JPH0216763B2 - - Google Patents

Info

Publication number
JPH0216763B2
JPH0216763B2 JP175682A JP175682A JPH0216763B2 JP H0216763 B2 JPH0216763 B2 JP H0216763B2 JP 175682 A JP175682 A JP 175682A JP 175682 A JP175682 A JP 175682A JP H0216763 B2 JPH0216763 B2 JP H0216763B2
Authority
JP
Japan
Prior art keywords
polyethylene
molecular weight
catalyst
weight distribution
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP175682A
Other languages
Japanese (ja)
Other versions
JPS58118804A (en
Inventor
Akinobu Sugawara
Toshimi Nikaido
Takashi Yamawaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP175682A priority Critical patent/JPS58118804A/en
Publication of JPS58118804A publication Critical patent/JPS58118804A/en
Publication of JPH0216763B2 publication Critical patent/JPH0216763B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリエチレンの製造方法に関し、詳し
くは特定の触媒を用いると共に重合反応時に分子
量分布調節剤を存在せしめることによつて、分子
量分布の広いポリエチレンを効率よく製造するこ
とのできる方法に関する。 最近、ポリエチレンを製造するにあたり、高活
性触媒を使用して生産効率をあげることが行なわ
れている。しかしながら、上記のような高活性触
媒を使用して製造したポリエチレンは、分子量分
布が狭いため、流動性が低く成形時の樹脂圧力が
高くなり、また得られる成形品にいわゆる鮫肌現
象が出やすいなど様々な問題がある。 そこで、これらの問題点を解消するために、触
媒の選定や水素濃度、重合温度などの操作条件の
改良あるいは重合を多段にて行なうなど様々な工
夫がなされ実施されつつある。しかし、これらは
いずれも新たな設備を必要としたり、操作が複雑
であるため、作業性が悪くしかも製造コストが高
いなど実用上様々な難点がある。 これらの実用上の問題点を解決するものとし
て、特開昭56−41207号公報記載の方法が開発さ
れている。この方法によれば、得られるポリエチ
レンの分子量分布の調節には効果的であるが、未
だ不充分であつた。 本発明はかかる欠点がなくしかも分子量分布の
調節されたポリエチレン特に、広い分子量分布を
もつポリエチレンを効率よく製造することを目的
とするものであり、その構成は、(A)少なくともア
ルコキシマグネシウム、硫酸マグネシウムおよび
塩素含有チタン化合物を反応させて得られる固体
触媒成分、(B)一般式R1 3Al(R1は炭素数1〜8の
アルキル基またはシクロアルキル基を示す。)で
表わされるトリアルキルアルミニウムおよび(C)一
般式R2 oAlCl3-o(R2は炭素数1〜8のアルキル基
またはシクロアルキル基を示し、nは0<n≦2
を満たす実数を示す。)で表わされる塩素含有ア
ルミニウム化合物から調製された触媒を用いてポ
リエチレンを製造するにあたり、重合反応時に分
子量分布調節剤として水を前記触媒の(C)成分に対
して0.05〜0.3倍モルの割合で存在せしめること
を特徴とするポリエチレンの製造方法である。 本発明の方法で用いる触媒は、上記の(A)、(B)お
よび(C)成分より調製されたものであるが、このう
ち(A)成分としては、少なくともアルコキシマグネ
シウム、硫酸マグネシウムおよび塩素含有チタン
化合物を反応させて得られる固体触媒成分が用い
られ、例えば硫酸マグネシウムの存在下でアルコ
キシマグネシウムと塩素含有チタン化合物とを反
応させたものが好適に用いられる。ここでアルコ
キシマグネシウムとしては例えばメトキシマグネ
シウム、エトキシマグネシウム、プロポキシマグ
ネシウム、ブトキシマグネシウム、ジエトキシマ
グネシウム(マグネシウムジエトキシド)などが
挙げられる。一方、前記の塩素含有チタン化合物
としては、例えば、四塩化チタン(TiCl4)、三
塩化チタン(TiCl3)、三塩化チタンと塩化アル
ミニウムの付加物(TiCl3・1/3AlCl3)、ジク
ロロメトキシチタン(CH3OTiCl2)、トリクロロ
エトキシチタン(C2H5OTiCl3)、トリクロロプ
ロポキシチタン(C3H7OTiCl3)、ジクロロジプ
ロポキシチタン((C3H7O)2TiCl2)、ジクロロジ
エトキシチタン((C2H5O)2TiCl2)、モノクロロ
トリエトキシチタン((C2H2O)3TiCl)などをあ
げることができる。 なお(A)成分である固体触媒成分は上述の如く製
造してもよいが、さらに好ましくは、上記アルコ
キシマグネシウムをまず四塩化ケイ素等を用いて
変成しておき、これを塩素含有チタン化合物と反
応させることによつて得られる。 続いて触媒の(B)成分である一般式R1 3Alで表わ
されるトリアルキルアルミニウムは、R1が炭素
数1〜8のアルキル基あるいはシクロアルキル基
であればよく、好適な例としてはトリメチルアル
ミニウム、トリエチルアルミニウム、トリイソプ
