JPH0216939B2 - - Google Patents

Info

Publication number
JPH0216939B2
JPH0216939B2 JP19670683A JP19670683A JPH0216939B2 JP H0216939 B2 JPH0216939 B2 JP H0216939B2 JP 19670683 A JP19670683 A JP 19670683A JP 19670683 A JP19670683 A JP 19670683A JP H0216939 B2 JPH0216939 B2 JP H0216939B2
Authority
JP
Japan
Prior art keywords
oil
parts
weight
alkyd resin
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19670683A
Other languages
Japanese (ja)
Other versions
JPS6088077A (en
Inventor
Minoru Fujishima
Hirofumi Izumi
Noburu Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP19670683A priority Critical patent/JPS6088077A/en
Publication of JPS6088077A publication Critical patent/JPS6088077A/en
Publication of JPH0216939B2 publication Critical patent/JPH0216939B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

近年大気汚染が問題化し、塗料に関しては有機
溶剤量を減少させることが重要な問題となつてい
る。そこで無公害化のために粉体塗料、無溶剤塗
料、水溶性塗料、ハイソリツド塗料等が開発され
ている。しかし、ハイソリツド塗料の場合、高固
形分化かつ低粘度化と塗膜性能を同時に満足する
ことは困難である。アルキド樹脂の場合、高固形
分化かつ低粘度化の方法として大別すると、(1)溶
解性の強い溶剤を使用する方法、(2)樹脂の分子量
を低分子量化する方法、(3)樹脂の分子構造を鎖状
化する方法等が考えられる。しかし(1)の方法は現
在のところとくに常温乾燥形塗料用として適正な
溶剤がない。すなわち溶解性の強い溶剤の使用は
塗膜の再塗装の際、下地塗膜をおかしリフテイン
グ現象を呈する。(2)の方法は乾燥が遅く、また硬
化後の塗膜は分子量が十分に大きくならないため
硬さ、耐溶剤性、耐薬品性、耐水性、物性などに
おいて良好な塗膜性能は得難い。(3)の方法として
は、アジピン酸、エチレングリコールなどの原料
を多く使用し、アルキド樹脂の分子構造を直鎖構
造にすることにより低粘度化は可能であるが、樹
脂の2次転移点温度が極度に低下するため乾燥が
遅く、また硬化後の塗膜の硬さ、耐汚染性、耐溶
剤性等が十分向上しないという欠点がある。 また従来、常温乾燥形樹脂としてボイル油、ウ
レタン化油、乾性油等を用いた油長40〜80%のア
マニ油変性アルキド樹脂、サフラワ油変性アルキ
ド樹脂、大豆油変性アルキド樹脂、脱水ヒマシ油
変性アルキド樹脂、キリ油変性アルキド樹脂など
が知られており、さらにこれらのアルキド樹脂を
ビニルモノマーと共重合させるか、フエノール樹
脂、エポキシ樹脂、石油樹脂、ロジンなどによつ
て変性された変性アルキド樹脂も塗料用ビヒクル
として知られている。さらに石油のC4留分から
なるポリブタジエンとマレイン酸を組合せたマレ
イン化油で変性したアルキド樹脂は、耐食性が向
上することも知られている。 しかし、これらの塗料用ビヒクルは、一般的に
常温乾燥形樹脂としての乾燥性、塗膜性能、高固
形分化及び低粘度化のバランスはとり難い。すな
わち樹脂の高固形分化、低粘度化に従つて塗膜の
乾燥性および塗膜性能が著しく低下する傾向を示
すようになる。 本発明はこの様な欠点を改善した塗料用酸化重
合性変性アルキド樹脂組成物を提供するものであ
る。 本発明は、(A)ヨウ素価40以上の酸化重合性を有
する油成分を油長が25〜80%になるようにし、粘
度が0.5〜13.0ポイズ(25℃、キシロールで60重
量%に希釈してガードナー法で測定)、酸価3〜
30である油変性アルキド樹脂を97〜50重量部、(B)
ヘキサメチロールメラミンのアリルーアルコキシ
化合物を3〜50重量部の範囲で(A)と(B)の総量が
100重量部となる量で含み、(C)必要に応じて希釈
溶剤を含有してなる塗料用酸化重合性変性アルキ
ド樹脂組成物に関する。 本発明における油変性アルキド樹脂の製造はエ
ステル変換法、脂肪酸法等でおこなわれる。前者
の方法の一例は、油成分と当量以上の多価アルコ
ールを水酸化リチウム、ナフテン酸リチウム、酸
化鉛等のエステル交換触媒の存在下で、200〜260
℃で約0.5〜2時間反応後、多塩基酸、残りの多
価アルコール及び必要に応じてエポキシ樹脂、フ
エノール樹脂等の変性成分を加え、180℃前後の
温度で約1時間ハーフエステル化し、その後200
〜240℃に昇温して反応を終点までおこなう。後
者の方法の一例は油成分、多価アルコール、多塩
基酸及び必要に応じて変性成分を180℃前後の温
度で約1時間反応させ、その後200〜240℃に昇温
して反応を終らせる。 本発明において使用されるヨウ素価40以上の酸
化重合性を有する油成分としては大豆油、サフラ
ワ油、トール油、脱水ヒマシ油、綿実油、キリ
油、ヒマシ油、米ヌカ油等が用いられ、またこれ
らの脂肪酸類などが用いられる。さらにこれらヨ
ウ素価40以下のヤシ油、パーム油、バーサチツク
酸(シエル化学社商品名、合成飽和脂肪酸)、カ
ージユラE(シエル化学商品名、合成飽和脂肪酸
のグリシジルエステル)、AOE(ダイセル化学社
商品名、α―オレフイングリシジルエステル)等
を必要に応じて組合せて良い。 本発明における油変性アルキド樹脂は、油長が
25〜80%とされるが、その他の成分としては多塩
基酸、多価アルコール、必要によりその他の変性
成分が用いられる。多塩基酸としては無水マレイ
ン酸、フマール酸、イタコン酸、マロン酸、無水
フタル酸、イソフタル酸、テレフタル酸、ジメチ
ロールテレフタル酸、テトラヒドロ無水フタル
酸、トリメリツト酸、ピロメリツト酸、3,6―
エンドメチレンテトラヒドロ無水フタル酸、グル
タル酸、アジピン酸、セバチン酸などが用いられ
る。多価アルコールとしてはエチレングリコー
ル、ジエチレングリコール、プロピレングリコー
ル、ジプロピレングリコール、トリエチレングリ
コール、ネオペンチルグリコール、1,6―ヘキ
サングリコール、1,3―ブタンジオール、1,
4―シクロヘキサンジオール、グリセリン、トリ
メチロールプロパン、トリメチロールエタン、ペ
ンタエリスリトール、ソルビトール、水素添加ビ
スフエノールA、ポリブタジエングリコールなど
が用いられる。必要に応じて用いられるその他の
変性成分としては、例えばエポキシ樹脂、フエノ
ール樹脂、ケトン樹脂、石油樹脂、安息香酸、パ
ラターシヤリブチル安息香酸等の一塩基酸などが
用いられる。上記の油変性アルキド樹脂の製法に
は、特に制限はない。 本発明に用いられるヘキサメチロールメラミン
のアリル―アルコキシ化合物は既に公知の化合物
であつて、例えばヘキサメチロールメラミンを酸
触媒の存在下でアリルアルコールと炭素数1〜4
の1価アルコールとを同時に反応させるか又はヘ
キサメチロールメラミンのメチロール基の一部又
は全部を炭素数1〜4の1価アルコールでアルコ
キシ化を行なつてヘキサメチロールメラミン樹脂
を得た後、更に酸触媒の存在下でアルコキシ基の
一部をアリルアルコールで置換反応を行なうこと
に得られる。上記の反応終了後、酸触媒をか性ソ
ーダで中和し、更に未反応のアリルアルコール及
び置換により生じたアルコール成分を蒸留除去す
ることにより透明なやや粘稠を帯びた樹脂として
用いることが好ましい。ヘキサメチロールメラミ
ンのアリル−アルコキシ化合物は少なくとも1個
のアリル基を有する必要がある。ヘキサメチロー
ルメラミンのアリル―アルコキシ化合物のアリル
基は上記の油変性アルキド樹脂に混合した際に油
変性アルキド樹脂と同様に酸素を吸収し酸化重合
を行なう役目をはたし、またアルコキシ基は上記
の油変性アルキド樹脂の相溶性を向上させると同
時にタルク、チタン白、カーボンブラツク、シア
ニンブルー等の顔料成分を併用した塗料系におい
てこれら顔料との分散性を良くし、低粘度の塗料
及び塗膜の光沢が顕著に改善される。 また、ヘキサメチロールメラミンのメチロール
基の全部をアリル基で置換したものは油変性アル
キド樹脂と混合した際の酸素吸収性(酸化重合
性)は増大されるが、油変性アルキド樹脂との相
溶性が低下し、乾燥塗膜の透明性及び光沢がなく
なつたり塗膜の表面がゆず肌状を呈する傾向を示
す。 上記の油変性アルキド樹脂は油長が25〜80%に
なるように調整される。25%未満では金属ドライ
ヤ添加後の塗膜は指触乾燥性は速くなる傾向を示
すが、酸化重合反応による塗膜の架橋密度が小さ
いため、とくに塗膜の再塗装の際に下地塗膜がお
かされ、リフテイング現象を呈し、さらに耐溶剤
性、耐アルカリ性などが劣る傾向を示す。 また、油長25%未満での低粘度化はアジピン
酸、エチレングリコールなどの直鎖状の分子構造
を与える原料を多く使用しなければならず、樹脂
の2次転移点温度と油成分の二重結合による酸化
重合反応のバランスがくずれるようになり、常温
乾燥による塗膜性能が全面的に低下する。また油
長が80%を越えるとアルキド樹脂の分子構造が油
成分に大部分占められるため、アルキド樹脂の分
子量が大きくならず、また樹脂の2次転移点温度
が低くなり、指触乾燥が遅く、さらに塗膜の表面
硬化と内部硬化のアンバランス性から耐水性、耐
薬品性などが低下し、硬さ、耐汚染性なども劣
る。 また、上記の油変性アルキド樹脂には、酸化重
合性を付与させるためにヨウ素価が40以上の酸化
重合性を有する油が用いられるが、ヨウ素価が40
未満であれば得られる樹脂組成物の酸化重合性が
小さく十分な硬化塗膜を与えないため、とくに再
塗装の際のリフテイング現象、耐溶剤性、耐薬品
性が劣る傾向を示す。 さらに上記油変性アルキド樹脂はキシロールで
固形分60重量%に希釈した時のガードナー法で測
定した粘度が0.5〜13.0ポイズ(25℃)とされる。
0.5ポイズ未満ではアルキド樹脂の分子量が小さ
く乾燥が遅く、硬化後の塗膜も耐水性及び密着性
が悪くなる。13.0ポイズを越えると逆に乾燥性及
び塗膜の耐水性、密着性も改善されるが高固形
分、低粘度の塗料が得難い。 また、上記油変性アルキド樹脂の酸価は3〜30
である。酸価が3未満のアルキド樹脂を使用した
塗膜は素材との密着性が低下する。酸価が30を越
