源の寿命も比較的短いことなど工業的に実施
するには種々の問題点を有する。
Until now, the racemization method for chrysanthemum acids has been to oxidize the isobutenyl group at the C3 position of (-)-trans chrysanthemum acid to form a keto alcohol group, then esterify the carboxylic acid at the 01 position, and convert this into an alkali metal alcohol group. A heating reaction method in the presence of a rate and a solvent (Japanese Patent Publication No. 39-15977),
Alternatively, a method of irradiating (-)-trans chrysanthemum acid with ultraviolet rays in the presence of a photosensitizer (Japanese Patent Publication No. 30697/1983)
However, the former requires many reaction steps, and the latter has an inferior reaction rate, high power consumption of the light source, and a relatively short lifespan of the light source, making it difficult to implement industrially. It has various problems.

本発明者らはラセミ体を製造する方法として、先に、光
学活性菊酸を酸ハライドとして、これにルイス酸を触媒
として作用させる方法(特公昭53−37858号公報
、特公昭61−8048号公報)、光学活性なシクロプ
ロパンカルボン酸の無水物にヨウ素を作用させる方法(
特開昭57−163341号公報)、菊酸に臭化ホウ素
あるいは臭化アルミという特殊な触媒を作用させる方法
(特開昭60−174744 、61−5045号公報
)および菊酸に臭化水素を、それ単独もしくは過酸化物
、アゾ化合物の共存下に作用させる方法(特願昭62−
164802号)等を提案している。
The present inventors have proposed a method for producing a racemate, in which optically active chrysanthemum acid is first used as an acid halide, and a Lewis acid is made to act on this as a catalyst (Japanese Patent Publication No. 53-37858, Japanese Patent Publication No. 61-8048). (publication), a method in which iodine acts on an anhydride of optically active cyclopropanecarboxylic acid (
JP-A-57-163341), a method in which a special catalyst such as boron bromide or aluminum bromide is applied to chrysanthemum acid (JP-A-60-174744, JP-A-61-5045), and a method in which hydrogen bromide is applied to chrysanthemum acid. , a method in which it acts alone or in the coexistence of a peroxide or an azo compound (Patent application 1986-
164802), etc.

本発明者らはその後、臭化水素を作用させることによる
ラセミ菊酸類の製造方法について、さらに詳細に検討を
重ねた結果、特定量の酸素を共存せしめれば、意外にも
過酸化物、アゾ化合物等を共存させた場合と同様に効率
良くラセミ化反応が進行することを見出し、更に種々の
検討を加えて本発明を完成した。
The present inventors subsequently conducted further detailed studies on the method for producing racemic chrysanthemum acids by the action of hydrogen bromide, and found that if a specific amount of oxygen is allowed to coexist, peroxides, azozoic acids, etc. They discovered that the racemization reaction proceeded as efficiently as in the case of the coexistence of compounds, etc., and completed the present invention after further various studies.

<IJIBを解決するための手段〉 すなわち本発明は一般式(1) %式% (式中、Rは水素原子、炭素数1〜20のアルキル基、
シクロアルキル基またはアラルキル基を表わし、*は不
斉炭素を表わす、) で示される光学活性な菊酸類に臭化水素を作用せしめて
対応するラセミ体を製造する方法において、酸素の共存
下に実施し、全酸素使用量が菊酸類に対して1 /17
0モル倍以上であることを特徴とする工業的に極めて優
れたラセミ菊酸類の製造方法・を提供するものである。
<Means for solving IJIB> That is, the present invention is based on the general formula (1) % formula % (wherein R is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms,
Represents a cycloalkyl group or an aralkyl group, and * represents an asymmetric carbon.) A method for producing the corresponding racemate by reacting hydrogen bromide with an optically active chrysanthemum acid represented by However, the total amount of oxygen used is 1/17 compared to chrysanthemum acids.
The purpose of the present invention is to provide an industrially excellent method for producing racemic chrysanthemum acids, which is characterized in that the amount is 0 times or more by mole.

以下に本発明方法について詳細に説明する。The method of the present invention will be explained in detail below.