ロピルアルミニウム、トリイソブチルアルミニウ
ム、トリオクチルアルミニウムなどがある。 次に触媒の(C)成分である一般式R2oAlCl3-oで表
わされる塩素含有アルミニウム化合物は、R2
炭素数1〜8のアルキル基またはシクロアルキル
基であり、またnが0<n≦2を満たす実数であ
ればよい。この化合物の好適な例としては、ジエ
チルアルミニウムモノクロライド、ジイソプロピ
ルアルミニウムモノクロライド、ジイソブチルア
ルミニウムモノクロライド、ジオクチルアルミニ
ウムモノクロライド、エチルアルミニウムジクロ
ライド、イソプロピルアルミニウムジクロライ
ド、エチルアルミニウムセスキクロライドなどを
あげることができる。 本発明の方法においては、上記の(A)、(B)、(C)の
各成分から調製された触媒を用いると共に、重合
反応系に特定の分子量分布調節剤を存在させるこ
とが必要不可欠である。ここで分子量分布調節剤
としては水が用いられ、その水の重合反応時にお
ける存在量は、前記触媒の(C)の成分に対して0.05
〜0.3倍モルの範囲とすべきである。反応系にお
ける分子量分布調節剤を存在量が少なすぎると、
分子量分布の調節効果が充分でなく、逆に多すぎ
ると触媒の重合活性が著しく低下するため脱灰工
程が必要となる、などの不都合が生ずる。 本発明の方法によつて、ポリエチレンを製造す
るにあたつては、反応系に上記(A)、(B)、(C)成分か
ら調製された触媒と、分子量分布調節剤を加え、
さらにエチレンを導入して反応させる。重合方法
ならびに条件等は特に制限はなく、溶液重合、懸
濁重合、気相重合等のいずれも可能であり、また
連続重合、非連続重合のどちらも可能であり、し
かも一段重合はもちろんのこと多段重合を行なう
こともできる。反応系の媒体としては、ブタン、
ペンタン、n−ヘキサン、シクロヘキサン、ヘプ
タン、ベンゼン、トルエン等の不活性溶媒が好ま
しい。さらに反応系のエチレン圧は、0.5〜15
Kg/cm2G、好ましくは1〜10Kg/cm2Gとし、反応
温度は50〜95℃、好ましくは60〜90℃として、10
分〜5時間、好ましくは30分〜3時間撹拌させる
ことによつて目的とするポリエチレンを得ること
ができる。なお、重合に際しての分子量の調節
は、公知の手段、例えば水素等により行なえばよ
い。 本発明の方法にて重合できるポリエチレの種類
は、エチレンのホモポリマーはもちろん、その他
エチレンと少量のα−オレフイン、特にプロピレ
ン、ブテン−1、ペンテン−1等の炭素数3〜10
のα−オレフインとのコポリマーなどがあげられ
る。 本発明の方法は、叙上の如き触媒を用いるた
め、触媒活性が著しく高く、少量の使用で充分な
効果が得られ、その結果、脱灰工程(触媒除去工
程)が省略することができる。しかも、本発明の
方法によれば、触媒の変更や設備の増設等を要せ
ず、分子量分布調節剤の添加だけで、得られるポ
リエチレンの分子量分布の調節が容易に行なえる
ため、生産性の向上ならびに作業性の向上を図る
ことができる。また、得られるポリエチレン、特
に分子量分布の広いポリエチレンは、成形性、特
にフイルムやシート等の押し出し成形性にすぐ
れ、その上成形品表面は非常に美麗なものとな
る。 次に、本発明の実施例を示す。なお、下記の実
施例において操作はすべてアルゴン気流下にて行
なつた。また分子量分布の評価は、190℃、2.16
Kg荷重のメルトインデツクス(MI2.16)に対する
21.6Kg荷重のメルトインデツクス(MI21.6)の比
である溶融流れの比(FR)で行なつた。さらに、
樹脂圧力の評価は、直径20mmのインフレーシヨン
成形機を用い、195℃のダイス、吐出量20/分で
のブレーカープレートアウトの出力測定値を示
す。 実施例1〜4および比較例1〜4 (1) 固体触媒成分の製造 n−ヘプタン50ml中にマグネシウムジエトキ
シド1.0g(8.8ミリモル)および市販の無水硫
酸マグネシウム1.06g(8.8ミリモル)を懸濁
させ、さらに四塩化ケイ素1.5g(8.8ミリモ
ル)とエタノール1.6g(35.2ミリモル)を加
えて80℃で1時間反応を行なつた。次いで四塩
化チタン5ml(45ミリモル)を加えて98℃で3
時間反応させた。反応後、冷却静置し上澄液を
傾斜法により除去した。続いて新たにn−ヘプ
タン100mlを加えて撹拌、静置、上澄液除去の
洗浄操作を3回行なつた後、n−ヘプタン200
mlを加えて固体触媒成分の分散液を得た。この
もののチタン担持量を比色法により求めた結
果、12mg−Ti/g−担体であつた。 (2) エチレンの重合 7容のステンレス製オートクレーブに、乾
燥ヘキサン5、(A)成分として上記で製造した
固体触媒成分、(B)成分としてトリエチルアルミ
ニウム、(C)成分としてジエチルアルミニウムお
よび分子量分布調節剤として水を所定量入れ、
さらにポリエチレンが第1表に示すメルトイン
デツクスス(MI)になるように計量された水
素ならびに反応器の全圧が8.3Kg/cm2Gとなる
ようにエチレンを連続供給し、80℃で150分間
撹拌しながら反応を行なつた。反応終了後、得
られたポリエチレンを洗浄乾燥し、そのFRお
よび樹脂圧力を測定した。結果を第1表に示
す。 実施例5〜7および比較例5〜7 7容のステンレス製オートクレーブに、乾燥
ヘキサン2.7および上記実施例1〜4と同様の
(A)、(B)、(C)触媒成分を加え、さらに得られるポリ
エチレンが第2表に示す極限粘度〔η〕になるよ
うに計量された水素ならびに反応器の全圧が8.7
Kg/cm2Gになるようにエチレンを連続供給し、90
℃で120分間撹拌しながら反応した後、40℃まで
降温した。次いで反応器の脱気を行ない、さらに
ポリエチレンが第2表のMIになるように計量さ
れた水素および反応器の全圧が8.3Kg/cm2Gにな
るようにエチレンを連続供給すると共に、分子量
分布調節剤として水を、第2表に示す所定量を該
