JPH02167909A - Constructing composite floor board for bridge - Google Patents

Constructing composite floor board for bridge

Info

Publication number
JPH02167909A
JPH02167909A JP63322713A JP32271388A JPH02167909A JP H02167909 A JPH02167909 A JP H02167909A JP 63322713 A JP63322713 A JP 63322713A JP 32271388 A JP32271388 A JP 32271388A JP H02167909 A JPH02167909 A JP H02167909A
Authority
JP
Japan
Prior art keywords
bottom plate
reinforcing bars
steel
main
slip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63322713A
Other languages
Japanese (ja)
Inventor
Masakatsu Sato
政勝 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63322713A priority Critical patent/JPH02167909A/en
Publication of JPH02167909A publication Critical patent/JPH02167909A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive reduction of costs by installing a bottom board made from a checkered steelplate, spanning the upper ends of main girders made from upside-down T-shape steels, and by casting concrete thereon with shear connectors embedded therein. CONSTITUTION:A bottom board 15, made from a checkered steelplate, having at its underside breadthwise ribs 2 and lengthwise ribs 3 arranged in gridiron shape, and at its surface shear connectors 4 made from dowels or the like, is placed spanning the upper ends of main girders 1 made from upside-down T-shape steels. Then main reinforcements 6 are arranged, with bar holding spacers, in the direction breadthwise to the bottom board 15 that is positioned at a place higher than the upper ends of the shear connectors 4, and distributing bars 8 are arranged intersecting the main reinforcements 6. Then either of concrete 9 or steel fiber concrete 19 is cast over the bottom board 15 so that the shear connectors 4, the main reinforcements 6 and the distributing bars 8 are all embedded therein. Thereby the number of the shear connectors 4 can be reduced as projections on the surface of the checkered steelplate serve for transmitting horizontal shearing force.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、橋梁用合成床版の構築方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method of constructing a composite deck slab for a bridge.

「従来の技術」 従来、一般の橋梁用鉄筋コンクリート床版よりも、床版
の厚さを薄くするため、および床版の曲げ剛性を高める
ため、ならびにコンクリート打設時の型枠として利用し
、施工性を向上させるため等の理由により、第10図、
第11図に示す如く、各例′r形鋼主桁lの上端間にわ
たって、下面に格子状に横リブ2と縦リブ3とを存し、
上面にスタッドジベル等のずれ止め部材4を有する平鋼
F2tU底1反5を設置し、かつ前記ずれ1ヒめ部材4
の上端よりもF部位置なる底板5の幅方向に主鉄筋6を
鉄筋保t、↑用スペーサー7を介して配設し、この各主
鉄筋6に直交して配力鉄筋8を配設し、前記底1&5上
に、前記ずれ止め部材4、主鉄1)7i 6 、配力鉄
B’b 8を埋め込む如くコンクリート9を打設した合
成床版がある。
``Conventional technology'' Traditionally, it has been used to make the thickness of the slab thinner than general reinforced concrete deck slabs for bridges, to increase the bending rigidity of the slab, and to be used as formwork during concrete pouring. For reasons such as improving performance, Figure 10,
As shown in FIG. 11, each example has horizontal ribs 2 and vertical ribs 3 in a lattice pattern on the lower surface between the upper ends of the R-shaped steel main girder l,
A flat steel F2tU bottom 1 roll 5 having a slip prevention member 4 such as a stud dowel on the upper surface is installed, and the slip one stop member 4 is installed.
The main reinforcing bars 6 are arranged in the width direction of the bottom plate 5 at the position F from the upper end, with the reinforcing bars t and ↑ spacers 7 interposed therebetween, and distribution reinforcing bars 8 are arranged orthogonally to each of the main reinforcing bars 6. On the bottoms 1 & 5, there is a composite floor slab in which concrete 9 is poured so as to embed the anti-slip member 4, the main iron 1) 7i 6 and the distribution iron B'b 8.

「発明が解決しようとする課題」 しかして、第1に、前記型枠としての平鋼t& U底板
は、応力計算上では板厚が30程度あればよいが、78
接施工上から一般的に板厚が6關以上の平鋼板を用いて
いるため、不経済であり、しがも底板からコンクリート
に伝速すべき水平前断力が大きくなる。
"Problems to be Solved by the Invention" Firstly, the flat steel T&U bottom plate used as the formwork needs to have a thickness of about 30mm in terms of stress calculation, but it has a thickness of 78mm.
Generally speaking, flat steel plates with a thickness of 6 mm or more are used in connection construction, which is uneconomical and also increases the horizontal front shear force that must be transmitted from the bottom plate to the concrete.

従って、このようなことに対処すべく、ずれ止め部材の
u’を径を大きくするか、あるいはずれIl:め部材の
本数を多くする必要があるが、ずれ11:め部(夕の直
径は、底板の摩さと、コンクリートの厚さとにより制限
されるので、ずれ止め部材の所要本数を多くする゛手段
を講しるのが一般的である。
Therefore, in order to deal with this, it is necessary to increase the diameter of the anti-slip member u' or increase the number of misalignment members. Since this is limited by the wear of the bottom plate and the thickness of the concrete, it is common to take measures to increase the required number of anti-slip members.

しかしながら、ずれ止め部材の所要本数を多くすること
は、ずれ止め部Ilの材?4ffおよびずれ止め部材の
溶植コストが高くなること、主鉄筋と配力鉄筋の配設作
業およびコンクリートの打設作業に困難性を生じること
等の問題がある。
However, increasing the required number of anti-slip members means that the material of the anti-slip portion Il will be increased. There are problems such as an increase in the cost of welding the 4ff and anti-slip members, and difficulties in arranging main reinforcing bars and distribution reinforcing bars and in pouring concrete.

第2に、普通のコンクリートは、剪IJJt ’tlc
抗カが小さく、この普通のコンクリートを合成床版に使
用する場合には、合成床版の最小全厚を、鉄筋コンクリ
ート床版の最小全厚(iff路橋示方青では1601m
に規定)よりも薄くすることは、コンクリートの材料特
性上困難である。
Second, ordinary concrete is sheared IJJt'tlc
If this ordinary concrete has a small resistance and is used for a composite slab, the minimum total thickness of the composite slab should be the minimum total thickness of the reinforced concrete slab (1601 m according to the IF road bridge designation blue).
Due to the material properties of concrete, it is difficult to make it thinner than the specified thickness.

しかしながら、合成床版の最小全厚が厚いと、1Ifi
梁全体の死4:I伍の約50%を占める合成床版の死荷
重が大きく、鉄筋コンクリート床版に対すも経済的メリ
ットがない。
However, if the minimum total thickness of the composite slab is large, 1Ifi
The dead load of the composite deck slab, which accounts for about 50% of the dead weight of the entire beam 4:I, is large, and there is no economic advantage over reinforced concrete deck slabs.