えると硬化後の塗膜性能において特に耐水性が悪
くなる。 上記の油変性アルキド樹脂は97〜50重量部、好
ましくは95〜70重量部の範囲で、ヘキサメチロー
ルメラミンのアリル―アルコキシ化合物は3〜50
重量部、好ましくは5〜30重量物の範囲で、これ
らの総量が100重量部となる量で用いられる。使
用量は、この範囲内でヘキサメチロールメラミン
のアリル―アルコキシ化合物のアリル基の含有量
と油変性アルキド樹脂の構成成分により適宜選択
される。ヘキサメチロールメラミンのアリル―ア
ルコキシ化合物の使用量が上記の範囲を越える場
合は、顔料分散性が良好となり高固形分、低粘度
の塗料が得られるが硬化後の塗膜は比較的低分子
量になり、耐水性、耐薬品性が低下する。また逆
にその使用量が上記の範囲より少ないと顔料分散
性効果が著しく低下し、高固形分の塗料が得難
い。 本発明において必要に応じて使用される希釈溶
剤としては、脂肪族類、エステル類、鉱油類、芳
香族類、アルコール類、ケトン類等の溶剤が用い
られる。常温乾燥形としての再塗装性、ハケ塗り
性などの塗装作業性の点から脂肪族類、芳香族
類、鉱油類などの溶剤が好ましく、スワゾール
200及び310(丸善石油社製)キシロール、トリオ
ール、ミネラルスピリツトなどの単独又は混合溶
剤が使用される。更に低粘度化を目的とした場合
はメチルエチルケトン、酢酸エチルなどのケトン
類及びエステル類の溶剤の使用も可能である。 本発明になる酸化重合性変性アルキド樹脂組成
物の使用にあたつて塗膜に酸化重合反応を促進さ
せるため触媒としてコバルト、マンガン、ジルコ
ニウム、カルシウム、鉛、亜鉛等の金属類のナフ
テネート又はオクテネートが使用される。これら
の触媒中コバルト、マンガン、ジルコニウム等は
塗膜表面の酸化重合を促進させ、カルシウム、
鉛、亜鉛等は助触媒として使用され塗膜の内部硬
化に寄与する。 一般にこれらの金属類は塗膜の表面硬化作用の
大きいものと内部硬化に寄与するものとを併用し
て使用される。また、これらの金属類はその使用
量が多くても特に酸化重合反応を促進するとは限
らない。出来る限り塗膜の表面と内部の硬化をバ
ランス良く均一になるようにした方が強じんな塗
膜が得られる。従つてこれらの金属類の種類と添
加量は用途及び樹脂の性状により異なるが、樹脂
固形分に対して0.01〜5.0重量%の金属量が実用
的である。0.01重量%未満では乾燥に長時間を要
する為塗装作業性が改善されず、5.0重量%を越
えても特に酸化重合反応は促進されず、塗膜の不
均一な乾燥により逆に耐水性、密着性が低下し、
更に塗料の貯蔵安定性を悪くする傾向を示す。 また本発明の塗料用酸化重合性変性アルキド樹
脂組成物の塗膜性能を更に向上させる処法とし
て、ウレタンプレポリマとの組合せあるいは硝化
綿、塩ゴム等の併用により塗膜を一層強じんに
し、乾燥性を向上させることが出来る。 本発明になる塗料用酸化重合性変性アルキド樹
脂組成物は、高固形分化かつ低粘度化が可能であ
り、これにより得られる塗膜の性能も優れたもの
である。 以下、実施例及び比較例により説明する。部と
あるのは重量部を意味する。 1 油変性アルキド樹脂の製造 製造例 1 カージユラE(シエル化学社商品名、合成飽和
脂肪酸のグリシジルエステル)120部、アマニ油
脂肪酸(ヨウ素価172)461.6部、パラターシヤリ
ブチル安息香酸333.8部、無水フタル酸375.8部、
ペンタエリスリトール226.5部、エチレングリコ
ール88.5部及び循かん用キシロールの少量を2
の四つ口フラスコにとり不活性ガスを通じながら
180℃で1時間加熱し、200℃に昇温し、同温度で
キシロールで固形分60重量%に希釈した時のガー
ドナー法による粘度が3.5ポイズ(25℃)になる
まで加熱した。反応終了後キシロールに溶解し、
キシロール分40重量%になるように調整した。得
られた油変性アルキド樹脂(1)は固形分60.8重量
%、ガードナー法による粘度3.7ポイズ(25℃)、
酸価8.4及び色数(ガードナ)4を示した。 製造例 2 カージユラE150部、大豆油脂肪酸(ヨウ素価
125)576.9部、パラターシヤリブチル安息香酸
170.0部、無水フタル酸418.4部、ペンタエリスリ
トール252.0部、エチレングリコール40.5部及び
少量の循かん用キシロールを2の四つ口フラス
コにとり、実施例1と同じ加熱スケジユールに従
つてエステル化反応を進めた。キシロールで固形
分60重量%に希釈した時のガードナー法による粘
度が2.1ポイズ(25℃)に達した時点を終点とし
た。反応終了後キシロールに溶解し、キシロール
分30重量%に調整した。得られた油変性アルキド
樹脂(2)は加熱残分69.8重量%、粘度6.3ポイズ、
酸価7.9、色数(ガードナ)3を示した。 製造例 3 カージユラE195部、大豆油脂肪酸750部、パラ
ターシヤリブチル安息香酸83.4部、無水フタル酸
336.5部、ペンタエリスリトール232.5部及び循か
ん用キシロールの少量を2の四つ口フラスコに
とり、不活性ガスを通じながら180℃で1時間加
熱し、さらに200℃で1時間、さらに220℃に昇温
し同温度でキシロールで固形分60重量%に希釈し
た時のガードナー法による粘度が0.85ポイズ(25
℃)に達した点を終点とした。反応終了後ミネラ
ルスピリツトに溶解し、ミネラルスピリツト分30
重量%になるように調整した。得られた油変性ア
ルキド樹脂(3)は加熱残分70.6重量%、ガードナー
法による粘度7.2ポイズ(25℃)、酸価10.2、色数
(ガードナ)3を示した。 2 ヘキサメチロールメラミンのアリル―アルコ
キシ化合物の製造 メラミン378部、純度80%のパラホルムアルデ
ヒド114部及びメタノール960部を2の四つ口フ
ラスコに仕込み60℃に昇温し、均一溶解後少量の
か性ソーダを添加しPH8.5に調整し、同温度で30
分保温し直ちに40℃以下に冷却するとヘキサメチ
ロールメラミンが結晶となつて沈降した。結晶体
を取り出し再び新しいメタノール960部を添加し、
60℃に昇温し、少量の塩酸を添加し、PH3.2に調
整し、同温度で3時間保温後、フラスコ内を減圧
状態にしメタノールを蒸留して半固溶体のヘキサ
メトキシメラミン樹脂を得た。 ヘキサメトキシメラミン樹脂800部、アリルア
ルコール2000部を3の四つ口フラスコにとり、
少量の硝酸を添加しPH1.5に調整した。60℃で2
時間保温後冷却し、少量のか性ソーダを加えてPH
7.5に調整した。再び100℃に昇温し、減圧しなが
ら遊離のアリルアルコールを除去した。得られた
樹脂は固形分99.8重量%、ガードナー法による粘
度8.7ポイズ(25℃)、色数1〜2(ガードナ)を
示した。 次に上記で得た油変性アルキド樹脂とヘキサメ
チロールメラミンのアリル―メトキシ化合物の組
合せた塗料についての塗膜性能を表1に示す。 塗料は下記に示す配合により作製し、三本ロー
ルで4回混練後、キシロールまたはミネラルスピ
リツトでフオードカツプ#4で30秒(25℃)にな
るまで希釈した。これを試料として試験した。 1 塗料配合 酸化重合性変性アルキド樹脂組成物 (固形分100重量%に換算) 100部 チタン白(ルチル)(堺化学社製) 100部 5%Co―ナフテネート (大日本インキ化学社製) 1.0部 15%Pb―ナフテネート (大日本インキ化学社製) 3.3部 2 塗膜試験法 (1) 乾燥性 塗料をガラス板上にバーコーター#40で塗布
し、指で押しても塗料が指に付着しなくなるまで
の時間を指触乾燥とした。また同様に指で強く押
して粘着性が感じられなくなるまでの時間を半硬
化乾燥とした。乾燥条件は20℃、相対湿度65%の
恒温室で行なつた。 (2) 再塗装性(リコート性) 塗料をバーコーター#40でブリキ板上に塗布
し、室温(20℃、相対湿度65%)に放置後所定の
時間毎に同塗料を流し塗りし、下地塗膜がおかさ
れなくなるまでの時間を測定した。 (3) 一般塗膜性能 塗料をポンデライト処理鋼板(0.8t×70mm×
150mm)上にスプレー塗装(膜厚40〜60μ)し、
5日間室温(20℃、相対湿度65%)で放置後、下
記の試験に供した。 光 沢:鏡面反射光度計を使用し60゜の反射率
を測定した。 塗面状態:目視により塗面状態を観察した。 エンピツ硬さ:三菱ユニエンピツを使用し、45゜
で塗面を強く押して塗膜が破かいする時
の硬さを測定した。 エリクセン:エリクセン測定機を使用し、塗膜裏
面から押し出して、塗膜が破かいするま
での長さ(mm)を測定した。 衝撃強さ:デユポン衝撃機を使用し、1/2インチ、
荷重500g及び1000gのおもりを所定の
高さから落下させ、塗膜が破かいする高
さを測定した。 耐水性:市水道水を用い、常温(18〜22℃)で10
日間浸漬させ、塗膜の白化及びブリスタ
ーの状態を観察した。 耐温水性:40℃の市水道水に5日間浸漬させ塗膜
の白化及びブリスターの状態を観察し
た。 耐 湿 性:50℃、相対湿度98%のブリスタリン
グボツクスに3日間れて、塗膜のブリス
ターの状態を観察した。 耐沸水性:沸とう状態の市水道水に30分間浸漬さ
せ、塗膜の白化の状態を観察した。 耐NaOH:5%NaOH水溶液を塗膜上に約1c.c.
滴下し、そのままの状態で常温(18〜22
℃)で1日放置、その後脱脂綿でふきと
り塗膜の黄変、ツヤびけ及びブリスター
の状態を観察した。 耐H2SO4:5%H2SO4水溶液を塗膜上に約1c.c.
滴下し、そのままの状態で常温(18〜22
℃)で1日放置、その後脱脂綿でふきと
り塗膜の黄変、ツヤびけ及びブリスター
の状態を観察した。 耐ガソリン性:出光化学製、ガソリン(レギユラ
ータイプ)に1日浸漬させ、塗膜の軟化
及びブリスターの状態を観察した。 マジツク汚染:内田洋行製赤マジツクを塗膜につ
け常温で1時間放置、その後脱脂綿にブ
タノールをつけてふきとり、マジツク跡
を観察した。 耐 食 性:塗膜にナイフで対角線状にカツトを
入れ5%NaCl、35℃の塩水噴霧機に3
日間入れ、その後脱脂綿で塗膜の水滴を
ふきとり、カツトの上にセロテープをは
り、ついでこれをはくりしカツト部のは
くりを調べた。セロテープによつて塗膜
がはくりした幅(mm)をサビ幅として示
した。 表において◎は異常なし、〇は殆ど異常なし、
△は少し異常あり、×は異常ありを示す。