オートクレーブに入れ、80℃で30分間撹拌しなが
ら重合反応を行なつた。反応終了後、得られたポ
リエチレンを洗浄乾燥し、そのFRおよび樹脂圧
力を測定した。結果を第2表に示す。 実施例8および比較例8 7容のステンレス製オートクレーブに、乾燥
ヘキサン2.7および上記実施例1〜4と同様の
(A)、(B)、(C)触媒成分を加え、さらに得られるポリ
エチレンが第3表に示す極限粘度〔η〕になるよ
うに計量された水素ならびに反応器の全圧が8.7
Kg/cm2Gになるようにエチレンを連続供給し、90
℃で120分間撹拌しながら反応した後、40℃まで
降温した。次いで、反応器の脱気を行なつた後、
得られるポリエチレンが第3表のMIになるよう
に計量された水素、50gのブテン−1および反応
器の全圧が8.3Kg/cm2Gになるようにエチレンを
連続供給すると共に、分子量分布調節剤として水
を第3表に示す所定量を該オートクレーブに入
れ、80℃で30分間撹拌しながら重合反応を行なつ
た。反応終了後、ポリエチレンを洗浄乾燥し、そ
のFRおよび樹脂圧力を測定した。結果を第3表
に示す。
The present invention relates to a method for producing polyethylene, and more particularly, to a method for efficiently producing polyethylene with a wide molecular weight distribution by using a specific catalyst and allowing a molecular weight distribution regulator to be present during the polymerization reaction. Recently, in producing polyethylene, highly active catalysts have been used to increase production efficiency. However, polyethylene produced using the above-mentioned highly active catalysts has a narrow molecular weight distribution, resulting in low fluidity and high resin pressure during molding, and the resulting molded products are susceptible to the so-called shark skin phenomenon. There are various problems. Therefore, in order to solve these problems, various efforts are being made and implemented, such as improving the selection of catalysts, operating conditions such as hydrogen concentration and polymerization temperature, and carrying out polymerization in multiple stages. However, all of these methods require new equipment and are complicated to operate, resulting in poor workability and high manufacturing costs. In order to solve these practical problems, a method described in Japanese Patent Application Laid-open No. 41207/1983 has been developed. Although this method is effective in controlling the molecular weight distribution of the resulting polyethylene, it is still insufficient. The object of the present invention is to efficiently produce polyethylene having a controlled molecular weight distribution, in particular, a polyethylene having a wide molecular weight distribution without such drawbacks, and the present invention is composed of (A) at least magnesium alkoxy, magnesium sulfate; and a solid catalyst component obtained by reacting a chlorine-containing titanium compound, (B) trialkylaluminum represented by the general formula R 1 3 Al (R 1 represents an alkyl group or a cycloalkyl group having 1 to 8 carbon atoms) and (C) general formula R 2 o AlCl 3-o (R 2 represents an alkyl group or cycloalkyl group having 1 to 8 carbon atoms, and n is 0<n≦2