本発明の原料である一般式(1)で示される光学活性菊
酸類としては、例えば第−菊酸、第−菊酸メチル、第−
菊酸エチル、第−菊酸ブロビル、第−菊酸ブチル、第−
菊酸シクロヘキシル、第−菊酸シクロヘキシルメチル、
第−菊酸ベンジル等の光学活性体が挙げられる。
Examples of the optically active chrysanthemum acids represented by the general formula (1), which are the raw materials of the present invention, include st-chrysanthemum acid, methyl chrysanthemum acid, st-chrysanthemum acid,
Ethyl chrysanthemum, brobyl chrysantherate, butyl chrysantherate, di-
Cyclohexyl chrysanthemum acid, cyclohexylmethyl chrysanthemum acid,
Examples include optically active substances such as benzyl chrysanthemum acid.

菊酸類にはそれぞれ4種の異性体が存在するが、その中
のill単独、またはこれらの任意の割合の混合物を用
いることができ、また光学純度はどの程度のものでも差
しつかえないが、本発明の目的から考えて(−)体また
は(−)体に冨むカルボン酸類を用いる時に、その意義
を発揮することは言うまでもない。
Chrysanthemum acids each have four types of isomers, and ill alone or a mixture of these in any proportion can be used, and any degree of optical purity may be used. It goes without saying that, considering the purpose of the invention, its significance is exhibited when using carboxylic acids in the (-) form or in the (-) form.

本発明で使用される臭化水素はガス状であっても、溶媒
に溶解したものであっても良く、場合によっては臭化リ
チウム、臭化ナトリウム、臭化カリウムなどの臭化物と
硫酸等の酸を用いて反応系内で発生させたものであって
も良い。
The hydrogen bromide used in the present invention may be in a gaseous state or dissolved in a solvent, and in some cases, bromides such as lithium bromide, sodium bromide, potassium bromide, etc. and acids such as sulfuric acid may be used. It may be generated within the reaction system using.

その使用量は被処理菊酸類1モルに対し通常1/100
0〜!15モルの範囲である。臭化水素の溶媒としては
ラセミ化反応を阻害しないものであれば良く、例えばカ
ルボン酸類、飽和炭化水素、芳香族炭化水素、ハロゲン
化飽和炭化水素、ハロゲン化芳香族炭化水素類などの有
機溶媒および水などを挙げることができる。
The amount used is usually 1/100 per mole of chrysanthemum acids to be treated.
0~! The range is 15 moles. The solvent for hydrogen bromide may be any solvent that does not inhibit the racemization reaction, such as organic solvents such as carboxylic acids, saturated hydrocarbons, aromatic hydrocarbons, halogenated saturated hydrocarbons, and halogenated aromatic hydrocarbons; Examples include water.

本発明は酸素の共存下に臭化水素を作用させることを特
徴とするものであるが、酸素そのものの他に空気を用い
ることもできる。また窒素等の不活性ガスで希釈して用
いることもできる。酸素は被処理菊酸に対して1 /1
70モル倍以上用いることにより、ラセミ化を効率良く
進行させることができる。大気に対し開放系でも良好な
結果が得られるが、1 /150〜1/2モル倍の酸素
を用いことが好ましい。
The present invention is characterized in that hydrogen bromide is applied in the presence of oxygen, but air can also be used in addition to oxygen itself. It can also be used after being diluted with an inert gas such as nitrogen. Oxygen is 1/1 to the chrysanthemum acid to be treated.
By using 70 moles or more, racemization can proceed efficiently. Although good results can be obtained in a system open to the atmosphere, it is preferable to use 1/150 to 1/2 mole of oxygen.

また、反応を行なうに際しては不活性溶媒を使用するこ
とが好ましく、そのような溶媒としては飽和炭化水素、
芳香族炭化水素及びこれらのハロゲン化物などを挙げる
ことができる。
In addition, it is preferable to use an inert solvent when carrying out the reaction, and such solvents include saturated hydrocarbons,
Examples include aromatic hydrocarbons and halides thereof.

反応温度は一り0℃〜当該菊酸類の沸点(溶媒を使用す
る場合は用いる溶媒の沸点)の範囲で任意であるが、通
常−20℃〜100℃の範囲である。
The reaction temperature is arbitrary within the range of 0°C to the boiling point of the chrysanthemum acids (if a solvent is used, the boiling point of the solvent used), but is usually in the range of -20°C to 100°C.