第3に、前記の底板の下面に、格子状に描リブ4縦リブ
とを設けているが、特に陽リブは、底板に18接するた
めに、底板に溶接変形が1乙、矯正が必要となること、
縦リブと直交しているため、その交差部におけるl3接
施工が煩雑で、施工1生が悪いこと、ホットスポットが
ノ1しろため、底板の対疲労弛度が低下すること等の問
題がある。
Thirdly, the lower surface of the bottom plate is provided with 4 vertical ribs drawn in a lattice pattern, but the positive ribs in particular contact the bottom plate by 18 degrees, so there is a welding deformation in the bottom plate, which requires correction. To become a,
Since it is perpendicular to the vertical ribs, there are problems such as complicated joint construction at the intersection, poor construction quality, and hot spots that reduce fatigue resistance of the bottom plate. .

本発明は、前記従来の第1乃至第3の個ヤの問題点をそ
れぞれ解決すると共に、第1乃θ第、3の全ての問題点
を総合的に解決するようにした橋梁用合成床版の構築方
法を開発したものである。
The present invention provides a composite deck slab for bridges that solves each of the problems of the first to third individual layers of the prior art, and comprehensively solves all of the problems of the first to θth and third problems. This is a construction method developed.

「課題を解決するための手段J 本発明に係る橋梁用合成床版の構箒方沃の第1の要旨と
するところは、各倒T形鋼主t11の上端間にわたって
、上面にスタッドジベル等のずれ止め部材を有するta
鋼板製底板を設置し、この縞鋼板製底板上に、前記ずれ
止め部材を埋め込む如くコンクリートを打設することに
ある。
``Means for Solving the Problems J'' The first gist of the method of constructing the composite deck slab for bridges according to the present invention is that a stud dowel etc. ta with a slip prevention member
A bottom plate made of a steel plate is installed, and concrete is poured onto the bottom plate made of a striped steel plate so as to embed the anti-slip member.

同しく第2の要旨とするところは、各倒゛r形鋼主桁の
上端間にわたって、上面にスタッドジベル等のずれ止め
部材を佇する平鋼板製底板を設置し、この平鋼Fi製製
板板上、前記ずれ止め部材を埋め込む如くスチールファ
イバーコンクリートを打設することにある。
Similarly, the second gist is that a flat steel plate bottom plate with a stud dowel or other anti-slip member placed on the top surface is installed between the upper ends of each inverted R-shaped steel main girder, and this flat steel Fi Steel fiber concrete is placed on the board so as to embed the anti-slip member.

同しく第3の要旨とするところは、各倒T形鋼玉桁の上
端間にわたって、上面にスタッドジベル等のずれ止め部
材をバする縞鋼板製底板を設置し、この縞鋼板製底板上
に、前記ずれ止め部材を埠め込ム如<スチールファイバ
ーコンクリートを打設することにある。
Similarly, the third gist is that a striped steel bottom plate is installed between the upper ends of each inverted T-shaped corrugated steel girder on the top surface of which a stud dowel or other anti-slip member is attached, and on this striped steel bottom plate, The purpose is to pour steel fiber concrete into which the anti-slip member is placed.

同しく第4の要旨とするところは、各倒T形鋼:E t
ijの上端間にわたって、上面にスタッドジベル等のず
れ止め部材を有する平鋼板製底板を設置し、前記各ずれ
+Lめ部材の頭頂部近傍間の底板幅方向にわたって主鉄
筋を溶接し、かつ各主鉄筋に直交して配力鉄筋を配設し
、前記平!l1lffi製底板上に、前記ずれ止め部材
、主鉄筋、配力鉄筋を埋め込む如くコンクリートを打設
することにある。
Similarly, the fourth point is that each inverted T-shaped steel: E t
A flat steel plate bottom plate having a slip prevention member such as a stud dowel on the top surface is installed between the upper ends of the ij, and a main reinforcing bar is welded across the width direction of the bottom plate between the tops of the above-mentioned deviation + L members, and Arrange the distribution reinforcing bars orthogonally to the reinforcing bars, and make the above-mentioned flat! The purpose is to pour concrete onto the l1lffi bottom plate so as to embed the anti-slip member, main reinforcing bars, and distribution reinforcing bars.

同しく第5の要旨とするところは、各倒T形鋼主桁の上
端間にわたって、上面にスタッドジベル等のずれ止め部
材を有する縞鋼板製底板を設置し、前記各ずれ止め部材
の頭頂部近傍間の底板幅方向にわたって主鉄筋を/8接
し、かつ各主鉄筋に直交して配力鉄筋を配設し、前記縞
鋼板製底板上に、前記ずれ止め部材、主鉄筋、配力鉄筋
を埋め込む如くコンクリートを打設することにある。
Similarly, the fifth point is that a striped steel bottom plate having a stud dowel or other anti-slip member on the upper surface is installed between the upper ends of each inverted T-shaped steel main girder, and the top of each of the anti-slip members is installed. The main reinforcing bars are in contact with each other in the width direction of the bottom plate between adjacent parts, and the distribution reinforcing bars are arranged orthogonally to each main reinforcing bar, and the anti-slip member, the main reinforcing bars, and the distribution reinforcing bars are placed on the striped steel plate bottom plate. The purpose is to pour concrete to embed it.

同しく第6の要旨とするところは、各例′r形鋼主ti
iの上端間にわたって、上面にスタッドジベル等のずれ
止め部材を有する平鋼板製底板を設置し、1fil記各
ずれ止め部材の頭頂部近傍間の底板幅方向にわたって主
鉄筋を溶接し、かつ各主鉄筋に直交して配力鉄筋を配設
し、前記平鋼板製底板上に、前記ずれ止め部材、主鉄筋
、配力鉄筋を埋め込む如くスチールファイバーコンクリ
ートを打設することにある。
Similarly, the sixth gist is that each example'r-shaped steel main ti
A flat steel bottom plate having a slip prevention member such as a stud dowel on the upper surface is installed between the upper ends of i, and a main reinforcing bar is welded across the width direction of the bottom plate between the tops of each of the slip prevention members described in 1fil. Distribution reinforcing bars are arranged perpendicularly to the reinforcing bars, and steel fiber concrete is cast on the flat steel plate bottom plate so as to embed the anti-slip member, the main reinforcing bars, and the distribution reinforcing bars.

同しく第7の要旨とするところは、各倒T形鋼主t11
の上端間にわたって、上面にスタッドジベル等のずれ止
め部材をrlする縞鋼板製底板を設置し、前記台ずれ止
め部材の頭頂部近傍間の底板幅方向にわたって主鉄筋を
溶接し、かつ各主鉄筋に直交して配力鉄筋を配設し、前
記縞鋼板製底板上に、前記ずれ止め部材、を鉄筋、配力
鉄筋を埋め込む如くスチールファイバーコンクリートを
打設することにある。
Similarly, the seventh point is that each inverted T-shaped steel main t11
A bottom plate made of striped steel is installed between the upper ends, and a slip prevention member such as a stud dowel is installed on the upper surface, and main reinforcing bars are welded across the width direction of the bottom plate near the top of the table slip prevention member, and each main reinforcing bar is Distribution reinforcing bars are arranged perpendicular to the striped steel plate bottom plate, and steel fiber concrete is cast on the striped steel plate bottom plate so as to embed the reinforcement members and the distribution reinforcing bars.

