JPH0216923B2 - - Google Patents

Info

Publication number
JPH0216923B2
JPH0216923B2 JP58188362A JP18836283A JPH0216923B2 JP H0216923 B2 JPH0216923 B2 JP H0216923B2 JP 58188362 A JP58188362 A JP 58188362A JP 18836283 A JP18836283 A JP 18836283A JP H0216923 B2 JPH0216923 B2 JP H0216923B2
Authority
JP
Japan
Prior art keywords
unsaturated
side chain
meth
weight
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58188362A
Other languages
Japanese (ja)
Other versions
JPS6081218A (en
Inventor
Eiichiro Takyama
Katsuhisa Morita
Seiichi Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP18836283A priority Critical patent/JPS6081218A/en
Publication of JPS6081218A publication Critical patent/JPS6081218A/en
Publication of JPH0216923B2 publication Critical patent/JPH0216923B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、密着性、耐水性、耐薬品性および機
械的強度にすぐれた硬化可能な樹脂組成物に関す
る。 近年、不飽和ポリエステル樹脂やビニルエステ
ル樹脂等のごときラジカル硬化型樹脂の用途が拡
大するにつれて、これらのラジカル硬化型樹脂に
要求される性能も益々高度なものになつてきてい
る。例えば熱水貯蔵タンクには、既存のラジカル
硬化型樹脂が有する耐水性や耐薬品性を上廻るも
のが要求されるようになつてきた。 耐水性や耐薬品性は、当然のことながらポリマ
ーの構造に左右され、不飽和ポリエステル樹脂、
ビニルエステル樹脂等のごとき既存のラジカル硬
化型樹脂にあつては、いずれも主鎖ポリマーまた
は主鎖オリゴマーの構成分子にエステル結合を有
し、このエステル結合の濃度が性能を左右する要
因であることが知られている。 従つて、これら既存のラジカル硬化型樹脂の物
性をより以上に向上させようとしてもエステル結
合のような、いわば物性を損う因子が存在する以
上、一定レベル以上に物性を向上させることは事
実上無理ということになる。 本発明者等は、既存のラジカル硬化型樹脂が有
する欠点を除去し、より広範囲な用途に対応可能
な硬化型樹脂について種々検討した結果、主鎖に
エステル結合のような物性を損なう因子を含まな
いビニルモノマーの重合により得られたポリマー
を主鎖ポリマーとし、かつその側鎖にウレタン結
合を介してアクリロイル基またはメタクリロイル
基をラジカル硬化による架橋点として有する、側
鎖不飽和結合型樹脂が有効であることを見出し、
すでに提案した。 しかし、この側鎖不飽和結合型樹脂を単独で使
用した場合は、硬化が緩やかであり、完全硬化に
は比較的長時間を要するという難点を有してい
る。 かかる観点から、本発明者等はさらに検討した
結果、側鎖不飽和結合型樹脂と不飽和アルキツ
ド、および必要に応じて重合性モノマーを配合し
てなる硬化可能な樹脂組成物が前記欠点を解消で
きることを見出し本発明を完成するに至つた。 即ち、本発明は、 (A) スチレン、ビニルトルエン、アクリロニトリ
ル及び(メタ)アクリル酸エステルから選ばれ
る少くとも1種のビニルモノマーとヒドロキシ
アルキル(メタ)アクリレートとの共重合によ
つて得られる側鎖にヒドロキシル基を有するビ
ニル共重合体aと、ジイソシアナートとヒドロ
キシアルキル(メタ)アクリレートとの付加物
で分子中に遊離のイソシアナート基と(メタ)
アクリロイル基を共有する不飽和イソシアナー
トbとを反応させて得られる、主鎖がビニルモ
ノマーの重合により得られたポリマーからな
り、かつ側鎖にウレタン結合を介して(メタ)
アクリロイル基を有する分子量10000以上の側
鎖不飽和結合型樹脂の95〜5重量%と (B) α,β−不飽和多塩基酸もしくはその酸無水
物、またはこれと飽和多塩基酸もしくはその酸
無水物との混合物と多価アルコールとをエステ
ル化して得られる不飽和アルキツドの5〜95重
量%を配合してなる硬化可能な樹脂組成物、お
よび (C) 必要に応じて、側鎖不飽和結合型樹脂及び不
飽和アルキツドの混合物100重量部に対しさら
に重合性モノマー10〜60重量部を配合すること
を特徴とする硬化可能な樹脂組成物に関する。 本発明において、側鎖不飽和結合型樹脂と不飽
和アルキツドとの配合効果は極めて顕著である。
即ち、側鎖不飽和結合型樹脂は硬化が緩やかであ
り、完全硬化には比較的長時間を要するという難
点を有し、一方、不飽和アルキツドは、耐水性、
耐薬品性および密着性等が充分でないという難点
を有するが、これら両成分の欠陥は高分子量(分
子量約1万以上)の側鎖不飽和結合型樹脂と不飽
和アルキツドとを混合して使用することによつて
完全に解消され、硬化性にすぐれ、かつ密着性、
耐水性および機械的強度の極めてすぐれた硬化可
能な樹脂組成物を与える。 本発明において使用される側鎖不飽和結合型樹
脂とは、主鎖がビニルモノマーの重合により得ら
れたポリマーからなり、かつ側鎖に2個のウレタ
ン結合を介してアクリロイル基またはメタクリロ
イル基を有するラジカル硬化型樹脂である。側鎖
不飽和結合型樹脂を模式的に示すと下記の通りで
ある(式中、〜はビニルモノマーの重合によつて
合成された主鎖ポリマーを示す)。 側鎖不飽和結合型樹脂の具体的な製造方法とし
ては、例えば次の方法があげられる。 (イ) スチレン、ビニルトルエン、アクリロニトリ
ル及び(メタ)アクリル酸エステルから選ばれ
る少くとも1種のビニルモノマーとヒドロキシ
アルキル(メタ)アクリレートとを共重合させ
て側鎖にヒドロキシル基を有するビニル共重合
体aを合成する、 (ロ) ジイソシアナートとヒドロキシアルキル(メ
タ)アクリレートとをヒドロキシル基:イソシ
アナート基が1:1(モル比)で反応させて、
反応生成物1分子中に遊離のイソシアナート基
と(メタ)アクリロイル基とを共有する不飽和
イソシアナートbを合成し、 (ハ) 溶剤またはモノマーに溶解した工程(イ)の側鎖
にヒドロキシル基を有するビニル共重合体a
と、工程(ロ)の不飽和イソシアナートbとを、モ
ノマー或は溶剤溶液中で反応させる。 工程(イ)の反応において使用されるヒドロキシア
ルキル(メタ)アクリレートとしては、2−ヒド
ロキシエチルアクリレート、2−ヒドロキシエチ
ルメタクリレート、2−ヒドロキシプロピルアク
リレート、2−ヒドロキシプロピルメタクリレー
ト、などがあげられる。 ヒドロキシアルキル(メタ)アクリレートと共
重合してビニル共重合体aを形成させるためのビ
ニルモノマーとしては、スチレン、ビニルトルエ
ン、アクリロニトリル及び(メタ)アクリル酸エ
ステルから選ばれる少くとも1種のビニルモノマ
ーが使用される。(メタ)アクリル酸エステルと
しては、メチル、エチル、ブチル、2−エチルヘ
キシル、オクチル等のアクリル酸のエステル及び
メチル、エチル、プロピル、ブチル、イソブチ
ル、ターシヤリーブチル、2−エチルヘキシル、
ラウリル、ベンジル、シクロヘキシル、テトラヒ
ドロフルフリル等のメタクリル酸のエステルが挙
げられる。変性用として酢酸ビニル、アクリル
酸、メタクリル酸などのその他のビニルモノマー
も利用できる。 ビニル共重合体a中のヒドロキシル基の含有率
は、目的に応じて異なるので一概には決められな
いが、一般には1〜50モル%の範囲内が好まし
い。 工程(イ)の重合は、そのまま次の工程に進むこと
ができる点で溶液重合が好ましいが、パール重
合、塊状重合により得られたポリマーをモノマー
に溶解し、次の反応に供する方法を採用してもよ
い。 工程(イ)で得られたビニル共重合体aのヒドロキ