反応に要する時間は前記臭化水素および酸素の使用量や
反応温度によっても変わり得るが通常数分〜lO時間ク
ンで充分その目的を達成することができる。
The time required for the reaction may vary depending on the amounts of hydrogen bromide and oxygen used and the reaction temperature, but usually several minutes to 10 hours is sufficient to achieve the purpose.

本発明方法を実施するに際しては、通常、所定量の酸素
を含む雰囲気下、もしくはあらかじめ所定量の酸素を含
む様に調製された気体の流通下、溶媒と被処理菊酸類と
の混合物に臭化水素を加える。
When carrying out the method of the present invention, the mixture of the solvent and the chrysanthemum acids to be treated is usually brominated in an atmosphere containing a predetermined amount of oxygen, or under the flow of a gas prepared in advance to contain a predetermined amount of oxygen. Add hydrogen.

ここで、反応系中の酸素分圧は、通常反応溶媒の爆発限
界外となる様に安全性を考慮するとともに容積効率等を
考慮して決定される。−数的には3〜10%が好ましい
Here, the oxygen partial pressure in the reaction system is usually determined in consideration of safety and volumetric efficiency so that it is outside the explosive limit of the reaction solvent. -Numerically, 3 to 10% is preferable.

また、臭化水素として臭化水素酸水溶液を使用し、反応
溶媒として水と相溶性のない有機溶媒、例えば、芳香族
炭化水素等を用いる場合には、水への溶解度が大きくか
つ反応を阻害しない無機塩等を反応系中に存在させるこ
とにより、目的反応をより円滑に進行させることができ
る。かかる無機塩としては、例えば臭化リチウム、塩化
リチウム、臭化カルシウム、塩化カルシウム、臭化マグ
ネシウム、塩化マグネシウム、硫酸マグネシウム、五酸
化リン等が挙げられる。更に、臭化水素酸水溶液に水と
相溶性があり、臭化水素に不活性な有機溶媒、例えば酢
酸、ジオキサン等を混合することにより、−層円滑に目
的反応を進行させることができる。
In addition, when using an aqueous solution of hydrobromic acid as hydrogen bromide and using an organic solvent that is incompatible with water, such as an aromatic hydrocarbon, as the reaction solvent, the solubility in water is high and the reaction is inhibited. By allowing the presence of an inorganic salt or the like in the reaction system, the desired reaction can proceed more smoothly. Examples of such inorganic salts include lithium bromide, lithium chloride, calcium bromide, calcium chloride, magnesium bromide, magnesium chloride, magnesium sulfate, phosphorus pentoxide, and the like. Furthermore, by mixing an aqueous solution of hydrobromic acid with an inert organic solvent such as acetic acid or dioxane, which is compatible with water and hydrogen bromide, the desired reaction can proceed smoothly.

尚反応の進行度は反応液の一部をサンプリングして旋光
度を測定するかガスクロマトグラフィー等による分析で
求めることができる。
The degree of progress of the reaction can be determined by sampling a portion of the reaction solution and measuring the optical rotation, or by analysis using gas chromatography or the like.

上記のようにして得られるラセ、ミ化された第−菊酸類
は種々のピレスロイドアルコールとのエステル化反応に
より殺虫性エステルに導くこともできる。
The racemic acid derivatives obtained as described above can also be converted into insecticidal esters by esterification reaction with various pyrethroid alcohols.

〈発明の効果〉 かくして第−菊酸類のラセミ体が製造されるが、本発明
方法によれば、工業原料としてより一般的で、しかも水
分等に対しても安定で取扱いが容易な臭化水素を利用で
きるのみならず、過酸化物、アゾ化合物等の助剤に代え
て、安価で取扱いが容易な酸素や空気を用いることがで
き、殊に工業的な実施時において有利になる。
<Effects of the Invention> In this way, the racemic form of chrysanthemum acids is produced, but according to the method of the present invention, hydrogen bromide, which is more common as an industrial raw material, is stable against moisture, etc., and is easy to handle. Not only can oxygen and air be used instead of auxiliary agents such as peroxides and azo compounds, but oxygen and air, which are inexpensive and easy to handle, can be used, which is particularly advantageous in industrial implementation.