作用」 前記本発明方〆去の笛1の要旨の如く、底板として縞鋼
板を用いることにより、縞鋼板の突起部が、底板とコン
クリートどの境界面に生しる水平的断力を伝達する役割
りを果たすので、ずれ止め部材の所要本数を従来よりも
削減することができる。
As stated in Section 1 of the closing whistle of the present invention, by using a striped steel plate as the bottom plate, the protrusions of the striped steel plate play a role in transmitting the horizontal shear force that occurs at the interface between the bottom plate and the concrete. Therefore, the required number of anti-slip members can be reduced compared to the conventional one.

1jn記本発明方法の第2の要旨の如く、平鋼板製底板
上にスチールファイバーコンクリートを打設することに
より、普通のコンクリートよりも剪断耐荷力そ高めるこ
とができると共に、コンクリートのひび割れ発生を防止
することができるので、普通のコンクリートを用いた合
成床版よりもその最小全厚を低減することができる。
As described in the second gist of the method of the present invention, by placing steel fiber concrete on a flat steel bottom plate, it is possible to increase the shear load capacity compared to ordinary concrete, and prevent the occurrence of cracks in the concrete. Therefore, the minimum total thickness can be reduced compared to composite deck slabs using ordinary concrete.

前記本発明方法の第3の要旨の如く、縞鋼板製底板上に
スチールファイバーコンクリートを打設することにより
、前記本発明方法の第1、第2の要旨における相乗作用
によって、ずれ止め部材の所要本数を従来よりも削減す
ることができると共に、合成床版の最小全厚を従来より
も低減することができ、かつ床板下面の横リブの所要数
を従来よりも削減することができる。
As described in the third aspect of the method of the present invention, by placing steel fiber concrete on the striped steel bottom plate, the synergistic effect of the first and second aspects of the method of the present invention reduces the required amount of the anti-slip member. The number of ribs can be reduced compared to the conventional method, the minimum total thickness of the composite deck slab can be reduced compared to the conventional method, and the required number of horizontal ribs on the lower surface of the floor board can be reduced compared to the conventional method.

前記本発明方法の第4の要旨の如く、平鋼板製底板上の
各ずれ止め部材の頭頂部近傍の底板幅方向にわたって主
鉄筋を?g接し、かつ各主鉄筋に直交して配力鉄筋を配
設し、前記平鋼板製底板上に、前記ずれ止め部材、主鉄
筋、配力鉄筋を埋め込む如くコンクリートを打設するこ
とにより、底板と、ずれ止め部材と、ずれ止め部材の頭
頂部近傍間に/8接した主鉄筋とによって、多くの閉断
面ボンクスを形成することができるので、合成床版の曲
げ剛性を高めることができ、従って底板下面の横リブを
不要にすることができる。
As in the fourth aspect of the method of the present invention, the main reinforcing bars are installed in the width direction of the bottom plate near the top of each anti-slip member on the flat steel bottom plate. By placing distribution reinforcing bars in contact with each main reinforcing bar and perpendicular to each main reinforcing bar, and placing concrete on the flat steel plate bottom plate so as to embed the slip prevention member, main reinforcing bars, and distribution reinforcing bars, the bottom plate Since many closed-section bonks can be formed by the anti-slip member and the main reinforcing bars that are in contact with each other in the vicinity of the top of the anti-slip member, the bending rigidity of the composite deck can be increased. Therefore, horizontal ribs on the lower surface of the bottom plate can be made unnecessary.

前記本発明方法の第5の要旨の如く、縞鋼板製底板上の
各ずれ止め部材のsri部近傍間の底板幅方向にわたっ
て主鉄筋を溶接し、かつ各主鉄筋に直交して配力鉄筋を
配設し、前記縞鋼板製底板上に、前記ずれ止め部材、主
鉄筋、配力鉄筋を埋め込む如くコンクリートを打設する
ことにより、前記本発明方法の第1、第4の要旨におけ
る相乗作用によって、ずれ止め部材の所要本数を従来よ
りも削減することができると共に、底板下面の横リブを
不要にすることができる。
As in the fifth aspect of the method of the present invention, main reinforcing bars are welded across the width direction of the bottom plate between the sri parts of each anti-slip member on the striped steel bottom plate, and distribution reinforcing bars are placed orthogonally to each main reinforcing bar. By placing concrete on the striped steel bottom plate so as to embed the anti-slip member, main reinforcing bars, and distribution reinforcing bars, a synergistic effect in the first and fourth aspects of the method of the present invention is achieved. In addition, the required number of anti-slip members can be reduced compared to the conventional one, and horizontal ribs on the lower surface of the bottom plate can be made unnecessary.

前記本発明方法の第6の要旨の如く、平鋼板製底板上の
各ずれ止め部材の頭頂部近傍間の底板幅方向にわたって
主鉄筋を溶接し、かつ各主鉄筋に直交して配力鉄筋を配
設し、前記平鋼板製底板上に、前記ずれ止め部材、主鉄
筋、配力鉄勧を埋め込む如くスチールファイバーコンク
リートを打設することにより、前記本発明方法の第2、
第4の要旨における相乗作用によって、合成床版の最小
全厚を従来よりも低減することができると共に、底板下
面の横リブを不要にすることができる。
As in the sixth aspect of the method of the present invention, main reinforcing bars are welded across the width direction of the bottom plate between the vicinity of the tops of the respective anti-slip members on the flat steel bottom plate, and distribution reinforcing bars are placed orthogonally to each of the main reinforcing bars. The second method of the present invention is achieved by placing steel fiber concrete on the flat steel plate bottom plate so as to embed the anti-slip member, main reinforcing bars, and distribution steel.
Due to the synergistic effect in the fourth aspect, the minimum total thickness of the composite deck slab can be reduced compared to the conventional one, and the horizontal ribs on the lower surface of the bottom plate can be made unnecessary.

前記本発明方法の第7の要旨の如く、縞鋼板製底板上の
各ずれ止め部材の頭頂部近傍の底板幅方向にわたって主
鉄筋を/8接し、かつ各主鉄筋に直交して配力鉄筋を配
設し、前記縞鋼板製底板上に、前記ずれ止め部材、主鉄
筋、配力鉄筋を埋め込む坤りスチールファイバーコンク
リートを打設することにより、前記本発明方法の第3、
第4の要旨における相乗作用によって、ずれ止め部材の
所要本数を従来よりも1lII+減することがごきると
共に、合成床版の最小全厚を従来よりも低減することが
でき、かつ底板下面の横リブを不要にすることができる
As in the seventh aspect of the method of the present invention, the main reinforcing bars are connected by /8 across the bottom plate width direction near the top of each anti-slip member on the striped steel bottom plate, and the distribution reinforcing bars are perpendicular to each main reinforcing bar. 3 of the method of the present invention, by placing the steel fiber concrete in which the anti-slip member, the main reinforcing bars, and the distribution reinforcing bars are embedded on the striped steel bottom plate.
Due to the synergistic effect in the fourth aspect, the required number of anti-slip members can be reduced by 1lII+ compared to the conventional method, the minimum total thickness of the composite deck slab can be reduced compared to the conventional method, and the lateral side of the lower surface of the bottom plate can be reduced. Ribs can be made unnecessary.