シル基と反応させて、側鎖に2個のウレタン結合
を介して(メタ)アクリロイル基を導入するため
には、工程(ロ)の方法によつてジイソシアナートと
ヒドロキシアルキル(メタ)アクリレートとをヒ
ドロキシル基とイソシアナート基の比率がモル比
で実質的に1:1になるように反応させて得られ
る不飽和イソシアナートbが用いられる。 ヒドロキシアルキル(メタ)アクリレートとし
ては、2−ヒドロキシエチルアクリレート、2−
ヒドロキシプロピルアクリレート、2−ヒドロキ
シエチルメタクリレート、2−ヒドロキシプロピ
ルメタクリレート等があげられる。 ジイソシアナートとしては、2,4−トリレン
ジイソシアナート、2,4−トリレンジイソシア
ナートと2,6−トリレンジイソシアナートとの
混合イソシアナート、ジフエニルメタンジイソシ
アナート、1,6−ヘキサメチレンジイソシアナ
ート、1,5−ナフチレンジイソシアナート、イ
ソホロンジイソシアナート、キシリレンジイソシ
アナート、水素化ジフエニルメタンジイソシアナ
ート、水素化キシリレンジイソシアナート等があ
げられる。 工程(ロ)のヒドロキシアルキル(メタ)アクリレ
ートとジイソシアナートとの反応は、ジイソシア
ナートを溶剤、またはモノマーに溶解しておき、
ヒドロキシアルキル(メタ)アクリレートを滴下
することにより行われる。 側鎖に不飽和結合を有する側鎖不飽和結合型樹
脂を得るための次の工程〔工程(ハ)〕は、主鎖ポリ
マー側鎖のヒドロキシル基と不飽和イソシアナー
トとの反応である。 工程(イ)で得られた側鎖にヒドロキシル基を有す
る主鎖ポリマーのヒドロキシル基と工程(ロ)で得ら
れた不飽和イソシアナートのイソシアナート基の
反応は、溶剤またはモノマー中で行なわれる。 溶剤を用いて反応を行なつた場合には、用途に
よつて溶剤を除いてモノマー溶液にすることが好
ましい。溶剤とモノマーを置き変えるには、モノ
マーよりも低沸点の溶剤を加え、沸点差を利用し
て溶剤を留去することが好ましい。 モノマー溶液で反応を行なつた場合には、生成
物はそのまま使用することができる。 工程(ロ)と工程(ハ)で使用される溶剤としては、酢
酸エチルのごときエステル類、メチルエチルケト
ンのごときケトン類、テトラヒドロフランのごと
きエーテル類、ベンゼンのごとき芳香族炭化水素
類等があげられ、またモノマーとしては、スチレ
ン、ビニルトルエン、メタクリル酸メチル、アク
リロニトリル、アクリル酸エチル等があげられ
る。 本発明において使用される不飽和アルキツド
は、α・β−不飽和多塩基酸もしくはその酸無水
物、またはこれと飽和多塩基酸もしくはその酸無
水物との混合物と多価アルコールとをエステル化
して得られるものである。 α・β−不飽和多塩基酸もしくはその酸無水物
としては、無水マレイン酸、マレイン酸、フマル
酸、イタコン酸等があげられる。 飽和多塩基酸もしくはその酸無水物としては、
無水フタル酸、イソフタル酸、テレフタル酸、ヘ
キサヒドロ無水フタル酸、コハク酸、アジピン
酸、セバシン酸、テトラクロロ無水フタル酸等が
あげられる。 不飽和結合を有してはいるが、α・β−不飽和
多塩基酸のような意味での不飽和酸ではなく、慣
行上飽和酸のように扱われている多塩基酸として
は、テトラヒドロ無水フタル酸、メチルテトラヒ
ドロ無水フタル酸、エンドメチレンテトラヒドロ
無水フタル酸、ヘツト酸等があげられる。 多価アルコールとしては、2〜3価のものが用
いられるが、通常は2価のグリコールが好ましく
用いられる。代表例としては、プロピレングリコ
ール、ジプロピレングリコール、エチレングリコ
ール、ジエチレングリコール、ネオペンチルグリ
コール、1,4−ブタンジオール、1,6−ヘキ
サンジオール、水素化ビスフエノールA、ビスフ
エノールA−エチレンオキシド付加物、ビスフエ
ノールA−プロピレンオキシド付加物、1,4−
シクロヘキサンジメタノール、トリメチロールプ
ロパン、グリセリン等があげられる。 エステル化は常法に順じて行われる。 不飽和アルキツドの種類は、製品に要求される
物性によつて異なるので一概には決められない。
不飽和アルキツドには、必要に応じて共重合可能
なモノマーを併用することができ、大部分の用途
にはモノマーを併用することが好適であるが、成
形材料や化粧板等の用途には、モノマーを併用し
ない場合もある。共重合可能なモノマーとして
は、スチレン、ビニルトルエン、メタクリル酸メ
チル、ジアリルフタレート等があげられる。 側鎖不飽和結合樹脂と不飽和アルキツドとの混
合割合は、製品に要求される性能によつて異なる
ので一概には決められないが、一般には側鎖不飽
和結合型樹脂5〜95重量%、好ましくは20〜80重
量%と不飽和のアルキツド95〜5重量%、好まし
くは80〜20重量%とからなることが好ましい。こ
の範囲外では、本発明の顕著な効果が得られな
い。 本発明においては、側鎖不飽和結合型樹脂と不
飽和アルキツドからなる組成物に、必要に応じて
さらに重合性モノマーを配合してもよい。 重合性モノマーとしては、スチレン、メタクリ
ル酸メチル、メタクリル酸エチル、アクリル酸2
エチルヘキシル、エチレングリコールジアクリレ
ート、ポリエチレングリコールジアクリレート、
エチレングリコールジメタクリレート、ポリエチ
レングリコールジメクリレート、プロピレングリ
コールジアクリレート、ポリプロピレングリコー
ルジアクリレート、プロピレングリコールジメタ
クリレート、ポリプロピレングリコールジメタク
リレート、トリメチルロールプロパンジアクリレ
ート、トリメチロールプロパントリアクリレー
ト、トリメチロールプロパンジメタクリレート、
トリメチロールプロパントリメタクリレート、ペ
ンタエリスリツトトリアクリレート、ペンタエリ
スリツトテトラアクリレート、ペンタエリスリツ
トトリメタクリレート、ペンタエリスリツトテト
ラメタクリレート等があげられ、これらは混合し
て使用してもよい。重合性モノマーの配合量は、
側鎖不飽和結合型樹脂と不飽和アルキツドの混合
物100重量部に対して10〜60重量部であることが
好ましい。 本発明の硬化可能な樹脂組成物の硬化は、通常
の公知の方法によつて行なうことができる。 即ち、本発明の硬化可能な樹脂組成物を硬化さ
せるためには、過酸化ベンゾイル、メチルエチル
ケトンパーオキサイド、キユメンハイドロパーオ
キサイド等のごとき有機過酸化物を添加して加熱
硬化させてもよいし、またはベンゾイン、ベンジ
ル、ベンゾフエノン、2−ヒドロキシ−3−ベン
ゾイルプロパン、ベンゾインメチルエーテル等の
ごとき光増感剤を添加して紫外線硬化させてもよ
い。また、前記有機過酸化物とコバルトの有機酸
塩(例えばナフテン酸コバルト)、芳香族3級ア
ミン(例えばジメチルアニリン)等のごとき促進
剤を併用して常温硬化させてもよい。 硬化可能な樹脂組成物には、必要に応じて補強
材、充てん材、着色剤、離型剤等が添加すること
ができる。 本発明の硬化可能な樹脂組成物は、繊維強化プ
ラスチツクや注型品の製造用として有用であるば
かりでなく、塗料や接着剤としても利用すること
ができる。 以下、実施例によつて本発明をさらに詳細に説
明する。 なお、実施例中の「部」および「%」とは、こ
とわりのない限りそれぞれ『重量部』および『重
量%』を意味する。 実施例 1 (1) 側鎖不飽和結合型樹脂(A)の合成 撹拌機、ガス導入管付温度計、滴下ロート、還
流コンデンサーを付した1のセパラブルフラス
コに、ベンゼン300g、アゾビスイソブチロニト
リル1g、ラウリルメルカプタン0.3gを仕込み、
窒素ガスで置換した後、ベンゼンの還流下で、ス
チレン250g、アクリロニトリル16g、2−ヒド
ロキシプロピルメタクリレート43gの混合モノマ
ーを滴下した。 滴下終了後、16時間ベンゼンの還流を続け重合
を完結させた。60℃まで温度を下げた後、ハイド
ロキノン0.1gを添加して反応を中止させ、側鎖
にヒドロキシル基を有するスチレン−アクリロニ
トリル−2−ヒドロキシプロピルメタクリレート
を共重合成分とする主鎖ポリマーaを得た。得ら
れた主鎖ポリマーaをGPCで分析した結果、数
平均分子量は約30000と推定された。 さらに、別に同種類の1のセパラブルフラス
コに、2,4−トリレンジイソシアナート174g、
ベンゼン182g、ヒドロキノン0.01g、ジブチル
錫ジラウレート0.2gを仕込み、温度を60℃に保
ちながら2−ヒドロキシプロピルメタクリレート
144gを滴下した。 滴下終了後、5時間60℃に保つと、赤外分析の