更に、本発明によれば、池の誘導体に導くことなしに、
光学活性第−菊酸そのもの、あるいはそのエステルのま
までラセミ化させることができることから極めて有利で
あり、さらに種りの光学分割法によって分離除去される
期成類、例えば光学分割剤を用いる物理化学的分割法に
より分離される無効な(−)第−期成、あるいは酵素等
による生化学的分割法において分離除去される(−)−
第一菊酸エステルなどを直接、効率よく前動利用するこ
とが可能となる。
Furthermore, according to the invention, without leading to pond derivatives,
It is extremely advantageous because optically active Chrysanthemum acid itself or its ester can be racemized as it is, and furthermore, it can be separated and removed by various optical resolution methods, such as physical chemistry using optical resolution agents. Invalid (-) phase formation separated by physical resolution method, or (-)- separated and removed by biochemical resolution method using enzymes, etc.
It becomes possible to directly and efficiently utilize primary chrysanthemum acid esters and the like.

また、本発明方法において得られるラセミ体は、より有
効なトランス体に冨み、この点においても本発明方法は
有利である。
Furthermore, the racemate obtained by the method of the present invention is rich in more effective trans isomers, and the method of the present invention is advantageous in this respect as well.

〈実施例〉 次に、実施例によって、本発明をさらに詳細に説明する
が、本発明は何らこれらに限定されるものではない。
<Examples> Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1 20°C下、約10(ldの滴下管つきフラスコに、左
旋性第−期成((+)−シス体=2.3%、(−)−シ
ス体: 16.8%、(+)−トランス体: 11.3
%、(−)−)ランス体: 69.6%からなる)Lo
gとトルエン15gを入れた。フラスコの空間部はLo
ojlJ!であった。
Example 1 At 20°C, in a flask with a dropping tube of about 10 ld, levorotatory phase-formation ((+)-cis isomer = 2.3%, (-)-cis isomer: 16.8%, (+)-trans form: 11.3
%, (-)-) lance form: Consisting of 69.6%) Lo
g and 15 g of toluene were added. The space of the flask is Lo
ojlJ! Met.

次いで、空間部を空気と窒素とから調製した混合ガス(
酸素と窒素のモル比−1=9)で充分置換した後、フラ
スコ内が常に大気圧になるように窒素で保圧しながら、
同温度で撹拌下、25%臭化水素−酢酸溶液1.35g
とトルエン7.5gからなる溶液を30分で滴下した0
滴下後の酸素と窒素のモル比は0.8 + 99.2で
あった。
Next, the space is filled with a mixed gas prepared from air and nitrogen (
After sufficiently replacing the flask with a molar ratio of oxygen and nitrogen (-1 = 9), while maintaining the pressure with nitrogen so that the inside of the flask is always at atmospheric pressure,
1.35 g of 25% hydrogen bromide-acetic acid solution under stirring at the same temperature.
A solution consisting of 0 and 7.5 g of toluene was added dropwise over 30 minutes.
The molar ratio of oxygen to nitrogen after dropping was 0.8 + 99.2.

滴下後、希塩酸を加えて撹拌、分液後、有81層を29
gの10%カセイソーダ水溶液を加えて抽出した。得ら
れた水層に希硫酸を加え酸性にした後、トルエンで2回
抽出し、トルエン層を水洗、溶媒留去、残留液を蒸留す
ることにより、沸点110〜119℃/ 2 、5 m
 Hgの留分986gを得た。
After dropping, add dilute hydrochloric acid, stir, and separate the layers.
g of 10% aqueous caustic soda solution was added thereto for extraction. After making the resulting aqueous layer acidic by adding dilute sulfuric acid, it was extracted twice with toluene, the toluene layer was washed with water, the solvent was distilled off, and the residual liquid was distilled to give a boiling point of 110 to 119°C/2.5 m
986 g of Hg fraction was obtained.