「実施例」 次に本発明に係る橋梁用合成床版の構築方性の実施例を
第1図乃至第9図に哉づき以下に説’!IIする。
``Example'' Next, an example of how to construct a composite deck slab for a bridge according to the present invention will be described below with reference to FIGS. 1 to 9. II.

第1図は、本発明方法の第1実施例を示すものであって
、各例T形鋼主桁lの上端間にわたって、下面に格子状
に横リブ2と縦リブ3とを有し、上面にスタノドジヘル
等のずれLlこめ部材4を有する!!i鋼板製底板15
を設置し、かつ前記ずれ止め部材4の上端よりも上部位
置なる底板15の幅方向に主鉄筋6を第11図に示す鉄
筋保持用スペーサー7を介して配設し、この各主鉄Mr
J6に直交して配力鉄筋8を配設し、前記底板I5上に
、前記ずれ止め部材4、主鉄筋6、配力鉄筋8を埋め込
む如くコンクリート9を打設して、橋梁用合成床版を構
築するのである。
FIG. 1 shows a first embodiment of the method of the present invention, in which each example T-beam main girder l has horizontal ribs 2 and vertical ribs 3 in a lattice pattern on the lower surface, extending between the upper ends of the main girder l. It has a deviation Ll correction member 4 such as a stano dojiheru on the upper surface! ! i Steel plate bottom plate 15
, and a main reinforcing bar 6 is arranged in the width direction of the bottom plate 15 at a position above the upper end of the anti-slip member 4 via a reinforcing bar holding spacer 7 shown in FIG.
Distribution reinforcing bars 8 are arranged perpendicular to J6, and concrete 9 is cast on the bottom plate I5 so as to embed the slip prevention member 4, main reinforcing bars 6, and distribution reinforcing bars 8, thereby creating a composite deck slab for a bridge. The goal is to build.

第2図に示す如く、縞鋼板の最大付着弛度は、平鋼板の
最大付着強度241srf/cdに比較して、6.5f
音も高いが、設計計算上考慮される相対ずれ10.1−
点における付着強度は70kgf/−であっζ、平鋼板
の約3倍である。
As shown in Figure 2, the maximum bond sag of the striped steel plate is 6.5f, compared to the maximum bond strength of 241srf/cd of the flat steel plate.
Although the sound is high, the relative deviation taken into account in the design calculation is 10.1-
The adhesion strength at the point is 70 kgf/-, which is about three times that of the flat steel plate.

また第3図に示す如く、設計計算上考慮される相対ずれ
量0.1+n点における平鋼板に/8植した直pI!1
3 s厘、長さ70m朧のスタッドジベル4本の押抜き
剪断拭験による耐荷力(剪断力)は4.6トンであるが
、同様に、Ia鋼板に溶植した直径13關、長さ70鮪
のスタッドジベル4本の場合と、直径13mm、長さ 
130amのスタッドジベル4本の場合とのfiiQ力
はそれぞれ13.2 )ンと12.4 )ンであって、
平鋼板に溶植したスタノトジヘルの耐Gj力の約29倍
および約2.7倍である。
In addition, as shown in Figure 3, the direct pI of /8 was planted on a flat steel plate at the relative deviation of 0.1 + n points, which is considered in the design calculation. 1
The load bearing capacity (shearing force) of four stud dowels with a length of 3 seconds and a length of 70 meters was 4.6 tons when tested by shearing and wiping by punching. In case of 4 stud dowels of 70 tuna, diameter 13mm, length
The fiiQ forces in the case of four stud dowels at 130 am are 13.2) and 12.4), respectively,
This is about 29 times and about 2.7 times the Gj resistance of Stanotojihel melt-grafted on a flat steel plate.

従って、例えば板厚が6〜12軸の範囲の平鋼板l!I
底板と、厚さ150〜200 瓢真の範囲のコンクリー
トとにおける直i¥13ga、Hさ 130m++のス
クノドジヘルの溶植間隔は、従来、100IIX  1
00mmが必要であるが、同し板厚範囲の縞鋼板製1戊
(反と、同し厚さ範囲のコンクリ−1−における同寸法
のスフ。
Therefore, for example, a flat steel plate l with a thickness in the range of 6 to 12 axes! I
Conventionally, the welding spacing of Sukunodjiheru with a straight I ¥13ga and a height 130m++ between the bottom plate and concrete with a thickness of 150 to 200 mm is 100 IIX 1.
00mm is required, but the striped steel sheet of the same thickness range is the same size as the striped steel plate of the same thickness.

1ノヘルの18植間隔は、200量lX250關〜20
0mmX  loOamの範囲に広くすることができ、
スタ、1′ジヘルの所要本数を従来の20〜50%に削
減することができる。
The spacing between 18 plants of 1 noheru is 200 l x 250 x 20
It can be widened to a range of 0mmX loOam,
The required number of stars and 1' dihers can be reduced to 20 to 50% of the conventional number.

第4図は、本発明方法の第2実施例を示すものであって
、各倒T形鋼主tii Iの上端間にわたって、下面に
格子状に横リブ2と縦リブ3とを6し、上面にスク7ド
ノヘル等のずれ屯め部材4を有する平鋼板製底板5を設
置し、かつ前記ずれ止め部材4の上端よりも上部位置な
る底fi5の幅方向に主鉄筋6を鉄筋保持用スペーサー
7を介して配設し、この各主鉄筋6に直交して配力鉄筋
8を配設し、前記底板5上に、前記ずれ止め部材4、主
鉄筋6、配力鉄筋8を埋め込む如くスチールファイバー
コンクリート19を打設して、橋梁用合成床版を構築す
るのである。
FIG. 4 shows a second embodiment of the method of the present invention, in which horizontal ribs 2 and vertical ribs 3 are arranged in a lattice pattern on the lower surface between the upper ends of each inverted T-shaped steel main tii I, and A bottom plate 5 made of a flat steel plate having a displacement restraining member 4 such as a SKU 7 donohel is installed on the upper surface, and a main reinforcing bar 6 is installed in the width direction of the bottom fi 5 located above the upper end of the said displacement preventing member 4 as a spacer for holding the reinforcing bar. 7, distribution reinforcing bars 8 are arranged orthogonally to each of the main reinforcing bars 6, and steel bars are placed on the bottom plate 5 so that the anti-slip member 4, the main reinforcing bars 6, and the distribution reinforcing bars 8 are embedded. Fiber concrete 19 is poured to construct a composite deck slab for a bridge.