Air pollution has become a problem in recent years, and reducing the amount of organic solvents used in paints has become an important issue. Therefore, powder coatings, solvent-free coatings, water-soluble coatings, high-solids coatings, etc., have been developed to eliminate pollution. However, in the case of high solids paints, it is difficult to simultaneously satisfy high solids content, low viscosity, and coating film performance. In the case of alkyd resins, the methods for achieving high solidity differentiation and low viscosity can be roughly divided into: (1) using a solvent with strong solubility, (2) reducing the molecular weight of the resin, and (3) reducing the molecular weight of the resin. Possible methods include chaining the molecular structure. However, for method (1), there is currently no solvent suitable for use in paints that dry at room temperature. In other words, the use of highly soluble solvents damages the underlying paint film and causes a lifting phenomenon when the paint film is repainted. In method (2), drying is slow and the molecular weight of the cured coating film is not sufficiently large, so it is difficult to obtain good coating performance in terms of hardness, solvent resistance, chemical resistance, water resistance, physical properties, etc. As for method (3), it is possible to lower the viscosity by using many raw materials such as adipic acid and ethylene glycol and making the molecular structure of the alkyd resin a linear structure, but the secondary transition temperature of the resin There are disadvantages in that drying is slow due to extremely low hardness, and the hardness, stain resistance, solvent resistance, etc. of the cured coating film are not sufficiently improved. Conventionally, as room-temperature drying resins, boiled oil, urethanized oil, drying oil, etc. have been used, such as linseed oil-modified alkyd resin with an oil length of 40 to 80%, safflower oil-modified alkyd resin, soybean oil-modified alkyd resin, and dehydrated castor oil-modified resin. Alkyd resins, tung oil-modified alkyd resins, etc. are known, and there are also modified alkyd resins made by copolymerizing these alkyd resins with vinyl monomers, or modified with phenolic resins, epoxy resins, petroleum resins, rosins, etc. Known as a paint vehicle. Furthermore, it is also known that alkyd resins modified with maleated oil, which is a combination of polybutadiene made from the C4 fraction of petroleum and maleic acid, have improved corrosion resistance. However, it is generally difficult for these paint vehicles to balance drying properties, coating film performance, high solids content, and low viscosity as resins that dry at room temperature. That is, as the resin becomes more solid and has a lower viscosity, the drying properties and performance of the coating film tend to decrease significantly. The present invention provides an oxidatively polymerizable modified alkyd resin composition for paints which has improved these drawbacks. In the present invention, (A) an oxidatively polymerizable oil component with an iodine value of 40 or more is made to have an oil length of 25 to 80%, and a viscosity of 0.5 to 13.0 poise (25°C, diluted to 60% by weight with xylene). (measured by Gardner method), acid value 3~
97 to 50 parts by weight of oil-modified alkyd resin of 30, (B)
The total amount of (A) and (B) is in the range of 3 to 50 parts by weight of the aryl alkoxy compound of hexamethylolmelamine.
The present invention relates to an oxidatively polymerizable modified alkyd resin composition for paints, which contains an amount of 100 parts by weight, and optionally contains (C) a diluting solvent. The oil-modified alkyd resin in the present invention is produced by an ester conversion method, a fatty acid method, or the like. An example of the former method is to convert polyhydric alcohol in an amount equivalent to or more than the oil component in the presence of a transesterification catalyst such as lithium hydroxide, lithium naphthenate, lead oxide, etc.
After reacting for about 0.5 to 2 hours at ℃, polybasic acid, remaining polyhydric alcohol, and modifying components such as epoxy resin and phenol resin are added as necessary, and half esterification is carried out at a temperature of about 180℃ for about 1 hour. 200
Raise the temperature to ~240°C and carry out the reaction to the end point. An example of the latter method involves reacting oil components, polyhydric alcohols, polybasic acids, and optionally modified components at a temperature of around 180°C for about 1 hour, and then raising the temperature to 200 to 240°C to complete the reaction. . As the oil component having an iodine value of 40 or more and having oxidative polymerizability used in the present invention, soybean oil, safflower oil, tall oil, dehydrated castor oil, cottonseed oil, tung oil, castor oil, rice bran oil, etc. are used. These fatty acids and the like are used. In addition, these coconut oils with an iodine value of 40 or less, palm oil, versatile acid (synthetic saturated fatty acid, trade name of Schiel Chemical Co., Ltd.), Cardiula E (synthetic saturated fatty acid glycidyl ester, trade name of Schiel Chemical Co., Ltd.), AOE (trade name, Daicel Chemical Co., Ltd.) , α-olefin glycidyl ester), etc. may be combined as necessary. The oil-modified alkyd resin in the present invention has an oil length of