このものは赤外線吸収スペクトルより期成であることを
確認した。 この一部をサンプリングしく+)−2−オ
クタツールとのエステルに導いた後、ガスクロマトグラ
フィーによりその光学異性体比率を求めたところ(+)
−シス体:2.2%、(=)−シス体:2.4%、(+
) −)ランス体:46.3%、(−)−)ランス体:
 49.1%であった。
It was confirmed from the infrared absorption spectrum that this product was a synthetic product. After sampling a portion of this and converting it into an ester with -2-octatool, the optical isomer ratio was determined by gas chromatography (+)
-cis form: 2.2%, (=) -cis form: 2.4%, (+
) -) Lance body: 46.3%, (-)-) Lance body:
It was 49.1%.

施例2 実施例1において、混合ガスの代わりに窒素を用いる以
外は実施例1と同様に行い、9.5gの第−期成を得た
0反応後の酸素と窒素のモル比は3:97であった。
Example 2 Example 1 was carried out in the same manner as in Example 1 except that nitrogen was used instead of the mixed gas, and the molar ratio of oxygen and nitrogen was 3: It was 97.

光学異性体比は、(+)−シス体:2.2%、(−)−
シス体:2.1%、(+)−トランス体:46.7%、
(−)−)ランス体: 49.0%であった。
The optical isomer ratio is (+)-cis: 2.2%, (-)-
Cis form: 2.1%, (+)-trans form: 46.7%,
(-)-) lance form: 49.0%.

実施例3 実施例2において、補圧を窒素の代わりに酸素で行う以
外は、実施例2と同様に行うた。光学異性体比は、(+
)−シス体=2.5%、(−)−シス体=2.7%、(
+)−)ランス体: 42.3%、(−)−トランス体
: 52.5%であった。
Example 3 The same procedure as in Example 2 was carried out except that pressure compensation was performed with oxygen instead of nitrogen. The optical isomer ratio is (+
)-cis form = 2.5%, (-)-cis form = 2.7%, (
+)-)trans isomer: 42.3%, (-)-trans isomer: 52.5%.

実施例4 約300dのフラスコを混合ガス(酸素と窒素のモル比
−7,5: 92.5)で置換した後、実施例1で用い
たと同じ左旋性第−期成82g、)ルエン123g1塩
化カルシウム3.88gを加えた。20’Cで撹拌下、
上記と同じ混合ガスを毎分6ccで吹き込みながら、5
5%臭化水素水溶液5.75 gを40分間で滴下した
Example 4 After displacing a flask of about 300 d with a mixed gas (molar ratio of oxygen and nitrogen -7.5:92.5), 82 g of the same levorotatory phase as used in Example 1), 123 g of toluene 1 chloride 3.88g of calcium was added. under stirring at 20'C.
While blowing the same mixed gas as above at 6 cc/min,
5.75 g of a 5% aqueous hydrogen bromide solution was added dropwise over 40 minutes.

滴下終了後、さらに5時間20分間混合ガスの吹き込み
を続け、この間、出口より出てくるガスを酸素分析計で
モニターし続けた。 ガス吹き込み終了後、反応器内の
酸素量を測定し、酸素消費量を求めると150 ccで
あった。吹き込み終了後、実施例1と同様に処理し77
.9 gの第−期成を得た。
After the dropping was completed, the mixed gas was continued to be blown for another 5 hours and 20 minutes, during which time the gas coming out from the outlet was continuously monitored with an oxygen analyzer. After the gas injection was completed, the amount of oxygen in the reactor was measured, and the amount of oxygen consumed was found to be 150 cc. After the blowing was completed, the same treatment as in Example 1 was carried out.
.. 9 g of the first stage product was obtained.

光学異性体比は(+)−シス体=2.4%、(−)−シ
ス体:2.4%、(+)−)ランス体: 45.2%、
(−)−)ランス体: 50.0%であった。
The optical isomer ratio is (+)-cis form = 2.4%, (-)-cis form: 2.4%, (+)-) lance form: 45.2%,
(-)-) lance form: 50.0%.

実施例5 実施例4において、反応温度を10℃に、臭化水素水溶
液滴下後のガス吹き込みを3時間とする以外は、実施例
4と同様に行った。 酸素消費量は120 ccであり
、78.7 gの第−期成を得た。
Example 5 Example 4 was carried out in the same manner as in Example 4, except that the reaction temperature was 10° C. and the gas blowing after dropping the hydrogen bromide aqueous solution was 3 hours. Oxygen consumption was 120 cc, and 78.7 g of the first stage product was obtained.