しかして、実験供試体としてのスチールファイバーコン
クリート合成床版は、全II 100mm、 星さ11
mであり、呼び強度350kgf/cd、スチールファ
イバーの混合率1.0%のレディー尖りストコンクリー
トであって、第5図に示すような静的曲げ破壊試験を行
った。
Therefore, the steel fiber concrete composite floor slab used as the experimental specimen was 100mm in diameter and 11mm in diameter.
A static bending fracture test as shown in FIG. 5 was conducted on ready-pointed concrete with a nominal strength of 350 kgf/cd and a steel fiber mixing ratio of 1.0%.

静的曲げ破壊試験における上記スチールファイバーコン
クリート合成床版の径間中央(2m)の荷重−たわみ曲
線を第6図に示す。
Figure 6 shows the load-deflection curve at the center of the span (2 m) of the steel fiber concrete composite deck slab in the static bending fracture test.

設計荷重(Pds=131  トン)においては、径間
中央のたわみおよびひずみ分布の実測値は、はぼ計算値
に等しく、完全合成桁に近い挙動を示した。
At the design load (Pds = 131 tons), the measured values of the deflection and strain distribution at the center of the span were equal to the calculated values, indicating behavior close to that of a fully composite girder.

終局耐力は、米国道路協会(AASHTO)の算定式に
従った計算値(Puc・301トン)に比較して、1.
10倍大きい332トンであり、床版全厚が1100a
でも十分な耐荷力が得られた。
The ultimate strength is 1. compared to the calculated value (Puc, 301 tons) according to the formula of the American Highway Association (AASHTO).
It weighs 332 tons, which is 10 times larger, and the total thickness of the floor slab is 1100a.
However, sufficient load-bearing capacity was obtained.

なお、スチールファイバーの混合率は、1.0%±0.
2%(体積比)の範囲がよい。
The mixing ratio of steel fibers was 1.0%±0.
A range of 2% (volume ratio) is preferable.

本発明方法の第3実施例は、第4図の第2実施例におけ
る平鋼板製底板5を縞鋼板製底板に代えて、橋梁用合成
床版を構築するのである。
In the third embodiment of the method of the present invention, a composite deck slab for a bridge is constructed by replacing the bottom plate 5 made of flat steel plate in the second embodiment shown in FIG. 4 with a bottom plate made of striped steel plate.

この第3実施例によれば、第1、第2実施例の相乗作用
によって、スタンドジベルの所要本数を従来の20〜5
0%に削減することができると共に、床版全厚が100
m−でも十分な耐荷力が得られ、かつ横リブ2の所要数
を従来よりも削減することができる。
According to the third embodiment, due to the synergistic effect of the first and second embodiments, the required number of stand dowels can be reduced from 20 to 5 compared to the conventional number.
0%, and the total thickness of the floor slab can be reduced to 100%.
Sufficient load carrying capacity can be obtained even with m-, and the required number of horizontal ribs 2 can be reduced compared to the conventional one.

第7図乃至第9図は、本発明方法の第4実施例を示すも
のであって、各倒T形鋼主桁lの上端間にわたって、下
面に縦リブ3を有し、上面にスタッドジベル等のずれ止
め部材4を有する平flil 板製底板5を設置し、前
記各ずれ止め部材4の頭頂部近傍間の底板5の幅方向に
わたって主鉄筋6を溶接し、かつ各主鉄筋6に直交して
配力鉄筋8を配設し、前記平鋼板製底板5上に、前記ず
れ止め部材4、主鉄筋6、耐力鉄筋8を埋め込む如くコ
ンクリ−19を打設して、橋梁用合成床版を構築するの
である。
7 to 9 show a fourth embodiment of the method of the present invention, in which a vertical rib 3 is provided on the lower surface between the upper ends of each inverted T-shaped steel main girder l, and a stud dowel is provided on the upper surface. A flat flil plate bottom plate 5 having anti-slip members 4 such as Then, distribution reinforcing bars 8 are arranged, and concrete 19 is poured on the flat steel plate bottom plate 5 so as to embed the anti-slip member 4, main reinforcing bars 6, and load-bearing reinforcing bars 8, thereby forming a composite deck slab for a bridge. The goal is to build.

本発明方法の第4実施IJI+によれば、底板5と、ず
れ止め部材4と、ずれ土め部材4の頭頂部近傍間に溶接
した主鉄筋6とによって、多くの閉断面ボックスを形成
することができるので、合成床版の曲げ剛性を高めるこ
とができ、従って底板5の下面の横リブを不要にするこ
とができる。
According to the fourth implementation IJI+ of the method of the present invention, many closed cross-section boxes are formed by the bottom plate 5, the anti-slip member 4, and the main reinforcing bar 6 welded to the vicinity of the top of the slip-soil member 4. As a result, the bending rigidity of the synthetic floor slab can be increased, and the horizontal ribs on the lower surface of the bottom plate 5 can be made unnecessary.

本発明方法の第5実施例は、第7図乃至第9図の第4実
施例における平鋼板製底板5を縞鋼板製底板に代えて、
橋梁用合成床版を構築するのである。
In the fifth embodiment of the method of the present invention, the bottom plate 5 made of flat steel plate in the fourth embodiment shown in FIGS. 7 to 9 is replaced with a bottom plate made of striped steel plate,
We construct composite deck slabs for bridges.

この第5実施例によれば、第1、第4実施例の相乗作用
によって、スタンドジベルの所要本数を従7にの20〜
50%に削減することができると共に、横リブを不要に
することができる。
According to the fifth embodiment, the required number of stand dowels can be increased from 20 to
This can be reduced to 50% and also eliminate the need for horizontal ribs.

本発明方法の第6実施剥は、第7図乃至第9図の第4実
施例におけるコンクリート9をスチールファイバーコン
クリートに代えて、Ji!梁川合用床版を構築するので
ある。
In the sixth embodiment of the method of the present invention, the concrete 9 in the fourth embodiment shown in FIGS. 7 to 9 was replaced with steel fiber concrete, and Ji! The plan was to construct the Yanagawa Goai floor slab.

この第6実施例によれば、第2、第4実施例の相乗作用
によって、床版全厚が100m5でも十分な耐荷力が得
られ、かっ横リブを不要にすることができる。
According to the sixth embodiment, due to the synergistic effect of the second and fourth embodiments, sufficient load-bearing capacity can be obtained even when the total thickness of the floor slab is 100 m5, and the horizontal ribs can be made unnecessary.

本発明の第7実施例は、第7図乃至笛9図の第4実施例
における平鋼板製底板5を1鋼板製底板に代えると共に
、コンクリート9をスチールファイバーコンクリートに
代えて、橋梁用合成床版を構成するのである。
In the seventh embodiment of the present invention, the bottom plate 5 made of flat steel plate in the fourth embodiment shown in Figs. 7 to 9 is replaced with a bottom plate made of steel plate, and the concrete 9 is replaced with steel fiber concrete. It composes the edition.

この第7実施例によれば、第3、第4実施例の相乗作用
によって、スタンドジベルの所要本数を従来の20〜5
0%に削減することができると共に、床版全厚が10(
Ja@でも十分な耐荷力が得られ、がつ横リブを不要に
することができろ。
According to the seventh embodiment, due to the synergistic effect of the third and fourth embodiments, the required number of stand dowels can be reduced from 20 to 5 compared to the conventional number.
It can be reduced to 0%, and the total thickness of the floor slab can be reduced to 10% (
Sufficient load-bearing capacity can be obtained even with Ja@, and the horizontal ribs can be made unnecessary.

なお、普通のコンクリートあるいはスチールファイバー
コンクリート等の配合に、膨張性セメントを混合しても
よい。
Incidentally, expandable cement may be mixed into the mix of ordinary concrete or steel fiber concrete.

「発明の効果」 以上述べた如く、本発明方法の第1の要旨の如く、底板
として縞鋼板を用いることにより、縞鋼板の突起部が、
底板とコンクリートとの境界面に生じる水平剪断力を伝
達する役割りを果たすので、ずれ止め部材の所要本数を
従来よりも削減することができる。
"Effects of the Invention" As described above, as in the first gist of the method of the present invention, by using a striped steel plate as the bottom plate, the protrusions of the striped steel plate can be
Since it plays the role of transmitting the horizontal shearing force generated at the interface between the bottom plate and the concrete, the required number of anti-slip members can be reduced compared to the conventional method.

本発明方〆去の第2の要旨の如く、平鋼板製底板上にス
チールファイバーコンクリートを打設することにより、
普通のコンクリートよりも剪断〜(荷力を高めることが
できると共に、コンクリートのひび割れ発/、lを防止
することができるので、普通のコンクリートを用いた合
成床版よりもその最小、全厚を低減することができろ。
As per the second gist of the method of the present invention, by placing steel fiber concrete on a flat steel bottom plate,
It is possible to increase the shear load (loading force) than ordinary concrete, and also prevent cracking of concrete, so the minimum and total thickness is lower than that of composite slabs using ordinary concrete. Be able to do it.

本発明方法の第3の要旨の如く、縞鋼板製底板上にスチ
ールファイバーコンクリートを打設することにより、前
記本発明方法の第1、第2の要旨における相乗作用によ
って、ずれ止め部材の所要本数を従来よりも削減するこ
とができると共に、合成床版の最小全厚を従来よりも低
減することができ、かつ底板下面の横リブの所要数を従
来よりも削減することができる。
As described in the third aspect of the method of the present invention, by placing steel fiber concrete on the bottom plate made of striped steel plate, the required number of anti-slip members is achieved by the synergistic effect of the first and second aspects of the method of the present invention. can be reduced compared to the conventional method, the minimum total thickness of the composite deck slab can be reduced compared to the conventional method, and the required number of horizontal ribs on the lower surface of the bottom plate can be reduced compared to the conventional method.

本発明方法の第4の要旨の如く、平鋼板製底板上の各ず
れ止め部材の頭頂部近傍間の底板幅方向にわたって主鉄
筋を溶接し、かつ各主鉄筋に直交して配力鉄力石を配設
し、前記平鋼板製底板上に、前記ずれ止め部材、主鉄筋
、配力鉄筋を埋め込む均<コンクリートを打設すること
により、底板と、ずれ止め部材と、ずれ止め部材の頭頂
部近傍間に溶接した主鉄筋とによって、多くの閉断面ボ
ックスを形成することができるので、合成床版の曲げ剛
性を高めることができ、従って底板下面の横リブを不要
にすることができる。
As in the fourth aspect of the method of the present invention, main reinforcing bars are welded across the width direction of the bottom plate between the vicinity of the top of each anti-slip member on the bottom plate made of flat steel plate, and distribution iron stones are welded orthogonally to each main reinforcing bar. By placing level concrete that embeds the anti-slip members, main reinforcing bars, and distribution reinforcing bars on the flat steel bottom plate, the bottom plate, the anti-slip members, and the vicinity of the tops of the anti-slip members are placed. Since many closed cross-section boxes can be formed by the main reinforcing bars welded in between, the bending rigidity of the composite deck slab can be increased, and horizontal ribs on the bottom surface of the bottom plate can be made unnecessary.

本発明方法の第5の要旨の如く、縞鋼板製底板上の各ず
れ止め部材の頭頂部近傍間の底板幅方向にわたって主鉄
筋をf8接し、かつ各主鉄筋に直交して配力鉄筋を配設
し、前記縞鋼板製底板上に、前記ずれ止め部材、主鉄筋
、配力鉄筋を埋め込む如くコンクリートを打設すること
により、前記本発明方法の第1、第4の要旨における相
乗作用によって、ずれ止め部材の所要本数を従来よりも
削減することができると共に、底板下面の横リブを不要
にすることができる。
As in the fifth aspect of the method of the present invention, the main reinforcing bars are in contact with f8 across the width direction of the bottom plate between the vicinity of the tops of the respective anti-slip members on the bottom plate made of striped steel plate, and the distribution reinforcing bars are arranged orthogonally to each main reinforcing bar. By placing concrete on the striped steel bottom plate so as to embed the anti-slip member, the main reinforcing bars, and the distribution reinforcing bars, a synergistic effect in the first and fourth aspects of the method of the present invention, The required number of anti-slip members can be reduced compared to the conventional one, and horizontal ribs on the lower surface of the bottom plate can be made unnecessary.

本発明方法の第6の要旨の如く、平鋼板製底板上の各ず
れ止め部材の頭頂部近傍間の底板幅方向にわたって主鉄
筋を溶接し、かつ各主鉄筋に直交して配力鉄筋を配設し
、前記平鋼板製底板上に、前記ずれ止め部材、主鉄筋、
配力鉄筋を埋め込む如くスチールファイバーコンクリー
トを打設することにより、前記本発明方法の第2、第4
の要旨における相乗作用によって、合成床版の最小全厚
を従来よりも低減することができると共に、底板下面の
横リブを不要にすることができる。
As in the sixth aspect of the method of the present invention, main reinforcing bars are welded across the width direction of the bottom plate between the vicinity of the top of each anti-slip member on the flat steel bottom plate, and distribution reinforcing bars are arranged orthogonally to each main reinforcing bar. and on the flat steel plate bottom plate, the anti-slip member, the main reinforcing bar,
By placing steel fiber concrete so as to embed distribution reinforcing bars, the second and fourth methods of the present invention can be achieved.
Due to the synergistic effect of the above points, the minimum total thickness of the composite deck slab can be reduced compared to the conventional one, and the horizontal ribs on the lower surface of the bottom plate can be made unnecessary.