結果ヒドロキシル基は完全に消滅した不飽和イソ
シアナートbのベンゼン溶液が得られた。 次いで、前述した側鎖にヒドロキシル基を有す
る主鎖ポリマーa全量に、不飽和イソシアナート
bのベンゼン溶液150gを加え、60℃で6時間反
応を続けると、赤外分析の結果遊離のイソシアナ
ート基はほとんど完全に消失した。 次いで、約200mmHgの減圧下で約180gのベン
ゼンを溜去させた後、スチレン410gを加え、更
に約200mmHg下に残りのベンゼン約300gを溜去
した。淡黄色、粘度18.2ポイズの側鎖に2個のウ
レタン結合を介してメタクリロイル基を有する側
鎖不飽和結合型樹脂(A)のスチレン溶液が得られ
た。 (2) 不飽和ポリエステル樹脂(B)の合成 撹拌機、分溜コンデンサー、温度計、ガス導入
管を付した1の四ツ口フラスコに、ビスフエノ
ールA−プロピレンオキシド付加物(プロピレン
オキシドを両末端に1モルづつ付加)350g、フ
マル酸116gを仕込み、窒素ガス気流中210〜220
℃にてエステル化を行なつた。酸価が35.4に達し
た時点でハイドロキノン0.05gを加え、金属製バ
ツトに注入し、冷却して黄褐色、融点約80℃の不
飽和アルキツドを得た。 粉砕した不飽和アルキツド300部とスチレン300
部を1の三ツ口フラスコ中で撹拌しながら50〜
60℃に加温、溶解させて黄褐色で粘度が4.7ポイ
ズの不飽和ポリエステル樹脂(B)を得た。 側鎖不飽和結合型樹脂(A)、不飽和ポリエステル
樹脂(B)、またはこれらの混合物100部に対し、そ
れぞれメチルエチルケトンパーオキサイド2部、
ナフテン酸コバルト1部およびジメチルアニリン
0.1部を添加して得られた組成物を300mm×300mm
×3mmの型に注型し、硬化させたものの物性は第
1表に示すごときであつて、本発明の組成物から
得られた注型品の物性は側鎖不飽和結合型樹脂(A)
単独、または不飽和ポリエステル樹脂(B)単独の注
型品の物性よりバランスがとれてすぐれていた。 なお、塗膜硬度は、ガラス板上に組成物をバー
コーターで0.2mmになるように塗装して硬化させ
たものの値である。
The present invention relates to a curable resin composition that has excellent adhesion, water resistance, chemical resistance, and mechanical strength. In recent years, as the uses of radical curable resins such as unsaturated polyester resins and vinyl ester resins have expanded, the performance required of these radical curable resins has become increasingly sophisticated. For example, hot water storage tanks are now required to have water resistance and chemical resistance that exceed the water resistance and chemical resistance of existing radical curable resins. Water resistance and chemical resistance naturally depend on the structure of the polymer, and unsaturated polyester resin,
Existing radical curable resins such as vinyl ester resins all have ester bonds in the constituent molecules of the main chain polymer or main chain oligomer, and the concentration of these ester bonds is a factor that influences performance. It has been known. Therefore, even if we try to further improve the physical properties of these existing radical-curing resins, as long as there are factors such as ester bonds that impair the physical properties, it is virtually impossible to improve the physical properties beyond a certain level. It turns out that it is impossible. As a result of various studies on curable resins that eliminate the drawbacks of existing radical curable resins and can be used in a wider range of applications, the present inventors discovered that the main chain contains factors that impair physical properties such as ester bonds. The main chain polymer is a polymer obtained by polymerization of vinyl monomers that do not have a urethane bond, and the side chain has an acryloyl group or a methacryloyl group as a crosslinking point by radical curing via a urethane bond in the side chain. I discovered something,
Already suggested. However, when this side chain unsaturated bond type resin is used alone, it has the disadvantage that curing is slow and complete curing takes a relatively long time. From this point of view, the present inventors further investigated and found that a curable resin composition comprising a side chain unsaturated bond type resin, an unsaturated alkyd, and, if necessary, a polymerizable monomer, overcomes the above drawbacks. They discovered what they could do and completed the present invention. That is, the present invention provides (A) a side chain obtained by copolymerizing at least one vinyl monomer selected from styrene, vinyltoluene, acrylonitrile, and (meth)acrylic acid ester with a hydroxyalkyl (meth)acrylate; An adduct of vinyl copolymer a having hydroxyl groups, diisocyanate and hydroxyalkyl (meth)acrylate, with free isocyanate groups and (meth)acrylate in the molecule.