光学異性体比は(+)−シス体:2.9%、(−)シス
体:2.9%、(+)−)ランス体=45゜8%、(−
)−)ランス体: 48.4%であった。
The optical isomer ratios are (+)-cis form: 2.9%, (-) cis form: 2.9%, (+)-) lance form = 45° 8%, (-
)-) Lance form: 48.4%.

施例6 実施例1において、約35111のフラスコを用い、フ
ラスコに左旋性第−期成エチル((+)−シス体=2.
5%、(−)−シス体: 14.7%、(+)−トラン
ス体: 11.9%、(−)−)ランス体: 70.9
%よりなる) 640 mとトルエン5.4gを入れ、
25%臭化水素−酢酸溶液95mgとトルエン390m
gからなる溶液を滴下する以外は、実施例1と同様に実
施した。尚、空間容積は3011であり、反応後の酸素
と窒素のモル比は1:99であった。
Example 6 In Example 1, about 35111 flasks were used, and levorotatory primary ethyl ((+)-cis form=2.
5%, (-)-cis form: 14.7%, (+)-trans form: 11.9%, (-)-) lance form: 70.9
%) 640 m and 5.4 g of toluene,
95mg of 25% hydrogen bromide-acetic acid solution and 390ml of toluene
Example 1 was carried out in the same manner as in Example 1, except that a solution consisting of g was added dropwise. Note that the space volume was 3011, and the molar ratio of oxygen to nitrogen after the reaction was 1:99.

反応後、2%水酸化ナトリウム水溶液を加えて中和した
後、減圧下に溶媒を留去し、次で残留物にヘキサン、2
%水酸化ナトリウム水溶液を加え抽出を行い、有機層を
水洗した。得られた有機層を減圧下に濃縮後、蒸留する
ことにより、沸点85〜88℃/10mmHHの留出液
600■を得た。
After the reaction, 2% aqueous sodium hydroxide solution was added to neutralize, and the solvent was distilled off under reduced pressure.
% aqueous sodium hydroxide solution was added to perform extraction, and the organic layer was washed with water. The obtained organic layer was concentrated under reduced pressure and then distilled to obtain 600 ml of a distillate having a boiling point of 85 to 88°C/10 mmHH.

このものは赤外線吸収スペクトルより第−菊酸のエチル
エステルであることをmlした。この−部を常法により
加水分解し、得られたカルボン酸を(+)−2−オクタ
ツールとのエステルに導き、ガスクロマトグラフィーに
より光学異性体比を求めたところ(+)シス体:3.6
%、(−)シス体:3.5%、(+)トランス体: 3
7.7%、(−)トランス体: 55.2%であった。
This product was determined to be ethyl ester of chrysanthemum acid based on its infrared absorption spectrum. This - part was hydrolyzed by a conventional method, and the obtained carboxylic acid was converted into an ester with (+)-2-octatool, and the optical isomer ratio was determined by gas chromatography. (+) cis form: 3 .6
%, (-) cis form: 3.5%, (+) trans form: 3
7.7%, (-)trans form: 55.2%.

実施例7 実施例6において、混合ガスの酸素と窒素のモル比を3
.3  :96.1にかえ、25%臭化水素酢酸溶液を
106■用いる以外は実施例6と同様に行ない、600
■の第−期成エチルを得た0反応後の酸素と窒素のモル
比は0.8  ?99.2であった。
Example 7 In Example 6, the molar ratio of oxygen and nitrogen in the mixed gas was set to 3.
.. 3: The same procedure as in Example 6 was carried out except that 106 cm of 25% hydrogen bromide acetic acid solution was used instead of 96.1, and 600
The molar ratio of oxygen and nitrogen after the 0 reaction to obtain the stage ethyl in (2) is 0.8? It was 99.2.

光学異性体比は(+)−シス体:3.4%、(−)−シ
ス体:3.3%、(+)−)ランス体: 39.9%、
(−)−トランス体:53.4%であった。
The optical isomer ratio is (+)-cis: 3.4%, (-)-cis: 3.3%, (+)-)lance: 39.9%,
(-)-Trans form: 53.4%.