本発明方法の第7の要旨の如く、縞鋼板製底板上の各ず
れ止め部材の頭頂部近傍間の底板幅方向にわたって主鉄
筋を溶接し、かつ各主鉄筋に直交して配力鉄筋を配設し
、前記縞鋼板製底板上に、前記ずれ止め部材、主鉄筋、
配力鉄筋を埋め込む如くスチールファイバーコンクリー
トを打設スることにより、前記本発明方法の第3、第4
の要旨における相乗作用によってずれ止め部材の所要本
数を従来よりも削減することができると共に、合成床版
の最小全厚を従来よりも低減することができ、かつ底板
下面の横リブを不要にすることができる。
As in the seventh aspect of the method of the present invention, the main reinforcing bars are welded across the width direction of the bottom plate between the vicinity of the top of each anti-slip member on the striped steel bottom plate, and the distribution reinforcing bars are arranged orthogonally to each main reinforcing bar. The anti-slip member, the main reinforcing bar,
By pouring steel fiber concrete so as to embed distribution reinforcing bars, the third and fourth methods of the present invention can be achieved.
Due to the synergistic effect of the above points, the required number of anti-slip members can be reduced compared to the conventional method, the minimum total thickness of the composite deck slab can be reduced compared to the conventional method, and horizontal ribs on the bottom surface of the bottom plate are no longer required. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の第1実施例を示す一部切り欠き斜
視図、第2図は縞鋼板と平鋼板とのコンクリートに対す
る付着強度と相対ずれ量の関係を示すグラフ、第3図は
縞鋼板に溶植したスタッドジベルと、平鋼板に溶植した
スタッドジベルとのIN’抜き剪断試験における剪断力
と相対ずれ量との関係を示すグラフ、第4図は本発明方
法の第2実施例を示す一部切り欠き斜視図、第5図はス
チールファイバーコンクリート合成床版の静的曲げ破壊
試験方法の説明図、第6図は静的(出げ破壊試験におけ
るスチールファイバーコンクリ−1〜合成床版の径間中
央のQmとたわみとの関係を示すグラフ、第7図は本発
明方法の第4実施例を示す一部切り欠き斜視図、第8図
は、第7図における要部の拡大図、第9図は、第7図に
おける要部の他の例を示す拡大図、第10図は従来例を
示す斜視図、第11図は、第1O図における要部の拡大
図である。 l・・・倒T形鋼主桁、2・・・横リブ、3・・・縦リ
ブ、4・・・ずれ止め部材、5・・・平鋼板製底板、1
5・・・縞鋼板製底板、6・・・主鉄筋、8・・・配力
鉄筋、9・・・1通のコンクリート、19・・・スチー
ルファイバーコンクリート 第2図 θ、f 0.2 0.4  0.6  0.8 利付ず′れ堂(sm) 第1図 第3図 耗灯丁゛れ号CrL飢) タ 第8図 第7図 第9図 た 勤 j−F(信a)
Fig. 1 is a partially cutaway perspective view showing the first embodiment of the method of the present invention, Fig. 2 is a graph showing the relationship between the adhesive strength of a striped steel plate and a flat steel plate to concrete and the relative displacement amount, and Fig. 3 is A graph showing the relationship between shear force and relative deviation amount in the IN' pullout shear test of stud dowels welded on a striped steel plate and stud dowels welded on a flat steel plate, FIG. 4 is the second implementation of the method of the present invention. A partially cutaway perspective view showing an example, Fig. 5 is an explanatory diagram of the static bending fracture test method for steel fiber concrete composite deck slabs, and Fig. 6 is a static (protrusion fracture test of steel fiber concrete 1 to composite). A graph showing the relationship between Qm at the center of the span of the floor slab and deflection, FIG. 7 is a partially cutaway perspective view showing the fourth embodiment of the method of the present invention, and FIG. 8 is a diagram showing the main parts in FIG. 7. An enlarged view, FIG. 9 is an enlarged view showing another example of the main part in FIG. 7, FIG. 10 is a perspective view showing the conventional example, and FIG. 11 is an enlarged view of the main part in FIG. 1O. l...Inverted T-shaped steel main girder, 2...Horizontal rib, 3...Vertical rib, 4...Slip prevention member, 5...Flat steel plate bottom plate, 1
5... Bottom plate made of striped steel plate, 6... Main reinforcing bar, 8... Distribution reinforcing bar, 9... 1 piece of concrete, 19... Steel fiber concrete Figure 2 θ, f 0.2 0 .4 0.6 0.8 Interest-free (sm) Figure 1 Figure 3 Figure 3 Figure CrL star Figure 8 Figure 7 Figure 9 Work j-F (sign a)

Claims (7)