It is said to be 25 to 80%, and other components include polybasic acids, polyhydric alcohols, and other modifying components as necessary. Polybasic acids include maleic anhydride, fumaric acid, itaconic acid, malonic acid, phthalic anhydride, isophthalic acid, terephthalic acid, dimethylol terephthalic acid, tetrahydrophthalic anhydride, trimellitic acid, pyromellitic acid, 3,6-
Endomethylenetetrahydrophthalic anhydride, glutaric acid, adipic acid, sebacic acid, etc. are used. Polyhydric alcohols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, triethylene glycol, neopentyl glycol, 1,6-hexane glycol, 1,3-butanediol, 1,
4-cyclohexanediol, glycerin, trimethylolpropane, trimethylolethane, pentaerythritol, sorbitol, hydrogenated bisphenol A, polybutadiene glycol, and the like are used. Other modifying components that may be used as necessary include, for example, epoxy resins, phenolic resins, ketone resins, petroleum resins, benzoic acid, and monobasic acids such as paratertiary butylbenzoic acid. There are no particular limitations on the method for producing the oil-modified alkyd resin. The allyl-alkoxy compound of hexamethylolmelamine used in the present invention is a known compound, for example, hexamethylolmelamine is mixed with allyl alcohol having 1 to 4 carbon atoms in the presence of an acid catalyst.
After obtaining a hexamethylolmelamine resin by simultaneously reacting with a monohydric alcohol or alkoxylating a part or all of the methylol groups of hexamethylolmelamine with a monohydric alcohol having 1 to 4 carbon atoms, the resin is further reacted with an acid. It can be obtained by substituting a part of an alkoxy group with allyl alcohol in the presence of a catalyst. After the above reaction is completed, it is preferable to neutralize the acid catalyst with caustic soda and further distill off unreacted allyl alcohol and alcohol components generated by substitution to obtain a transparent, slightly viscous resin. . The allyl-alkoxy compound of hexamethylolmelamine must have at least one allyl group. The allyl group of the allyl-alkoxy compound of hexamethylol melamine, when mixed with the above oil-modified alkyd resin, plays the role of absorbing oxygen and performing oxidative polymerization similarly to the oil-modified alkyd resin, and the alkoxy group also acts as It improves the compatibility of oil-modified alkyd resins, and at the same time improves the dispersibility of pigments in paint systems that use pigment components such as talc, titanium white, carbon black, and cyanine blue. Gloss is noticeably improved. In addition, hexamethylolmelamine in which all the methylol groups are replaced with allyl groups has increased oxygen absorption (oxidative polymerizability) when mixed with oil-modified alkyd resin, but its compatibility with oil-modified alkyd resin is The dry paint film tends to lose its transparency and gloss, and the surface of the paint film tends to take on an orange peel appearance. The above oil-modified alkyd resin is adjusted to have an oil length of 25 to 80%. If it is less than 25%, the paint film after adding a metal dryer tends to become dry to the touch, but because the crosslinking density of the paint film due to the oxidative polymerization reaction is low, the base paint film may be damaged especially when repainting the paint film. It exhibits a lifting phenomenon, and also tends to have poor solvent resistance, alkali resistance, etc. In addition, in order to reduce the viscosity when the oil length is less than 25%, it is necessary to use many raw materials that give a linear molecular structure, such as adipic acid and ethylene glycol. The balance of the oxidative polymerization reaction due to the double bond becomes unbalanced, and the performance of the coating film when dried at room temperature is completely reduced. In addition, when the oil length exceeds 80%, the molecular structure of the alkyd resin is mostly occupied by the oil component, so the molecular weight of the alkyd resin does not increase, and the secondary transition temperature of the resin becomes low, making it slow to dry to the touch. Furthermore, due to the imbalance between surface hardening and internal hardening of the coating film, water resistance, chemical resistance, etc. are reduced, and hardness, stain resistance, etc. are also poor. In addition, for the above-mentioned oil-modified alkyd resin, an oil having oxidative polymerizability with an iodine value of 40 or more is used in order to impart oxidative polymerizability.
If it is less than this, the oxidative polymerizability of the resulting resin composition will be low and a sufficiently cured coating film will not be obtained, so that the lifting phenomenon, solvent resistance, and chemical resistance will tend to be particularly poor during repainting. Further, the oil-modified alkyd resin has a viscosity of 0.5 to 13.0 poise (at 25°C) measured by the Gardner method when diluted with xylene to a solid content of 60% by weight.
If it is less than 0.5 poise, the molecular weight of the alkyd resin is small and drying is slow, resulting in poor water resistance and adhesion of the cured coating film. On the other hand, if it exceeds 13.0 poise, the drying properties and the water resistance and adhesion of the coating film will be improved, but it will be difficult to obtain a coating with a high solid content and low viscosity. In addition, the acid value of the above oil-modified alkyd resin is 3 to 30.
It is. A coating film using an alkyd resin with an acid value of less than 3 has poor adhesion to the material. If the acid value exceeds 30, the coating film performance after curing will be particularly poor in water resistance. The above oil-modified alkyd resin is in the range of 97 to 50 parts by weight, preferably 95 to 70 parts by weight, and the allyl-alkoxy compound of hexamethylolmelamine is in the range of 3 to 50 parts by weight.
Parts by weight, preferably in the range from 5 to 30 parts by weight, are used in amounts such that the total amount is 100 parts by weight. The amount used is appropriately selected within this range depending on the allyl group content of the allyl-alkoxy compound of hexamethylolmelamine and the constituent components of the oil-modified alkyd resin. If the amount of the allyl-alkoxy compound of hexamethylolmelamine used exceeds the above range, the pigment dispersibility will be good and a coating with high solids content and low viscosity will be obtained, but the coating film after curing will have a relatively low molecular weight. , water resistance and chemical resistance are reduced. Conversely, if the amount used is less than the above range, the pigment dispersibility effect will be significantly reduced, making it difficult to obtain a paint with a high solids content. As the diluting solvent used as necessary in the present invention, solvents such as aliphatics, esters, mineral oils, aromatics, alcohols, and ketones are used. Solvents such as aliphatic, aromatic, and mineral oils are preferred from the viewpoint of painting workability such as repaintability and brushability when drying at room temperature.
200 and 310 (manufactured by Maruzen Sekiyu Co., Ltd.) Single or mixed solvents such as xylol, triol, and mineral spirits are used. Furthermore, when the purpose is to lower the viscosity, it is also possible to use ketones and ester solvents such as methyl ethyl ketone and ethyl acetate. When using the oxidatively polymerizable modified alkyd resin composition of the present invention, naphthenate or octenate of metals such as cobalt, manganese, zirconium, calcium, lead, and zinc is added as a catalyst to promote the oxidative polymerization reaction in the coating film. used. Cobalt, manganese, zirconium, etc. in these catalysts promote oxidative polymerization on the surface of the coating film, and cause calcium,
Lead, zinc, etc. are used as promoters and contribute to internal hardening of the coating film. Generally, these metals are used in combination with those that have a large surface hardening effect on the coating film and those that contribute to internal hardening. Further, even if these metals are used in large amounts, they do not necessarily promote the oxidative polymerization reaction. A stronger coating can be obtained by ensuring that the surface and interior of the coating are cured as uniformly and in a well-balanced manner. Therefore, the type and amount of these metals added vary depending on the use and the properties of the resin, but a practical amount of metal is 0.01 to 5.0% by weight based on the solid content of the resin. If it is less than 0.01% by weight, it will take a long time to dry, so coating workability will not be improved, and if it exceeds 5.0% by weight, the oxidative polymerization reaction will not be particularly promoted, and the uneven drying of the coating will result in poor water resistance and adhesion. Sexuality decreases,
Furthermore, it tends to worsen the storage stability of the paint. Furthermore, as a treatment method for further improving the coating film performance of the oxidatively polymerizable modified alkyd resin composition for paints of the present invention, the coating film is further strengthened by combining it with a urethane prepolymer or with nitrified cotton, salt rubber, etc. Drying performance can be improved. The oxidatively polymerizable modified alkyd resin composition for paints according to the present invention can be made to have high solidity and low viscosity, and the performance of the resulting coating film is also excellent. This will be explained below using Examples and Comparative Examples. Parts refer to parts by weight. 1 Production example of oil-modified alkyd resin 1 Cardilla E (trade name of Ciel Chemical Co., Ltd., glycidyl ester of synthetic saturated fatty acids) 120 parts, linseed oil fatty acid (iodine value 172) 461.6 parts, paratertiary butylbenzoic acid 333.8 parts, anhydrous 375.8 parts of phthalic acid,
226.5 parts of pentaerythritol, 88.5 parts of ethylene glycol, and a small amount of xylene for circulation
Place in a four-necked flask and pass inert gas through it.
The mixture was heated at 180°C for 1 hour, then raised to 200°C, and heated at the same temperature until the viscosity according to the Gardner method reached 3.5 poise (25°C) when diluted with xylene to a solid content of 60% by weight. After the reaction is complete, dissolve in xylol,
The xylol content was adjusted to 40% by weight. The obtained oil-modified alkyd resin (1) had a solid content of 60.8% by weight, a viscosity of 3.7 poise (25°C) by the Gardner method,
It showed an acid value of 8.4 and a color number (Gardna) of 4. Production example 2 Cardilla E 150 parts, soybean oil fatty acid (iodine value
125) 576.9 parts, paratersiabutylbenzoic acid
170.0 parts of phthalic anhydride, 418.4 parts of phthalic anhydride, 252.0 parts of pentaerythritol, 40.5 parts of ethylene glycol, and a small amount of circulating xylol were placed in a four-necked flask, and the esterification reaction was carried out according to the same heating schedule as in Example 1. . The end point was when the viscosity reached 2.1 poise (25°C) according to the Gardner method when diluted with xylol to a solid content of 60% by weight. After the reaction was completed, it was dissolved in xylene and the xylene content was adjusted to 30% by weight. The obtained oil-modified alkyd resin (2) had a heating residue of 69.8% by weight, a viscosity of 6.3 poise,
It showed an acid value of 7.9 and a color number (Gardna) of 3. Production example 3 Cardilla E 195 parts, soybean oil fatty acid 750 parts, paratersia butylbenzoic acid 83.4 parts, phthalic anhydride
336.5 parts of pentaerythritol, 232.5 parts of pentaerythritol, and a small amount of circulating xylene were placed in a four-necked flask (No. 2) and heated at 180°C for 1 hour while passing inert gas, then heated to 200°C for 1 hour, and further heated to 220°C. At the same temperature, the viscosity according to the Gardner method when diluted with xylene to a solid content of 60% by weight was 0.85 poise (25
The point at which the temperature reached ℃) was defined as the end point. After the reaction is completed, dissolve in mineral spirits and make 30% of mineral spirits.
It was adjusted to be % by weight. The obtained oil-modified alkyd resin (3) had a heating residue of 70.6% by weight, a viscosity of 7.2 poise (25°C) according to the Gardner method, an acid value of 10.2, and a color number (Gardner) of 3. 2 Production of allyl-alkoxy compound of hexamethylolmelamine 378 parts of melamine, 114 parts of paraformaldehyde with a purity of 80%, and 960 parts of methanol were placed in a four-necked flask from 2, heated to 60°C, and after uniformly dissolving, a small amount of caustic soda was added. was added to adjust the pH to 8.5, and then heated to 30% at the same temperature.
When the mixture was kept warm for several minutes and immediately cooled to below 40°C, hexamethylolmelamine crystallized and precipitated. Remove the crystals and add 960 parts of fresh methanol again.
The temperature was raised to 60°C, a small amount of hydrochloric acid was added to adjust the pH to 3.2, and after keeping at the same temperature for 3 hours, the pressure inside the flask was reduced and methanol was distilled to obtain a semi-solid solution of hexamethoxymelamine resin. . Place 800 parts of hexamethoxymelamine resin and 2000 parts of allyl alcohol in a four-necked flask,
A small amount of nitric acid was added to adjust the pH to 1.5. 2 at 60℃
After keeping warm for an hour, cool and add a small amount of caustic soda to pH.