比較例1 実施例1において、混合ガスの酸素と窒素のモル比を7
=93にかえる以外は、実施例1と同様に実施した9反
応後の酸素と窒素のモル比は0.8:99.2であった
Comparative Example 1 In Example 1, the molar ratio of oxygen and nitrogen in the mixed gas was set to 7.
The molar ratio of oxygen and nitrogen after 9 reactions was carried out in the same manner as in Example 1 except that the ratio was changed to 93:93.

光学異性体比は(+)−シス体2.8%、(−)−シス
体2.5%、(+)−トランス体40.2%、(−)−
)ランス体54.5%であった。
The optical isomer ratio is (+)-cis 2.8%, (-)-cis 2.5%, (+)-trans 40.2%, (-)-
) The lance form was 54.5%.

比較例2 実施例1において、混合ガスの酸素と窒素のモル比を5
:95にかえる以外は、実施例1と同様に実施した0反
応後の酸素と窒素のモル比は0.7:99.3であった
Comparative Example 2 In Example 1, the molar ratio of oxygen and nitrogen in the mixed gas was changed to 5.
The molar ratio of oxygen and nitrogen after the zero reaction was carried out in the same manner as in Example 1 except that the ratio was changed to 0.7:99.3.

光学異性体比は(+)−シス体2.3%、(−)−シス
体2.3%、(+) −トランス体35.7%、(−)
−1−ランス体59.7%であった。
The optical isomer ratio is (+)-cis 2.3%, (-)-cis 2.3%, (+)-trans 35.7%, (-)
-1-lance form was 59.7%.

比較例3 比較例2において、25%臭化水素酢酸溶液を4.82
g用いる以外は比較例2と同様に実施した。
Comparative Example 3 In Comparative Example 2, the 25% hydrogen bromide acetic acid solution was
The same procedure as Comparative Example 2 was carried out except that g was used.

反応後の酸素と窒素のモル比は0.4 : 99.6で
あった。
The molar ratio of oxygen to nitrogen after the reaction was 0.4:99.6.

光学異性体比は(+)−シス体2.6%、(−)−シス
体2.7%、(+)−)ランス体45.8%、(−)−
トランス体48,9%であった。
The optical isomer ratio is (+)-cis 2.6%, (-)-cis 2.7%, (+)-)lance 45.8%, (-)-
The trans-isomer content was 48.9%.

比較例4 実施例6において、混合ガスの酸素と窒素のモル比を1
=99にかえる以外は実施例6と同様に実施した。 反
応後の酸素と窒素のモル比は0.2=99.8であった
Comparative Example 4 In Example 6, the molar ratio of oxygen and nitrogen in the mixed gas was changed to 1.
The same procedure as in Example 6 was carried out except that the value was changed to 99. The molar ratio of oxygen to nitrogen after the reaction was 0.2=99.8.

光学異性体比は(+)−シス体:3.0%、(−)−シ
ス体:3.1%、(+)−トランス体: 29.8%、
(−)−)ランス体: 64.1%であった。
The optical isomer ratio is (+)-cis form: 3.0%, (-)-cis form: 3.1%, (+)-trans form: 29.8%,
(-)-) lance form: 64.1%.

Claims (1)

【特許請求の範囲】 一般式 ▲数式、化学式、表等があります▼ (式中、Rは水素原子、炭素数1〜20のアルキル基、
シクロアルキル基またはアラルキル基を表わし、*は不
斉炭素をあらわす。) で示される光学活性な菊酸類に臭化水素を作用せしめて
対応するラセミ体を製造する方法において、酸素の存在
下に実施し、全酸素使用量が菊酸類に対し1/170モ
ル倍以上であることを特徴とするラセミ菊酸類の製造方
法。
[Claims] General formula ▲ Numerical formula, chemical formula, table, etc. ▼ (In the formula, R is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms,
It represents a cycloalkyl group or an aralkyl group, and * represents an asymmetric carbon. ) In the method of producing the corresponding racemate by reacting the optically active chrysanthemum acids with hydrogen bromide, the method is carried out in the presence of oxygen, and the total amount of oxygen used is at least 1/170 times the mole of the chrysanthemum acids. A method for producing racemic chrysanthemum acids, characterized by:
JP63324485A 1988-12-21 1988-12-21 Method for producing racemic chrysanthemic acids Expired - Fee Related JP2600354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63324485A JP2600354B2 (en) 1988-12-21 1988-12-21 Method for producing racemic chrysanthemic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63324485A JP2600354B2 (en) 1988-12-21 1988-12-21 Method for producing racemic chrysanthemic acids