The main chain is obtained by reacting with unsaturated isocyanate b that shares an acryloyl group, and the main chain is composed of a polymer obtained by polymerization of vinyl monomer, and the side chain has a (meth)
95 to 5% by weight of a side chain unsaturated bond type resin having a molecular weight of 10,000 or more and having an acryloyl group, and (B) an α,β-unsaturated polybasic acid or its acid anhydride, or this and a saturated polybasic acid or its acid. A curable resin composition containing 5 to 95% by weight of an unsaturated alkyd obtained by esterifying a mixture with an anhydride and a polyhydric alcohol, and (C) optionally containing unsaturated side chains. The present invention relates to a curable resin composition characterized in that 10 to 60 parts by weight of a polymerizable monomer is further blended with 100 parts by weight of a mixture of a bonded resin and an unsaturated alkyd. In the present invention, the effect of blending the side chain unsaturated bond type resin and the unsaturated alkyd is extremely remarkable.
In other words, side chain unsaturated bond type resins have the disadvantage of slow curing and require a relatively long time for complete curing, while unsaturated alkyds have poor water resistance,
Although it has the disadvantage of insufficient chemical resistance and adhesion, these defects in both components can be resolved by mixing a high molecular weight (molecular weight of approximately 10,000 or more) side chain unsaturated bond type resin and unsaturated alkyd. It has excellent hardening properties and adhesion.
A curable resin composition with extremely excellent water resistance and mechanical strength is provided. The side chain unsaturated bond type resin used in the present invention is a resin whose main chain is made of a polymer obtained by polymerization of vinyl monomers, and which has an acryloyl group or a methacryloyl group in the side chain via two urethane bonds. It is a radical curing resin. The side chain unsaturated bond type resin is schematically shown below (in the formula, ~ represents a main chain polymer synthesized by polymerization of vinyl monomers). Specific methods for producing the side chain unsaturated bond type resin include, for example, the following method. (a) A vinyl copolymer having a hydroxyl group in its side chain, obtained by copolymerizing at least one vinyl monomer selected from styrene, vinyltoluene, acrylonitrile, and (meth)acrylic acid ester with a hydroxyalkyl (meth)acrylate. Synthesizing a, (b) Reacting diisocyanate and hydroxyalkyl (meth)acrylate at a ratio of hydroxyl group to isocyanate group of 1:1 (mole ratio),
Synthesize an unsaturated isocyanate b that shares a free isocyanate group and a (meth)acryloyl group in one molecule of the reaction product, and (c) add a hydroxyl group to the side chain in step (a) dissolved in a solvent or monomer. Vinyl copolymer a having
and the unsaturated isocyanate b of step (b) are reacted in a monomer or solvent solution. Examples of the hydroxyalkyl (meth)acrylate used in the reaction of step (a) include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and 2-hydroxypropyl methacrylate. As the vinyl monomer for copolymerizing with hydroxyalkyl (meth)acrylate to form vinyl copolymer a, at least one vinyl monomer selected from styrene, vinyltoluene, acrylonitrile, and (meth)acrylic acid ester is used. used. (Meth)acrylic acid esters include esters of acrylic acid such as methyl, ethyl, butyl, 2-ethylhexyl, octyl, and methyl, ethyl, propyl, butyl, isobutyl, tert-butyl, 2-ethylhexyl,
Examples include esters of methacrylic acid such as lauryl, benzyl, cyclohexyl, and tetrahydrofurfuryl. Other vinyl monomers such as vinyl acetate, acrylic acid, and methacrylic acid can also be used for modification. The content of hydroxyl groups in the vinyl copolymer a cannot be determined unconditionally since it varies depending on the purpose, but it is generally preferably within the range of 1 to 50 mol%. Solution polymerization is preferable for the polymerization in step (a) since it can proceed directly to the next step, but a method in which the polymer obtained by pearl polymerization or bulk polymerization is dissolved in a monomer and subjected to the next reaction is also used. It's okay. In order to introduce a (meth)acryloyl group into the side chain via two urethane bonds by reacting with the hydroxyl group of the vinyl copolymer a obtained in step (a), use the method of step (b). An unsaturated isocyanate b obtained by reacting a diisocyanate and a hydroxyalkyl (meth)acrylate such that the molar ratio of hydroxyl groups to isocyanate groups is substantially 1:1 is used. . As the hydroxyalkyl (meth)acrylate, 2-hydroxyethyl acrylate, 2-
Examples include hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, and 2-hydroxypropyl methacrylate. Examples of the diisocyanate include 2,4-tolylene diisocyanate, mixed isocyanate of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, diphenylmethane diisocyanate, and 1,6-hexocyanate. Examples include methylene diisocyanate, 1,5-naphthylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and hydrogenated xylylene diisocyanate. In step (b), the reaction between hydroxyalkyl (meth)acrylate and diisocyanate is performed by dissolving the diisocyanate in a solvent or monomer,
This is done by dropping the hydroxyalkyl (meth)acrylate. The next step [step (c)] for obtaining a side chain unsaturated bond type resin having an unsaturated bond in the side chain is a reaction between the hydroxyl group of the main chain polymer side chain and an unsaturated isocyanate. The reaction between the hydroxyl group of the main chain polymer having a hydroxyl group in the side chain obtained in step (a) and the isocyanate group of the unsaturated isocyanate obtained in step (b) is carried out in a solvent or a monomer. When the reaction is carried out using a solvent, it is preferable to remove the solvent and prepare a monomer solution depending on the purpose. In order to replace the solvent and monomer, it is preferable to add a solvent with a lower boiling point than the monomer and distill off the solvent using the difference in boiling point. If the reaction is carried out in monomer solution, the product can be used as is. Examples of the solvent used in step (b) and step (c) include esters such as ethyl acetate, ketones such as methyl ethyl ketone, ethers such as tetrahydrofuran, aromatic hydrocarbons such as benzene, etc. Examples of monomers include styrene, vinyltoluene, methyl methacrylate, acrylonitrile, and ethyl acrylate. The unsaturated alkyd used in the present invention is obtained by esterifying an α/β-unsaturated polybasic acid or its acid anhydride, or a mixture of this with a saturated polybasic acid or its acid anhydride, and a polyhydric alcohol. That's what you get. Examples of the α/β-unsaturated polybasic acid or its acid anhydride include maleic anhydride, maleic acid, fumaric acid, and itaconic acid. As a saturated polybasic acid or its acid anhydride,
Examples include phthalic anhydride, isophthalic acid, terephthalic anhydride, hexahydrophthalic anhydride, succinic acid, adipic acid, sebacic acid, and tetrachlorophthalic anhydride. Although it has unsaturated bonds, it is not an unsaturated acid in the sense of α/β-unsaturated polybasic acids, but is a polybasic acid that is conventionally treated like a saturated acid. Examples include phthalic anhydride, methyltetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, and Hett's acid. As the polyhydric alcohol, divalent to trivalent alcohols are used, and divalent glycol is usually preferably used. Typical examples include propylene glycol, dipropylene glycol, ethylene glycol, diethylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, hydrogenated bisphenol A, bisphenol A-ethylene oxide adduct, and bisphenol A-ethylene oxide adduct. Phenol A-propylene oxide adduct, 1,4-
Examples include cyclohexanedimethanol, trimethylolpropane, and glycerin. Esterification is carried out according to conventional methods. The type of unsaturated alkyd cannot be determined simply because it depends on the physical properties required for the product.
Copolymerizable monomers can be used in combination with unsaturated alkyds if necessary, and for most applications it is preferable to use monomers in combination, but for applications such as molding materials and decorative laminates, Monomers may not be used together. Examples of copolymerizable monomers include styrene, vinyltoluene, methyl methacrylate, diallyl phthalate, and the like. The mixing ratio of the side chain unsaturated bond type resin and the unsaturated alkyd cannot be determined unconditionally as it varies depending on the performance required of the product, but generally it is 5 to 95% by weight of the side chain unsaturated bond type resin, It preferably consists of 20-80% by weight and 95-5% by weight of unsaturated alkyds, preferably 80-20% by weight. Outside this range, the remarkable effects of the present invention cannot be obtained. In the present invention, a polymerizable monomer may be further added to the composition comprising the side chain unsaturated bond type resin and the unsaturated alkyd, if necessary. Polymerizable monomers include styrene, methyl methacrylate, ethyl methacrylate, and acrylic acid 2.
Ethylhexyl, ethylene glycol diacrylate, polyethylene glycol diacrylate,
Ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, propylene glycol diacrylate, polypropylene glycol diacrylate, propylene glycol dimethacrylate, polypropylene glycol dimethacrylate, trimethylolpropane diacrylate, trimethylolpropane triacrylate, trimethylolpropane dimethacrylate,
Examples include trimethylolpropane trimethacrylate, pentaerythrit triacrylate, pentaerythrittetraacrylate, pentaerythritute trimethacrylate, pentaerythritutetramethacrylate, etc., and these may be used in combination. The amount of polymerizable monomer is
The amount is preferably 10 to 60 parts by weight based on 100 parts by weight of the mixture of side chain unsaturated bond type resin and unsaturated alkyd. The curable resin composition of the present invention can be cured by a conventionally known method. That is, in order to cure the curable resin composition of the present invention, an organic peroxide such as benzoyl peroxide, methyl ethyl ketone peroxide, kyumene hydroperoxide, etc. may be added and the composition may be heated and cured. Alternatively, UV curing may be carried out by adding a photosensitizer such as benzoin, benzyl, benzophenone, 2-hydroxy-3-benzoylpropane, benzoin methyl ether, etc. Further, the organic peroxide and an accelerator such as an organic acid salt of cobalt (for example, cobalt naphthenate), an aromatic tertiary amine (for example, dimethylaniline), etc. may be used in combination to cure at room temperature. A reinforcing material, a filler, a coloring agent, a mold release agent, etc. can be added to the curable resin composition as necessary. The curable resin composition of the present invention is not only useful for producing fiber-reinforced plastics and cast products, but can also be used as a paint or adhesive. Hereinafter, the present invention will be explained in more detail with reference to Examples. In addition, "parts" and "%" in the examples mean "parts by weight" and "% by weight", respectively, unless otherwise specified. Example 1 (1) Synthesis of side chain unsaturated bond type resin (A) In a separable flask (1) equipped with a stirrer, a thermometer with a gas inlet tube, a dropping funnel, and a reflux condenser, 300 g of benzene and azobisisobutylene were added. Contains 1g of lonitrile and 0.3g of lauryl mercaptan.
After purging with nitrogen gas, a monomer mixture of 250 g of styrene, 16 g of acrylonitrile, and 43 g of 2-hydroxypropyl methacrylate was added dropwise under reflux of benzene. After the dropwise addition was completed, benzene was continued to be refluxed for 16 hours to complete the polymerization. After lowering the temperature to 60°C, 0.1 g of hydroquinone was added to stop the reaction, and a main chain polymer a containing styrene-acrylonitrile-2-hydroxypropyl methacrylate having a hydroxyl group in the side chain as a copolymerization component was obtained. . As a result of analyzing the obtained main chain polymer a by GPC, the number average molecular weight was estimated to be about 30,000. Furthermore, in a separate separable flask of the same type, 174 g of 2,4-tolylene diisocyanate,
Prepare 182g of benzene, 0.01g of hydroquinone, and 0.2g of dibutyltin dilaurate, and add 2-hydroxypropyl methacrylate while maintaining the temperature at 60℃.
144g was dropped. After the dropwise addition was completed, the solution was kept at 60° C. for 5 hours, and as a result of infrared analysis, a benzene solution of unsaturated isocyanate b in which the hydroxyl groups had completely disappeared was obtained. Next, 150 g of a benzene solution of unsaturated isocyanate b was added to the entire amount of main chain polymer a having hydroxyl groups in the side chains mentioned above, and the reaction was continued at 60°C for 6 hours. As a result of infrared analysis, free isocyanate groups were detected. has almost completely disappeared. Next, about 180 g of benzene was distilled off under a reduced pressure of about 200 mmHg, 410 g of styrene was added, and about 300 g of the remaining benzene was further distilled off under a reduced pressure of about 200 mmHg. A styrene solution of a side chain unsaturated bond type resin (A) having a methacryloyl group via two urethane bonds in the side chain was obtained, having a pale yellow color and a viscosity of 18.2 poise. (2) Synthesis of unsaturated polyester resin (B) A bisphenol A-propylene oxide adduct (with propylene oxide at both ends) was placed in a four-necked flask equipped with a stirrer, a fractionating condenser, a thermometer, and a gas inlet tube. Add 350g of fumaric acid (1 mole each) and 116g of fumaric acid, and add 210~220 g
Esterification was carried out at °C. When the acid value reached 35.4, 0.05 g of hydroquinone was added, poured into a metal vat, and cooled to obtain an unsaturated alkyd with a yellowish brown color and a melting point of about 80°C. 300 parts of ground unsaturated alkyd and 300 parts of styrene
1 part in a three-necked flask while stirring.
The mixture was heated to 60°C and dissolved to obtain a yellowish brown unsaturated polyester resin (B) with a viscosity of 4.7 poise. 2 parts of methyl ethyl ketone peroxide for each 100 parts of the side chain unsaturated bond type resin (A), the unsaturated polyester resin (B), or a mixture thereof;
1 part cobalt naphthenate and dimethylaniline
The composition obtained by adding 0.1 part of
The physical properties of the cast product obtained from the composition of the present invention are as shown in Table 1, and the physical properties of the cast product obtained from the composition of the present invention are as follows:
The physical properties were well-balanced and superior to those of cast products made using either the unsaturated polyester resin (B) alone or the unsaturated polyester resin (B) alone. The coating film hardness is the value obtained by coating the composition on a glass plate with a bar coater to a thickness of 0.2 mm and curing it.

【表】 実施例 2 (1) 側鎖不飽和結合型樹脂(C)の合成 撹拌機、ガス導入管付き温度計、滴下ロート、
還流コンデンサーを付した1のセパラブルフラ
スコに、ベンゼン260、アゾビスイソブチロニト
リル1g、ラウリルメルカプタン1gを仕込み、
窒素ガスで置換した後、ベンゼンの還流下でスチ
レン104g、メタクリル酸メチル100g、2−ヒド
ロキシエチルアクリレート35gの混合モノマーを
滴下した。 滴下終了後、ベンゼンの沸点下で16時間還流を
続け重合を完結させた。 60℃まで温度を下げた後、ハイドロキノン0.1
gを添加して反応を中止させ、側鎖にヒドロキシ
ル基を有する主鎖ポリマーcを得た。得られた主
鎖ポリマーcをGPCで分析した結果、数平均分
子量が約35000と推定された。 さらに別の同種類の1のセパラブルフラスコ
に、イソホロンジイソシアナート222g、ベンゼ
ン180g、ジブチル錫ジラウレート0.3g、ハイド
ロキノン0.01gを仕込み、温度を60℃に保ちなが
ら、2−ヒドロキシエチルアクリレート116gを
滴下した。 滴下終了後、5時間60℃に保つと、赤外分析の
結果ヒドロキシル基は完全に消失し、不飽和イソ
シアナートd(ベンゼン溶液)が生成したものと
判断された。 次いで、前述した側鎖にヒドロキシル基を有す
る主鎖ポリマーcの全量に、不飽和イソシアナー
トd(ベンゼン溶液)160gを加え、60℃で5時間
反応を続けると、赤外分析の結果遊離のイソシア
ナート基は完全に消失したものと判断された。 次いで、約250mmHgの減圧下でベンゼン約100
gを溜去させた後、トリメチロールプロパントリ
アクリレート260gを加え、更にベンゼン約200g
を溜去させた。 得られた樹脂は、淡黄色シラツプ状であつた。
これに更にメタクリル酸メチル185gを加え、粘
度が39.9ポイズの側鎖不飽和結合型樹脂(C)を得
た。 (2) 不飽和ポリエステル樹脂(D)の合成 撹拌機、分溜コンデンサー、温度計、ガス導入
管を付した1の四ツ口フラスコに、ネオペンチ
ルグリコール230g、イソフタル酸232gを仕込
み、窒素ガス気流下に200〜210℃でエステル化を
行なつた。酸価が21.7に達した時点で、イタコン
酸78gを加え、更に酸価が39.7になるまでエステ
ル化を行ない、温度を150℃に下げた後、ハイド
ロキノン0.08g、トリメチロールプロパントリア
クリレート200g加え、次いでメタクリル酸メチ
ル132gを加え、均一に溶解してガードナー色数
2、粘度24.9ポイズの不飽和ポリエステル樹脂(D)
を合成した。 側鎖不飽和結合型樹脂(C)と不飽和ポリエステル
樹脂(D)を第2表に示す割合で混合した樹脂100部
に対して、光開始剤(チバ社製のイルガキユア
#651)1部を加えた組成物をボンデライト処理
鋼板の両端にマスキングテープを張り塗装後、厚
さ100μのポリエチレンテレフタレートフイルム
を密着させ、ロール脱泡した。塗膜の厚さは、マ
スキングテープの厚みで決まり、この場合約70μ
であつた。 これを出力30kWの紫外線照射装置を用い、ラ
ンプ下20cmを15m/分の速度で通過させ、硬化さ
せた。 得られた塗膜の物性は第2表に示したとおりあ
つて、本発明の樹脂組成物の物性が側鎖不飽和結
合型樹脂(C)単独、または不飽和ポリエステル樹脂
(D)単独の物性より良好なことが認められた。
[Table] Example 2 (1) Synthesis of side chain unsaturated bond type resin (C) Stirrer, thermometer with gas introduction tube, dropping funnel,
Charge benzene 260, 1 g of azobisisobutyronitrile, and 1 g of lauryl mercaptan to a separable flask equipped with a reflux condenser.
After purging with nitrogen gas, a mixed monomer mixture of 104 g of styrene, 100 g of methyl methacrylate, and 35 g of 2-hydroxyethyl acrylate was added dropwise under reflux of benzene. After the dropwise addition was completed, reflux was continued for 16 hours at the boiling point of benzene to complete the polymerization. After lowering the temperature to 60℃, hydroquinone 0.1
The reaction was stopped by adding g to obtain main chain polymer c having a hydroxyl group in the side chain. As a result of analyzing the obtained main chain polymer c by GPC, the number average molecular weight was estimated to be about 35,000. Furthermore, 222 g of isophorone diisocyanate, 180 g of benzene, 0.3 g of dibutyltin dilaurate, and 0.01 g of hydroquinone were placed in another separable flask of the same type, and 116 g of 2-hydroxyethyl acrylate was added dropwise while maintaining the temperature at 60°C. did. After the dropwise addition was completed, the solution was kept at 60° C. for 5 hours, and as a result of infrared analysis, it was determined that the hydroxyl groups completely disappeared and unsaturated isocyanate d (benzene solution) was produced. Next, 160 g of unsaturated isocyanate d (benzene solution) was added to the entire amount of the main chain polymer c having hydroxyl groups in the side chain, and the reaction was continued at 60°C for 5 hours. As a result of infrared analysis, free isocyanate was detected. It was determined that the nato group had completely disappeared. Then add about 100% of benzene under reduced pressure of about 250mmHg.
After distilling off 260 g of trimethylolpropane triacrylate, about 200 g of benzene was added.
was distilled away. The obtained resin was in the form of a pale yellow syrup.
Further, 185 g of methyl methacrylate was added to this to obtain a side chain unsaturated bond type resin (C) having a viscosity of 39.9 poise. (2) Synthesis of unsaturated polyester resin (D) 230 g of neopentyl glycol and 232 g of isophthalic acid were charged into a four-necked flask (1) equipped with a stirrer, a fractionating condenser, a thermometer, and a gas inlet tube, and the mixture was heated with a stream of nitrogen gas. Esterification was carried out at 200-210°C. When the acid value reached 21.7, 78 g of itaconic acid was added, and esterification was continued until the acid value reached 39.7. After lowering the temperature to 150°C, 0.08 g of hydroquinone and 200 g of trimethylolpropane triacrylate were added. Next, 132 g of methyl methacrylate was added and uniformly dissolved to form an unsaturated polyester resin (D) with a Gardner color number of 2 and a viscosity of 24.9 poise.
was synthesized. 1 part of a photoinitiator (Irgakiure #651 manufactured by Ciba Corporation) was added to 100 parts of a resin obtained by mixing a side chain unsaturated bond type resin (C) and an unsaturated polyester resin (D) in the proportions shown in Table 2. After painting the added composition by applying masking tape to both ends of a bonderite-treated steel plate, a polyethylene terephthalate film with a thickness of 100 μm was adhered and defoamed using a roll. The thickness of the coating film is determined by the thickness of the masking tape, in this case approximately 70μ.
It was hot. This was cured by passing 20 cm under the lamp at a speed of 15 m/min using an ultraviolet irradiation device with an output of 30 kW. The physical properties of the obtained coating film are as shown in Table 2, and the physical properties of the resin composition of the present invention are those of the side chain unsaturated bond type resin (C) alone or the unsaturated polyester resin.
(D) It was observed that the physical properties were better than those of the single material.

【表】 実施例 3 (1) 側鎖不飽和結合型樹脂(E)の合成 撹拌機、ガス導入管付き温度計、滴下ロート、
還流コンデンサーを付した1のセパラブルフラ
スコに、ベンゼン300g、アゾビスイソブチロニ
トリル1g、ラウリルメルカプタン0.5gを仕込
み、窒素ガスで置換した後、ベンゼンの還流下で
スチレン280g、2−ヒドロキシプロピルメタク
リレート43gの混合モノマーを滴下した。 滴下終了後、16時間ベンゼンの還流を続け、重
合を完結させた。 60℃まで温度を下げ、ハイドロキノン0.1gを
添加して反応を中止し、側鎖にヒドロキシル基を
有する主鎖ポリマーeを得た。 次いで、前述した側鎖にヒドロキシル基を有す
る主鎖ポリマーeの全量に、実施例1で用いた不
飽和イソシアナートb(ベンゼン溶液)150gを加
え、60℃で6時間反応を続けると、赤外分析の結
果、遊離のイソシアナート基は完全に消失したの
が認められ、淡黄色の側鎖不飽和結合型樹脂(E)が
得られた。 (2) 不飽和ポリエステル樹脂(F)の合成 撹拌機、分溜コンデンサー、ガス導入管、温度
計を付した1の四ツ口フラスコに、プロピレン
グリコール250g、ジメチルテレフタレート291
g、酢酸亜鉛2.5gを仕込み、180〜200℃でメタ
ノールを溜出させながらエステル交換反応を行な
つた。約90c.c.のメタノールが溜去された段階で、
無水マレイン酸147gを添加し、窒素ガス気流中
で190〜200℃でエステル化を続け、酸価が34.4に
達した時点で反応を中止した。温度を150℃に下
げた後、ハイドロキノン0.06g加え、ステンレス
製バツトに注入、冷却した。 得られた不飽和アルキツドは淡黄褐色で軟化点
が約75℃であつた。 不飽和アルキツド100部と酢酸エチル100部を室
温で混合して不飽和ポリエステル樹脂溶液(F)を得
た。 側鎖不飽和結合型樹脂(E)と不飽和ポリエステル
樹脂溶液(F)を第3表の割合で混合した樹脂100部
に対して、チタン白3部、ターシヤリーブチルハ
イドロパーオキサイド0.5部、ナフテン酸コバル
ト0.05部およびシリコン樹脂(信越化学社製、
KF−96 10センチストークス)5pmを加えた組成
物をボンデライト処理鋼板に0.2mmになるように
塗布した後、80℃で30分間、120℃で30分間焼付
けて塗膜を形成させた。 得られた塗膜の物性は、第3表に示したとおり
であつて、本発明の樹脂組成物を使用したものの
物性は側鎖不飽和結合型樹脂(E)単独、または不飽
和ポリエステル樹脂溶液(F)単独で使用したものの
物性よりすぐれていた。
[Table] Example 3 (1) Synthesis of side chain unsaturated bond type resin (E) Stirrer, thermometer with gas introduction tube, dropping funnel,
300 g of benzene, 1 g of azobisisobutyronitrile, and 0.5 g of lauryl mercaptan were placed in a separable flask (No. 1) equipped with a reflux condenser, and after purging with nitrogen gas, 280 g of styrene and 2-hydroxypropyl methacrylate were added under reflux of benzene. 43 g of mixed monomers were added dropwise. After the dropwise addition was completed, benzene was continued to be refluxed for 16 hours to complete the polymerization. The temperature was lowered to 60° C., and 0.1 g of hydroquinone was added to terminate the reaction, yielding a main chain polymer e having a hydroxyl group in the side chain. Next, 150 g of the unsaturated isocyanate b (benzene solution) used in Example 1 was added to the entire amount of the main chain polymer e having hydroxyl groups in the side chains, and the reaction was continued at 60°C for 6 hours. As a result of the analysis, it was found that the free isocyanate groups had completely disappeared, and a pale yellow side chain unsaturated bond type resin (E) was obtained. (2) Synthesis of unsaturated polyester resin (F) In a four-necked flask equipped with a stirrer, a fractionating condenser, a gas inlet tube, and a thermometer, add 250 g of propylene glycol and 291 g of dimethyl terephthalate.