Adjusted to 7.5. The temperature was raised to 100°C again, and free allyl alcohol was removed under reduced pressure. The obtained resin had a solid content of 99.8% by weight, a viscosity of 8.7 poise (25°C) according to the Gardner method, and a color number of 1 to 2 (Gardner). Next, Table 1 shows the coating film performance of the coating material in which the oil-modified alkyd resin obtained above was combined with the allyl-methoxy compound of hexamethylolmelamine. The paint was prepared according to the formulation shown below, kneaded four times with a triple roll, and then diluted with xylol or mineral spirits in a #4 food cup for 30 seconds (25°C). This was tested as a sample. 1 Oxidation-polymerizable modified alkyd resin composition (converted to solid content of 100% by weight) in paint 100 parts Titanium white (rutile) (manufactured by Sakai Chemical Co., Ltd.) 100 parts 5% Co-naphthenate (manufactured by Dainippon Ink Chemical Co., Ltd.) 1.0 part 15% Pb-Naphthenate (manufactured by Dainippon Ink Chemical Co., Ltd.) 3.3 Part 2 Paint film test method (1) Drying property Even if you apply the paint on a glass plate with a bar coater #40 and press it with your finger, the paint will not stick to your finger. The time it takes to feel dry to the touch is defined as the time it takes to dry to the touch. Similarly, the time taken to harden the adhesive with a finger until it no longer felt sticky was defined as semi-curing and drying. Drying conditions were a constant temperature room at 20°C and 65% relative humidity. (2) Repaintability (recoatability) Paint is applied onto a tin plate using a bar coater #40, and after being left at room temperature (20°C, relative humidity 65%), the same paint is flow-coated at predetermined intervals to coat the base plate. The time until the paint film was no longer damaged was measured. (3) General coating performance Paint is applied to ponderite treated steel plate (0.8t×70mm×
150mm), spray paint (film thickness 40-60μ),
After being left at room temperature (20°C, relative humidity 65%) for 5 days, it was subjected to the following test. Gloss: Reflectance at 60° was measured using a specular reflection photometer. Painted surface condition: The painted surface condition was visually observed. Pencil hardness: Using a Mitsubishi Uni-Pencil, the hardness was measured when the painted surface was strongly pressed at 45 degrees and the paint film broke. Erichsen: Using an Erichsen measuring machine, the length (mm) of extrusion from the back of the paint film until the paint film breaks was measured. Impact strength: using Dupont impact machine, 1/2 inch,
Weights with loads of 500 g and 1000 g were dropped from predetermined heights, and the height at which the coating film was torn was measured. Water resistance: 10 at room temperature (18-22℃) using city tap water
After soaking for a day, the whitening of the coating film and the state of blisters were observed. Hot water resistance: It was immersed in city tap water at 40°C for 5 days and the whitening of the coating film and the state of blisters were observed. Moisture resistance: The condition of blisters on the coating film was observed after being placed in a blister box at 50°C and 98% relative humidity for 3 days. Boiling water resistance: The paint was immersed in boiling city tap water for 30 minutes and the state of whitening of the paint film was observed. NaOH resistance: Approximately 1 c.c. of 5% NaOH aqueous solution is applied to the coating film.
Drop it and leave it at room temperature (18-22
℃) for one day, and then wiped with absorbent cotton to observe yellowing, glossiness, and blistering of the coating film. H 2 SO 4 resistance: Approximately 1 c.c. of 5% H 2 SO 4 aqueous solution is applied to the coating film.
Drop it and leave it at room temperature (18-22
℃) for one day, and then wiped with absorbent cotton to observe yellowing, glossiness, and blistering of the coating film. Gasoline resistance: manufactured by Idemitsu Chemical Co., Ltd., immersed in gasoline (regular type) for one day and observed for softening of the coating film and the state of blisters. Magic contamination: A red magic marker made by Uchida Yoko was applied to the paint film and left at room temperature for 1 hour, then wiped off with absorbent cotton soaked in butanol and observed for magic stains. Corrosion resistance: Make diagonal cuts in the coating film with a knife and spray with 5% NaCl in a salt water sprayer at 35°C.
After leaving it for a day, the water droplets on the paint film were wiped off with absorbent cotton, and Sellotape was placed on top of the cut, which was then removed and the peeling of the cut part was examined. The width (mm) of the paint film peeled off by cellophane tape was shown as the rust width. In the table, ◎ indicates no abnormality, 〇 indicates almost no abnormality,
△ indicates that there is a slight abnormality, and × indicates that there is an abnormality.