Publications (2)

Publication Number Publication Date
JPH02169541A true JPH02169541A (en) 1990-06-29
JP2600354B2 JP2600354B2 (en) 1997-04-16

Family

ID=18166331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63324485A Expired - Fee Related JP2600354B2 (en) 1988-12-21 1988-12-21 Method for producing racemic chrysanthemic acids

Country Status (1)

Country Link
JP (1) JP2600354B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327343A (en) * 1989-06-23 1991-02-05 Sumitomo Chem Co Ltd Production of trans-chrysanthemumic acids
US6750370B2 (en) 2001-07-18 2004-06-15 Sumitomo Chemical Company, Limited Process for racemizing optically active vinyl-substituted cyclopropanecarboxylic acid compound
CN114539045A (en) * 2020-11-18 2022-05-27 中国科学院大连化学物理研究所 Racemization method of trans-L-chrysanthemic acid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270639A (en) * 1987-04-28 1988-11-08 Sumitomo Chem Co Ltd Racemization of chrysanthemumic acid halide
JPH0717565A (en) * 1993-06-30 1995-01-20 Toppan Printing Co Ltd Outer case for bag-in box, having easily openable structure at bottom portion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270639A (en) * 1987-04-28 1988-11-08 Sumitomo Chem Co Ltd Racemization of chrysanthemumic acid halide
JPH0717565A (en) * 1993-06-30 1995-01-20 Toppan Printing Co Ltd Outer case for bag-in box, having easily openable structure at bottom portion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327343A (en) * 1989-06-23 1991-02-05 Sumitomo Chem Co Ltd Production of trans-chrysanthemumic acids
US6750370B2 (en) 2001-07-18 2004-06-15 Sumitomo Chemical Company, Limited Process for racemizing optically active vinyl-substituted cyclopropanecarboxylic acid compound
CN114539045A (en) * 2020-11-18 2022-05-27 中国科学院大连化学物理研究所 Racemization method of trans-L-chrysanthemic acid

Also Published As

Publication number Publication date
JP2600354B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
SU722479A3 (en) Method of recemizing optically active 2,2-dimethyl-3-(1&#39;-alkenyl)cyclopropane-1-carbonyl halides
JPS6351136B2 (en)
JPH02169541A (en) Production of racemic chrysanthemum-monocaboxylic acids
EP0165070B1 (en) Method for racemization of chrysanthemic acid or its ester
EP0261824B1 (en) Method for racemization of optically active chrysanthemic acid or its ester
JPH0586775B2 (en)
JP3885497B2 (en) Method for producing 1,2,4-butanetriol
JP2503576B2 (en) Process for producing racemic-trans primary chrysanthemic acids
JPH0327343A (en) Production of trans-chrysanthemumic acids
JPS615047A (en) Racemization of chrysanthemum-monocarboxylic acid
JPS60174744A (en) Method for racemizing chrysanthemum-monocarboxylic acid derivative
JPH0531538B2 (en)
JPS63196542A (en) Racemization of optically active chrysanthemum monocarboxylic acids
JPH0717565B2 (en) Method for racemization of optically active primary chrysanthemic acids
JP3726315B2 (en) Purification method of ketonic ester
JPS624245A (en) Production of racemic trans-chrysanthemum-monocarboxylic acid ester
JPS615046A (en) Racemization of chrysanthemum-monocarboxylic acid
JPS63196541A (en) Racemization of optically active chrysanthemum monocarboxylic acids
JPS63218641A (en) Racemization of optically active chrysanthemum-monocarboxylic acids
JPH02104554A (en) Production of esters
JPH0253429B2 (en)
JPH0688935B2 (en) Method for racemization of optically active primary chrysanthemic acids
JPH0587057B2 (en)
JPH0641442B2 (en) Method for producing racemic trans primary chrysanthemate
JPH0262844A (en) Production of pacemic-dihalovinylcyclopropanecarboxylic acid halide

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees