JPH02168689A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH02168689A
JPH02168689A JP32423188A JP32423188A JPH02168689A JP H02168689 A JPH02168689 A JP H02168689A JP 32423188 A JP32423188 A JP 32423188A JP 32423188 A JP32423188 A JP 32423188A JP H02168689 A JPH02168689 A JP H02168689A
Authority
JP
Japan
Prior art keywords
type
layer
substrate
semi
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32423188A
Other languages
Japanese (ja)
Other versions
JPH0724318B2 (en
Inventor
Toshio Tanaka
利夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP32423188A priority Critical patent/JPH0724318B2/en
Publication of JPH02168689A publication Critical patent/JPH02168689A/en
Publication of JPH0724318B2 publication Critical patent/JPH0724318B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable a low threshold and low current operation by bringing a semiconductor substrate to semi-insulating properties, forming the semiconductor substrate nearest to a striped groove of an epitaxial layer up to the rear and burying an opening section with an electrode metal. CONSTITUTION:A stripe window is shaped onto a semi-insulating GaAs substrate 11, and a hole is formed to an inverted V groove shape through etching by a reaction-rate controlling type etchant. A P-type GaAs epitaxial layer 12 and an N-type GaAs current blocking layer 2 are subjected to epitaxial growth continuously onto the semi-insulating GaAs substrate 11 to which the hole is formed. A stripe groove 7 is shaped, a P-type AlGaAs lower clad layer 3, a P-type GaAs active layer 4, an N-type AlGaAs upper clad layer 5 and an N-type GaAs contact layer 6 are formed while using the groove 7 as a substrate, and the semi-insulating GaAs substrate 11 is formed in specified thickness. Accordingly, a semiconductor laser device enabling a low threshold and low current operation and having high affiance can be acquired.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、低しきい値電流で発振し、かつ低電流で動
作可能な半導体レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser device that oscillates with a low threshold current and can operate with a low current.

低電流で動作する半導体レーザは、CDレーザの小型化
や携帯用化に伴って乾電池で駆動できる低電流動作の可
能なことが要求されてきており、そのためには半導体レ
ーザダイオード自身の洩れ電流を少なくしたり、効率を
上げるなど素子構造から考える必要がある。
Semiconductor lasers that operate at low currents are required to be able to operate at low currents and be driven by dry batteries as CD lasers become smaller and more portable. It is necessary to think from the element structure, such as reducing the amount or increasing efficiency.

〔従来の技術〕[Conventional technology]

第4図は従来の内部ストライプ形半導体レーザ装置の断
面図であり、この図において、1はp型GaAs基板、
2はn型GaAs電流ブロック層、3はp型AjGaA
s下クラッド層、4はp型GaAs活性層、5はn型A
jGaAs上クラッド層、6はn型GaAsコンタクト
層であり、7はレーザ発振に供する電流の流れるストラ
イプ溝(V溝)、8および9はそれぞれp側およびn側
電極である。
FIG. 4 is a cross-sectional view of a conventional internal stripe type semiconductor laser device, in which 1 is a p-type GaAs substrate;
2 is an n-type GaAs current blocking layer, 3 is a p-type AjGaA
s lower cladding layer, 4 is p-type GaAs active layer, 5 is n-type A
6 is an n-type GaAs contact layer, 7 is a stripe groove (V groove) through which current flows for laser oscillation, and 8 and 9 are p-side and n-side electrodes, respectively.

第5図(a)〜(d)は上記従来の半導体レーザ装置の
製造方法を説明するための各段階における断面図である
が、その大略は第4図についての装置の構成から明らか
であるので、重複を避けてその概略を説明する。
FIGS. 5(a) to 5(d) are cross-sectional views at each stage for explaining the conventional method for manufacturing the semiconductor laser device, and the outline thereof is clear from the configuration of the device shown in FIG. , the outline will be explained without duplication.

まず、p型GaAs基板1上にn型GaAs電流ブロッ
ク層2を成長(第1エピタキシャル成長層)させる〔第
5図(a)〕。次にこのエピタキシャルウエへに写真製
版技術およびエツチング技術を使って電流パスとなるス
トライプ溝7を形成する〔第4図(b)〕。さらに、多
層エピタキシャル成長により、p型AjGaAs下クラ
ッド層3p p型GaAs活性層4.n型AjGaAs
上クラッド層5およびn型GaAsコンタクト層6を連
続成長(第2エピタキシャル成長層)する〔第5図(c
))。次にウェハプロセス技術により、研磨およびt4
極形成を行い半導体レーザ装置を完成させる〔第5図(
d)〕。
First, an n-type GaAs current blocking layer 2 is grown (first epitaxial growth layer) on a p-type GaAs substrate 1 [FIG. 5(a)]. Next, stripe grooves 7 that will serve as current paths are formed in this epitaxial wafer using photolithography and etching techniques [FIG. 4(b)]. Furthermore, by multilayer epitaxial growth, p-type AjGaAs lower cladding layer 3p, p-type GaAs active layer 4. n-type AjGaAs
The upper cladding layer 5 and the n-type GaAs contact layer 6 are continuously grown (second epitaxial growth layer) [Fig. 5(c)
)). Next, using wafer process technology, polishing and t4
Complete the semiconductor laser device by forming the poles [Fig. 5 (
d)].