【特許請求の範囲】[Claims] (1)各倒T形鋼主桁の上端間にわたって、上面にスタ
ッドジベル等のずれ止め部材を有する縞鋼板製底板を設
置し、この縞鋼板製底板上に、前記ずれ止め部材を埋め
込む如くコンクリートを打設することを特徴とする橋梁
用合成床版の構築方法。
(1) A striped steel bottom plate having a stud dowel or other anti-slip member on the top surface is installed between the upper ends of each inverted T-shaped steel main girder, and concrete is placed on top of this striped steel plate bottom plate to embed the anti-slip member. A method for constructing a composite deck slab for a bridge, characterized by pouring.
(2)各倒T形鋼主桁の上端間にわたって、上面にスタ
ッドジベル等のずれ止め部材を有する平鋼板製底板を設
置し、この平鋼板製底板上に、前記ずれ止め部材を埋め
込む如くスチールファイバーコンクリートを打設するこ
とを特徴とする橋梁用合成床版の構築方法。
(2) A flat steel bottom plate having a stud dowel or other anti-slip member on the top surface is installed between the upper ends of each inverted T-shaped steel main girder, and the steel plate is embedded so that the anti-slip member is embedded on the flat steel bottom plate. A method for constructing a composite deck slab for a bridge, characterized by pouring fiber concrete.
(3)各倒T形鋼主桁の上端間にわたって、上面にスタ
ッドジベル等のずれ止め部材を有する縞鋼板製底板を設
置し、この縞鋼板製底板上に、前記ずれ止め部材を埋め
込む如くスチールファイバーコンクリートを打設するこ
とを特徴とする橋梁用合成床版の構築方法。
(3) A striped steel bottom plate having a stud dowel or other anti-slip member on the top surface is installed between the upper ends of each inverted T-beam main girder, and the steel plate is embedded in the striped steel bottom plate so that the anti-slip member is embedded in the striped steel bottom plate. A method for constructing a composite deck slab for a bridge, characterized by pouring fiber concrete.
(4)各倒T形鋼主桁の上端間にわたって、上面にスタ
ッドジベル等のずれ止め部材を有する平鋼板製底板を設
置し、前記各ずれ止め部材の頭頂部近傍間の底板幅方向
にわたって主鉄筋を溶接し、かつ各主鉄筋に直交して配
力鉄筋を配設し、前記平鋼板製底板上に、前記ずれ止め
部材、主鉄筋、配力鉄筋を埋め込む如くコンクリートを
打設することを特徴とする橋梁用合成床版の構築方法。
(4) A flat steel bottom plate having a slip prevention member such as a stud dowel on the upper surface is installed between the upper ends of each inverted T-shaped steel main girder, and the bottom plate is installed in the width direction of the bottom plate between the tops of the respective slip prevention members. Welding the reinforcing bars, placing distribution reinforcing bars perpendicular to each main reinforcing bar, and pouring concrete on the flat steel plate bottom plate so as to embed the anti-slip member, the main reinforcing bar, and the distribution reinforcing bar. A method for constructing composite deck slabs for bridges.
(5)各倒T形鋼主桁の上端間にわたって、上面にスタ
ッドジベル等のずれ止め部材を有する縞鋼板製底板を設
置し、前記各ずれ止め部材の頭頂部近傍間の底板幅方向
にわたって主鉄筋を溶接し、かつ各主鉄筋に直交して配
力鉄筋を配設し、前記縞鋼板製底板上に、前記ずれ止め
部材、主鉄筋、配力鉄筋を埋め込む如くコンクリートを
打設することを特徴とする橋梁用合成床版の構築方法。
(5) A bottom plate made of striped steel plate having a slip prevention member such as a stud dowel on the upper surface is installed between the upper ends of each inverted T-shaped steel main girder. Welding reinforcing bars, placing distribution reinforcing bars perpendicular to each main reinforcing bar, and pouring concrete onto the striped steel plate bottom plate so as to embed the anti-slip member, main reinforcing bars, and distribution reinforcing bars. A method for constructing composite deck slabs for bridges.
(6)各倒T形鋼主桁の上端間にわたって、上面にスタ
ッドジベル等のずれ止め部材を有する平鋼板製底板を設
置し、前記各ずれ止め部材の頭頂部近傍間の底板幅方向
にわたって主鉄筋を溶接し、かつ各主鉄筋に直交して配
力鉄筋を配設し、前記平鋼板製底板上に、前記ずれ止め
部材、主鉄筋、配力鉄筋を埋め込む如くスチールファイ
バーコンクリートを打設することを特徴とする橋梁用合
成床版の構築方法。
(6) A flat steel bottom plate having a slip prevention member such as a stud dowel on the upper surface is installed between the upper ends of each inverted T-shaped steel main girder, and the bottom plate is installed in the width direction of the bottom plate between the tops of the respective slip prevention members. Weld the reinforcing bars, place distribution reinforcing bars perpendicular to each main reinforcing bar, and pour steel fiber concrete onto the flat steel plate bottom plate so as to embed the anti-slip member, main reinforcing bars, and distribution reinforcing bars. A method for constructing composite deck slabs for bridges, which is characterized by:
(7)各倒T形鋼主桁の上端間にわたって、上面にスタ
ッドジベル等のずれ止め部材を有する縞鋼板製底板を設
置し、前記各ずれ止め部材の頭頂部近傍間の底板幅方向
にわたって主鉄筋を溶接し、かつ各主鉄筋に直交して配
力鉄筋を配設し、前記縞鋼板製底板上に、前記ずれ止め
部材、主鉄筋、配力鉄筋を埋め込む如くスチールファイ
バーコンクリートを打設することを特徴とする橋梁用合
成床版の構築方法。
(7) A bottom plate made of striped steel plate having a slip prevention member such as a stud dowel on the upper surface is installed between the upper ends of each inverted T-shaped steel main girder, and the bottom plate is installed in the width direction of the bottom plate between the tops of the respective slip prevention members. The reinforcing bars are welded, distribution reinforcing bars are placed perpendicular to each main reinforcing bar, and steel fiber concrete is cast on the striped steel plate bottom plate so as to embed the anti-slip member, main reinforcing bar, and distribution reinforcing bar. A method for constructing composite deck slabs for bridges, which is characterized by:
JP63322713A 1988-12-20 1988-12-20 Constructing composite floor board for bridge Pending JPH02167909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63322713A JPH02167909A (en) 1988-12-20 1988-12-20 Constructing composite floor board for bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63322713A JPH02167909A (en) 1988-12-20 1988-12-20 Constructing composite floor board for bridge

Publications (1)

Publication Number Publication Date
JPH02167909A true JPH02167909A (en) 1990-06-28

Family

ID=18146791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63322713A Pending JPH02167909A (en) 1988-12-20 1988-12-20 Constructing composite floor board for bridge

Country Status (1)

Country Link
JP (1) JPH02167909A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004019126A (en) * 2002-06-12 2004-01-22 Ps Mitsubishi Construction Co Ltd Incremental launching erection method of composite pc bridge, and composite pc structure
JP2009007925A (en) * 2007-05-31 2009-01-15 Ihi Corp Floor slab for steel bridge
JP2019119991A (en) * 2017-12-28 2019-07-22 清水建設株式会社 Composite floor slab

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004019126A (en) * 2002-06-12 2004-01-22 Ps Mitsubishi Construction Co Ltd Incremental launching erection method of composite pc bridge, and composite pc structure
JP2009007925A (en) * 2007-05-31 2009-01-15 Ihi Corp Floor slab for steel bridge
JP2019119991A (en) * 2017-12-28 2019-07-22 清水建設株式会社 Composite floor slab

Similar Documents

Publication Publication Date Title
US5339475A (en) Load supporting structure
JP2000319816A (en) Rigid connection structure of upper and lower composite members
JPH11336021A (en) Bridge floor slab unit and execution of bridge floor slab using the unit
JP3950757B2 (en) Synthetic floor slab and its construction method
JP2001081729A (en) Composite floor slab
JP3830767B2 (en) Continuous girder for bridge
JP2002013108A (en) Synthetic floor slab
JPH02167909A (en) Constructing composite floor board for bridge
JP2750556B2 (en) Manufacturing method of prestressed concrete girder
JP2008088634A (en) Composite steel-concrete floor slab
JP4005774B2 (en) Bridge girder
JPH11293626A (en) Bridge structure
JPS6361443B2 (en)
JP2008231688A (en) Bridge structure using composite floor slab, its construction method, and form for composite floor slab
JP2006299554A (en) Structure near intermediate supporting point of continuous i-beam bridge
JP3950748B2 (en) Bridge girder
US3994436A (en) Composite railway tie
JP2002275833A (en) Continuing method of simple beam of existing bridge and continuous beam structure
JPH09158123A (en) Floor slab structure
JPH11222817A (en) Continuous composite bridge
GB2256881A (en) Load supporting structure
KR102551244B1 (en) Web-open type steel box, bridge and construction method therewith
JP3853887B2 (en) Floor slab assembly
KR100197760B1 (en) A conjunctive construction part for joining a concrete column and iron beam of a building
JPH079921Y2 (en) Joint structure between reinforced concrete column and steel beam