g and 2.5 g of zinc acetate were charged, and the transesterification reaction was carried out at 180 to 200° C. while distilling methanol. At the stage when about 90 c.c. of methanol has been distilled off,
147 g of maleic anhydride was added, and esterification was continued at 190 to 200°C in a nitrogen gas stream, and the reaction was stopped when the acid value reached 34.4. After lowering the temperature to 150°C, 0.06 g of hydroquinone was added, poured into a stainless steel vat, and cooled. The obtained unsaturated alkyd was light yellowish brown in color and had a softening point of about 75°C. 100 parts of unsaturated alkyd and 100 parts of ethyl acetate were mixed at room temperature to obtain an unsaturated polyester resin solution (F). 3 parts of titanium white, 0.5 parts of tertiary butyl hydroperoxide, and naphthene are added to 100 parts of a resin prepared by mixing a side chain unsaturated bond type resin (E) and an unsaturated polyester resin solution (F) in the proportions shown in Table 3. 0.05 part of cobalt acid and silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd.)
A composition containing 5 pm of KF-96 (10 centistokes) was applied to a bonderite-treated steel plate to a thickness of 0.2 mm, and then baked at 80°C for 30 minutes and at 120°C for 30 minutes to form a coating film. The physical properties of the obtained coating film are as shown in Table 3, and the physical properties of the resin composition of the present invention are those of the side chain unsaturated bond type resin (E) alone or the unsaturated polyester resin solution. (F) The physical properties were superior to those used alone.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A) スチレン、ビニルトルエン、アクリロニ
トリル及び(メタ)アクリル酸エステルから選
ばれる少くとも1種のビニルモノマーとヒドロ
キシアルキル(メタ)アクリレートとの共重合
によつて得られる側鎖にヒドロキシル基を有す
るビニル共重合体aと、ジイソシアナートとヒ
ドロキシアルキル(メタ)アクリレートとの付
加物で分子中に遊離のイソシアナート基と(メ
タ)アクリロイル基を共有する不飽和イソシア
ナートbとを反応させて得られる、主鎖がビニ
ルモノマーの重合により得られたポリマーから
なり、かつ側鎖にウレタン結合を介して(メ
タ)アクリロイル基を有する分子量10000以上
の側鎖不飽和結合型樹脂の95〜5重量%と (B) α,β−不飽和多塩基酸もしくはその酸無水
物、またはこれと飽和多塩基酸もしくはその酸
無水物との混合物と多価アルコールとをエステ
ル化して得られる不飽和アルキツドの5〜95重
量%を配合してなる硬化可能な樹脂組成物。 2 側鎖不飽和結合型樹脂及び不飽和アルキツド
の混合物100重量部に対しさらに重合性モノマー
10〜60重量部を配合することを特徴とする特許請
求の範囲第1項記載の硬化可能な樹脂組成物。
[Scope of Claims] 1 (A) Side obtained by copolymerization of at least one vinyl monomer selected from styrene, vinyltoluene, acrylonitrile, and (meth)acrylic acid ester and hydroxyalkyl (meth)acrylate. Vinyl copolymer a having a hydroxyl group in the chain and unsaturated isocyanate b which is an adduct of diisocyanate and hydroxyalkyl (meth)acrylate and shares free isocyanate groups and (meth)acryloyl groups in the molecule. A side chain unsaturated bond type resin whose main chain is made of a polymer obtained by polymerization of a vinyl monomer and which has a (meth)acryloyl group in the side chain via a urethane bond and has a molecular weight of 10,000 or more. obtained by esterifying 95 to 5% by weight of (B) an α,β-unsaturated polybasic acid or its acid anhydride, or a mixture of this and a saturated polybasic acid or its acid anhydride, and a polyhydric alcohol. A curable resin composition containing 5 to 95% by weight of an unsaturated alkyd. 2 Add a polymerizable monomer to 100 parts by weight of the mixture of side chain unsaturated bond type resin and unsaturated alkyd.
The curable resin composition according to claim 1, characterized in that 10 to 60 parts by weight is blended.
JP18836283A 1983-10-11 1983-10-11 Curable resin composition Granted JPS6081218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18836283A JPS6081218A (en) 1983-10-11 1983-10-11 Curable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18836283A JPS6081218A (en) 1983-10-11 1983-10-11 Curable resin composition

Publications (2)

Publication Number Publication Date
JPS6081218A JPS6081218A (en) 1985-05-09
JPH0216923B2 true JPH0216923B2 (en) 1990-04-18

Family

ID=16222290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18836283A Granted JPS6081218A (en) 1983-10-11 1983-10-11 Curable resin composition

Country Status (1)

Country Link
JP (1) JPS6081218A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745556B2 (en) * 1987-06-08 1995-05-17 昭和高分子株式会社 Curable resin composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665047A (en) * 1979-11-01 1981-06-02 Nippon Paint Co Ltd Paint resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665047A (en) * 1979-11-01 1981-06-02 Nippon Paint Co Ltd Paint resin composition

Also Published As

Publication number Publication date
JPS6081218A (en) 1985-05-09

Similar Documents

Publication Publication Date Title
WO1981001292A1 (en) Hardening resin composition
JPH05262848A (en) Ethylenically-terminated urethane oligomer, coated optical fiber and preparation thereof
JPS6254716A (en) Air-drying resin composition
JPS60197719A (en) Production of curable resin
FI69090C (en) MED UV-LJUS HAERDBARA BELAEGGNINGSKOMPOSITIONER
JP3287475B2 (en) Curable resin composition
JPS63152603A (en) Photocurable resin composition
JPH0216923B2 (en)
JPH1160540A (en) Aromatic ester (meth)acrylate dendrimer and curable resin composition
JPH05209031A (en) Resin composition
MXPA02006393A (en) Radio-hardenable powder paints.
JP2000159828A (en) Photosensitive resin composition, electron-beam-curable resin composition, and their cured items
JPH029611B2 (en)
JPS63118310A (en) Curable resin composition
JPH0580922B2 (en)
JPH0216924B2 (en)
JPS6155554B2 (en)
JPH0354216A (en) Photocurable composition
JPH0217567B2 (en)
JPS6088022A (en) Fiber-reinforced resin composition
JPS63305177A (en) Curable resin composition
JP2001172307A (en) Photocurable resin composition
JPH029606B2 (en)
JPH0374148B2 (en)
JP2002161124A (en) Polyurethane (meth)acrylate resin and radically polymerizable resin composition