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体レーザ装置は、レーザ発振に供する活性領
域以外に無効電流が流れてしまい、低しきい値、低lI
流動作の可能な半導体レーザ装置を得ることができない
といった問題点があった。無効電流の発生する主な原因
は主に次の5つがある。
In conventional semiconductor laser devices, reactive current flows in areas other than the active region used for laser oscillation, resulting in low threshold and low II.
There was a problem that a semiconductor laser device capable of current operation could not be obtained. There are the following five main causes of reactive current generation.

■ n型GaAs電流ブロック層2の成長不良■ n型
GaAs電流ブロック層2の結晶欠陥■ V溝7形成時
の写真製版のパターン欠陥■ n型GaAg電流ブロッ
ク層2のキャリア濃度の低下 ■ 高電圧印加時のトンネル現象 この発明は、上記従来の問題点を解消するためになされ
たもので、低しきい値、低電流動作可能で高効率の半導
体レーザ装置を得ることを目的とするものである。
■ Defective growth of n-type GaAs current blocking layer 2 ■ Crystal defect in n-type GaAs current blocking layer 2 ■ Pattern defect in photolithography during formation of V-groove 7 ■ Decrease in carrier concentration of n-type GaAg current blocking layer 2 ■ High voltage Tunneling phenomenon during application of voltage This invention was made to solve the above-mentioned conventional problems, and aims to provide a highly efficient semiconductor laser device that can operate with a low threshold and low current. .

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体レーザ装置は、半導体基板を半絶
縁性とし、ストライプ溝と最も近接する半導体基板を裏
面に達するまでエピタキシャル層で形成するか、もしく
は内部ストライプと最も近接する半導体基板を裏面に達
するまで開孔し、この開孔部を電極金属で埋め込んだも
のである。
In the semiconductor laser device according to the present invention, the semiconductor substrate is semi-insulating, and the semiconductor substrate closest to the stripe groove is formed of an epitaxial layer until it reaches the back surface, or the semiconductor substrate closest to the internal stripe is formed to reach the back surface. A hole is opened up to the point where the hole is filled with electrode metal.

〔作用〕[Effect]

この発明においては、無効電流の流れる部分を高抵抗と
したことにより、電流はストライプ溝に集中して流れる
In the present invention, by making the portion through which the reactive current flows high in resistance, the current flows in a concentrated manner in the striped grooves.

〔実施例〕〔Example〕

以下、この発明について説明する。 This invention will be explained below.

第1図はこの発明の一実施例を示す半導体レーザ装置の
断面図である。第1図において、11は半絶縁性GaA
s基板、12はp型GaAsエピタキシャル層、13は
このp型GaAsエピタキシャル層12により形成され
た電流バス領域であり、また、2〜9は第4図に示す従
来の半導体レーザ装置と同じ機能を持つものである。
FIG. 1 is a sectional view of a semiconductor laser device showing an embodiment of the present invention. In FIG. 1, 11 is semi-insulating GaA
s substrate, 12 is a p-type GaAs epitaxial layer, 13 is a current bus region formed by this p-type GaAs epitaxial layer 12, and 2 to 9 have the same functions as the conventional semiconductor laser device shown in FIG. It is something you have.

第2図(a)〜(,1)はこの発明に係る半導体レーザ
装置の製造方法を説明するための各段階における断面図
である。
FIGS. 2(a) to 2(,1) are cross-sectional views at each stage for explaining the method of manufacturing a semiconductor laser device according to the present invention.