【表】【table】

【表】 以上の実験結果から明らかなように本発明にな
る塗装用酸化重合性変性アルキド樹脂組成物を使
用した塗料は、高固形分で、しかも低粘度であ
り、塗膜性能、とくに乾燥性、耐水性、耐アルカ
リ性及び耐食性が大幅に向上している。 本発明になる樹脂組成物は、有機溶剤規制に関
しての対策、塗装作業性の能率化および塗膜性能
の面からも実用的効果が大きい。
[Table] As is clear from the above experimental results, the paint using the oxidation-polymerizable modified alkyd resin composition for painting according to the present invention has a high solid content, low viscosity, and has good film performance, especially drying properties. , water resistance, alkali resistance and corrosion resistance are significantly improved. The resin composition of the present invention has great practical effects in terms of countermeasures regarding organic solvent regulations, efficiency of painting workability, and coating film performance.

Claims (1)

【特許請求の範囲】 1 (A) ヨウ素価が40以上の酸化重合性を有する
油成分を油長が25〜80%になるようにし、粘度
が0.5〜13.0ポイズ(25℃、キシロールで60重
量%に希釈してガードナー法で測定)、酸価3
〜30である油変性アルキド樹脂を97〜50重量部
及び (B) ヘキサメチロールメラミンのアリル―アルコ
キシ化合物を3〜50重量部の範囲内で(A)と(B)の
総量が100重量部となる量で含み、 (C) 必要に応じて希釈溶剤 を含有してなる塗料用酸化重合性変性アルキド樹
脂組成物。
[Scope of Claims] 1 (A) An oil component having an iodine value of 40 or more and having oxidative polymerizability is made to have an oil length of 25 to 80%, and a viscosity of 0.5 to 13.0 poise (25°C, 60% by weight in xylol). % and measured by Gardner method), acid value 3
-30 oil-modified alkyd resin in the range of 97 to 50 parts by weight and (B) the allyl-alkoxy compound of hexamethylolmelamine in the range of 3 to 50 parts by weight, so that the total amount of (A) and (B) is 100 parts by weight. (C) an oxidatively polymerizable modified alkyd resin composition for paint, which optionally contains a diluting solvent;
JP19670683A 1983-10-20 1983-10-20 Oxidatively polymerizable modified alkyd resin composition Granted JPS6088077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19670683A JPS6088077A (en) 1983-10-20 1983-10-20 Oxidatively polymerizable modified alkyd resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19670683A JPS6088077A (en) 1983-10-20 1983-10-20 Oxidatively polymerizable modified alkyd resin composition

Publications (2)

Publication Number Publication Date
JPS6088077A JPS6088077A (en) 1985-05-17
JPH0216939B2 true JPH0216939B2 (en) 1990-04-18

Family

ID=16362229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19670683A Granted JPS6088077A (en) 1983-10-20 1983-10-20 Oxidatively polymerizable modified alkyd resin composition

Country Status (1)

Country Link
JP (1) JPS6088077A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7011556B2 (en) * 2018-09-03 2022-01-26 関西ペイント株式会社 Coating composition and method for forming a multi-layer coating film

Also Published As

Publication number Publication date
JPS6088077A (en) 1985-05-17

Similar Documents

Publication Publication Date Title
TWI541299B (en) Branched polyester polymers and coatings comprising the same
KR100509386B1 (en) Can and coil coating resins
GB1560785A (en) Polyesters
HUE027054T2 (en) Drier for auto-oxidisable coating compositions
US7566759B2 (en) Non-aqueous coating formulation of low volatility
US5068125A (en) Process for the production of coatings based on unsaturated polyester resins by hardening under infra-red radiation
MXPA04010918A (en) Compliant overprint varnishes.
TW313581B (en)
Deligny et al. Alkyds & polyesters
US4450257A (en) Process for producing phosphoric acid group containing polyester resins and their use as paint binders
JP2000502741A (en) Solvent-free, low-release, curable coatings
WO1984000972A1 (en) Paint resin composition containing polyester resin
CA2262373C (en) Coating agent, process for producing the same and its use, in particular for lacquering the outside of packages
US2315708A (en) Polyester resins from phthalic anhydride pentaerythritol and soya bean oil
JPH0216939B2 (en)
US10767076B2 (en) Water-reducible coating composition
GB1588737A (en) Air drying coating compositions
JP4196231B2 (en) Metal printing ink composition and coating using the same
JPH02235921A (en) Coating alkyd resin
US3655596A (en) Short oil alkyd resins
US2553682A (en) Oil-modified alkyd resin modified with cellulose derivative
EP2586839B1 (en) A method for coating a coil of metal
US3228787A (en) Heat curable top-coating composition
CN108495899A (en) Novel biology base polyester
JPH08311396A (en) Aqueous base coating material composition and formation of coating film