まず、半絶縁性GaAs基板11上に写真製版技術によ
り図示はしないがレジストマスクを約5μmの幅でスト
ライプ状の窓を形成し、Br2−CH3OHあるいはN
H3OH/HzOz混液等の反応律速形のエツチング液
でエツチングし、逆V溝形に穴を形成する。この方向へ
のエツチングは横方向<111>方向へはほとんど進ま
ず、深さ方向<100>方向へのみ進んでい(。そのた
め、窓の幅は広がらずに深さ方向へ深くエツチングは進
む〔第2図(a)〕。この穴を形成をした半絶縁性Ga
As基板11上に、液相エピタキシャル成長法により、
p型GaASエピタキシャル層12およびn型G aA
s電流ブロック層2を連続的にエピタキシャル成長する
。ここで液相エピタキシャル成長法は穴の部分の成長速
度が早く、最表面の平坦部の成長部の成長速度が遅いた
め、表面平坦にp型G aAsエピタキシャル層12が
成長する〔第2図(b)〕。次に窓部とストライプ溝形
成部をきっち9と合わせて、ストライプ溝7を形成する
〔第2図(C)〕。さらに、それを基板にしてp型A 
I G a A s下りラッド層3y  p型GaAs
活性層4.n型AlGaAs上クラッド層5、およびn
型GaAsコンククト層6を形成した後、ウェハプロセ
ス技術を経て半絶縁性GaAs基板11を所定の厚みに
形成する〔第2図(d))0この発明に係る半導体レー
ザ装置は、上記説明でも明らかなように、5μm窓部以
外は半絶縁性であるため、この部分への無効電流は全く
流れない。例えば従来の半導体レーザ装置のしきい値電
流は約30mAであるが、この発明によれば、15mA
とほぼ理論値に近い値となる。すなわち、約半分の15
mAの無効電流がなくなり、低しきい値で、しかも効率
の良い半導体レーザ装置が得られる。
First, a striped window (not shown) with a width of about 5 μm is formed using a resist mask on a semi-insulating GaAs substrate 11 by photolithography, and
Etching is performed using a reaction rate-limiting etching solution such as a H3OH/HzOz mixture to form a hole in the shape of an inverted V groove. Etching in this direction hardly progresses in the lateral <111> direction, but only in the depth direction <100> (Thus, the etching progresses deeper in the depth direction without increasing the width of the window. Figure 2(a)].The semi-insulating Ga with this hole formed
On the As substrate 11, by liquid phase epitaxial growth method,
p-type GaAS epitaxial layer 12 and n-type GaAs
The s-current blocking layer 2 is epitaxially grown continuously. In the liquid phase epitaxial growth method, the growth rate of the hole portion is fast and the growth rate of the flat part of the outermost surface is slow, so the p-type GaAs epitaxial layer 12 grows on a flat surface [Fig. 2(b) )]. Next, the window portion and the stripe groove forming portion are aligned with the cut 9 to form the stripe groove 7 [FIG. 2(C)]. Furthermore, using this as a substrate, p-type A
I G a As down rad layer 3y p-type GaAs
Active layer 4. an n-type AlGaAs upper cladding layer 5, and an n-type AlGaAs upper cladding layer 5;
After forming the type GaAs concrete layer 6, a semi-insulating GaAs substrate 11 is formed to a predetermined thickness through wafer process technology [FIG. 2(d)]0 The semiconductor laser device according to the present invention is clear from the above description. As shown, since the area other than the 5 μm window is semi-insulating, no reactive current flows to this area at all. For example, the threshold current of a conventional semiconductor laser device is approximately 30 mA, but according to the present invention, the threshold current is 15 mA.
This value is almost close to the theoretical value. That is, about half of 15
A reactive current of mA is eliminated, and a semiconductor laser device with a low threshold value and high efficiency can be obtained.

また、上記実施例では半絶縁性GaAs基板11の加工
を反応律速形のエツチング液を用いる方法を述べたが、
RIEやスパッタ法によっても良い。
Furthermore, in the above embodiment, a method was described in which the semi-insulating GaAs substrate 11 was processed using a reaction rate-controlled etching solution.
RIE or sputtering may also be used.

第3図(a 、)〜(g)はこの発明の半導体レーザ装
置の他の製造方法を説明するための工程断面図である。
FIGS. 3(a) to 3(g) are process cross-sectional views for explaining another method of manufacturing a semiconductor laser device of the present invention.

この工程は、まず、半絶縁性GaAS基板11に逆v形
の溝を形成する〔第3図(a)〕。このウウニを基板と
してp型またはn型AJ!GaAs層14の溝を埋める
ように成長させ、順次p型GaAsエピタキシャル層1
2.p型G aAs電流ブロック層2を形成する〔第3
図(b)〕。その後、窓上部に■溝部を形成する〔第3
図(C)〕。さらに、これを基板としてp型AlGaA
s下クラッド層3 p P型GaAs活性層4.n型A
lGaAs上クラッド層5.およびn型GaAsコンタ
クト層6の各層を連続成長する〔第3図(d)〕。その
後、ウェハプロセス工程で裏面研磨により約85μmに
研磨する〔第3図(e)〕。裏面をHFにより溝部のp
型またはn型AjGaAs層14のみを選択的にエツチ
ング除去する。HFはGaAsとA#GaAsのエツチ
ングに選択性があり、AjGaAs層のみをエツチング
し、GaAs!aは全くエツチングしない液であるため
、第3図(f)のような構造が形成できる。次に選択エ
ツチングで除去した穴部15にp側電極としてメタル1
6をメツキ等により埋め込みバイアホール形とする〔第
3図(g)〕。
In this step, first, an inverted V-shaped groove is formed in the semi-insulating GaAS substrate 11 [FIG. 3(a)]. P-type or n-type AJ using this sea urchin as a substrate! The p-type GaAs epitaxial layer 1 is grown to fill the groove of the GaAs layer 14, and
2. Form a p-type GaAs current blocking layer 2 [third
Figure (b)]. After that, form a groove in the upper part of the window [3rd
Figure (C)]. Furthermore, using this as a substrate, p-type AlGaA
s lower cladding layer 3 p P-type GaAs active layer 4. n-type A
lGaAs upper cladding layer5. Then, each layer of the n-type GaAs contact layer 6 is successively grown [FIG. 3(d)]. Thereafter, in the wafer process step, the back surface is polished to approximately 85 μm [FIG. 3(e)]. P of the groove on the back side with HF
Only the type or n-type AjGaAs layer 14 is selectively etched away. HF is selective in etching GaAs and A#GaAs, etching only the AjGaAs layer, and etching GaAs! Since a is a liquid that does not etch at all, a structure as shown in FIG. 3(f) can be formed. Next, a metal 1 is placed as a p-side electrode in the hole 15 removed by selective etching.
6 into a buried via hole shape by plating or the like [Figure 3 (g)].

上記製造方法によれば、発振に寄与しない無効電流の防
止だけではなく、発熱源である活性領域のすぐ近くに電
極が形成できるので、放熱効率が良い。そのため、低し
きい値電流、低電流動作で、発振の効率が良く、シかも
温度特性の良い理想的な半導体レーザ装置が得られる効
果がある。
According to the above manufacturing method, not only can reactive currents that do not contribute to oscillation be prevented, but also electrodes can be formed very close to the active region, which is a heat source, resulting in good heat dissipation efficiency. Therefore, an ideal semiconductor laser device with low threshold current, low current operation, high oscillation efficiency, and good temperature characteristics can be obtained.

また、上記実施例では全てGaAs、AlGaAs系を
例にとって説明したが、I nP、I nGaAsP系
など、他のI−V、n−VI族化合物半導体およびその
混晶の場合にも同様であり、しかも、導電形がp、n逆
の場合でも全く同様の効果を示すものである。
Furthermore, although all of the above embodiments have been explained using GaAs and AlGaAs systems as examples, the same applies to other IV and n-VI group compound semiconductors and their mixed crystals, such as InP and InGaAsP systems. Moreover, even when the conductivity types are reversed (p and n), exactly the same effect is exhibited.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明は、半導体基板を半絶縁性
とし、ス)・ライブ溝と最も近接する半導体基板を裏面
に達するまでエピタキシャル層で形成するか、もしくは
内部ストライプと最も近接する半導体基板を裏面に達す
るまで開孔し、この開孔部を電極金属で埋め込んだので
、溝部以外に流れる電流を半減せしめることができ、低
しきい値電流、低電流動作で、かつ発振効率のよい半導
体レーザ装置が得られる効果がある。
As explained above, the present invention makes the semiconductor substrate semi-insulating, and either forms the semiconductor substrate closest to the stripe with an epitaxial layer until it reaches the back surface, or forms the semiconductor substrate closest to the internal stripe with an epitaxial layer. Since the hole is opened until it reaches the back surface and the hole is filled with electrode metal, the current flowing outside the groove can be halved, resulting in a semiconductor laser with low threshold current, low current operation, and high oscillation efficiency. There is an effect that the device can obtain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す半導体レーザ装置の
断面図、第2図は、第1図の半導体レザ装置の製造工程
を示す断面図、第3図はこの発明の半導体レーザ装置の
他の製造工程を示す断面図、第4図は従来の半導体レー
ザ装置を示す断面図、第5図は、第4図の半導体レーザ
装置の製造工程を示す断面図である。 図において、1はp型GaAs基板、2はn型GaAs
f4流ブロック層、3はp型A I G a A s下
りラッド層、4はp型G a A s活性層、5はn型
AlGaAs上クラッド層、6はn型GaAsコンタク
ト層、7はストライプ溝、8はpp1電極、9はn側電
極、11は半絶縁性GaAs基板、12はp型GaAs
エピタキシャル層、13は電流パス領域、14はp型ま
たはn型At’GaAs層、15は穴部、16はメタル
である。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄   (外2名)第 図 第 図 第 図 そ の 14:pt#7:I工n!!AIGaAsJ第 図 第 図 そ の 1e) メタル
FIG. 1 is a cross-sectional view of a semiconductor laser device showing an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the manufacturing process of the semiconductor laser device of FIG. 1, and FIG. 3 is a cross-sectional view of the semiconductor laser device of the present invention. 4 is a sectional view showing a conventional semiconductor laser device, and FIG. 5 is a sectional view showing a manufacturing process of the semiconductor laser device shown in FIG. 4. In the figure, 1 is a p-type GaAs substrate, 2 is an n-type GaAs substrate.
f4 flow blocking layer, 3 is p-type AI GaAs down rad layer, 4 is p-type GaAs active layer, 5 is n-type AlGaAs upper cladding layer, 6 is n-type GaAs contact layer, 7 is stripe Groove, 8 is pp1 electrode, 9 is n-side electrode, 11 is semi-insulating GaAs substrate, 12 is p-type GaAs
In the epitaxial layer, 13 is a current path region, 14 is a p-type or n-type At'GaAs layer, 15 is a hole, and 16 is a metal. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Fig. Fig. Fig. 14: pt #7: I engineering n! ! AIGaAsJ diagram 1e) Metal

Claims (1)

【特許請求の範囲】[Claims] 内部ストライプ形半導体レーザ装置において、半導体基
板を半絶縁性とし、ストライプ溝と最も近接する半導体
基板を裏面に達するまでエピタキシャル層で形成するか
、もしくは前記内部ストライプと最も近接する半導体基
板を裏面に達するまで開孔し、この開孔部を電極金属で
埋め込んだことを特徴とする半導体レーザ装置。
In an internal stripe type semiconductor laser device, the semiconductor substrate is semi-insulating, and the semiconductor substrate closest to the stripe groove is formed of an epitaxial layer until it reaches the back surface, or the semiconductor substrate closest to the internal stripe is formed to reach the back surface. 1. A semiconductor laser device characterized in that a hole is opened until the end of the hole and the hole is filled with an electrode metal.
JP32423188A 1988-12-21 1988-12-21 Semiconductor laser device Expired - Lifetime JPH0724318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32423188A JPH0724318B2 (en) 1988-12-21 1988-12-21 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32423188A JPH0724318B2 (en) 1988-12-21 1988-12-21 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH02168689A true JPH02168689A (en) 1990-06-28
JPH0724318B2 JPH0724318B2 (en) 1995-03-15

Family

ID=18163503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32423188A Expired - Lifetime JPH0724318B2 (en) 1988-12-21 1988-12-21 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH0724318B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740376A1 (en) * 1995-04-28 1996-10-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser diode and manufacturing method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740376A1 (en) * 1995-04-28 1996-10-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser diode and manufacturing method for the same
US5701321A (en) * 1995-04-28 1997-12-23 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser producing short wavelength light

Also Published As

Publication number Publication date
JPH0724318B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
JPS6050983A (en) Manufacture of semiconductor laser element
US4188244A (en) Method of making a semiconductor light-emitting device utilizing low-temperature vapor-phase deposition
JPH02288288A (en) Manufacture of buried hetero-structure laser diode
JPH0474877B2 (en)
KR920000079B1 (en) Semiconductor laser apparatus and manufacture method
JPH02168689A (en) Semiconductor laser device
EP0076761A1 (en) Semiconductor lasers and method for producing the same
JP2525788B2 (en) Method for manufacturing semiconductor laser device
JP2629678B2 (en) Semiconductor laser device and method of manufacturing the same
JPS59119781A (en) Manufacture of semiconductor laser
JPH01281785A (en) Semiconductor laser and its manufacture
JPH084180B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0567849A (en) Semiconductor light emitting element
JPH0710019B2 (en) Embedded structure semiconductor laser manufacturing method
JPS62179790A (en) Semiconductor laser
JPH10510102A (en) Ridge laser in channel
JPH05226774A (en) Semiconductor laser element and its production
JPS5956783A (en) Semiconductor laser
JPS6237835B2 (en)
JPS6088488A (en) Semiconductor laser device
JPS6372175A (en) Buried type semiconductor laser device and its manufacture
JPH0116035B2 (en)
JPS6118877B2 (en)
JPS6276691A (en) Manufacture of semiconductor laser device
JPS5925398B2 (en) Manufacturing method of semiconductor laser