Indicates a real number that satisfies. ) When producing polyethylene using a catalyst prepared from a chlorine-containing aluminum compound represented by This is a method for producing polyethylene, characterized in that the polyethylene is made to exist. The catalyst used in the method of the present invention is prepared from the above components (A), (B) and (C), of which component (A) contains at least alkoxymagnesium, magnesium sulfate and chlorine-containing components. A solid catalyst component obtained by reacting a titanium compound is used, and for example, one obtained by reacting alkoxymagnesium with a chlorine-containing titanium compound in the presence of magnesium sulfate is preferably used. Examples of the alkoxymagnesium include methoxymagnesium, ethoxymagnesium, propoxymagnesium, butoxymagnesium, diethoxymagnesium (magnesium diethoxide), and the like. On the other hand, examples of the chlorine-containing titanium compound include titanium tetrachloride (TiCl 4 ), titanium trichloride (TiCl 3 ), an adduct of titanium trichloride and aluminum chloride (TiCl 3 1/3 AlCl 3 ), dichloromethoxy Titanium ( CH3OTiCl2 ) , trichloroethoxytitanium ( C2H5OTiCl3 ) , trichloropropoxytitanium ( C3H7OTiCl3 ) , dichlorodipropoxytitanium (( C3H7O ) 2TiCl2 ) , dichloro Examples include diethoxytitanium ((C 2 H 5 O) 2 TiCl 2 ) and monochlorotriethoxytitanium ((C 2 H 2 O) 3 TiCl). Although the solid catalyst component (A) may be produced as described above, it is more preferable to first modify the alkoxymagnesium using silicon tetrachloride or the like, and then react it with a chlorine-containing titanium compound. It can be obtained by letting Next, in the trialkylaluminum represented by the general formula R 1 3 Al, which is the component (B) of the catalyst, R 1 may be an alkyl group or a cycloalkyl group having 1 to 8 carbon atoms, and a preferable example is trimethyl. Examples include aluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, and trioctylaluminum. Next, in the chlorine-containing aluminum compound represented by the general formula R 2o AlCl 3-o , which is the component (C) of the catalyst, R 2 is an alkyl group or a cycloalkyl group having 1 to 8 carbon atoms, and n is 0< Any real number satisfying n≦2 may be used. Suitable examples of this compound include diethylaluminum monochloride, diisopropylaluminum monochloride, diisobutylaluminum monochloride, dioctylaluminum monochloride, ethylaluminum dichloride, isopropylaluminum dichloride, ethylaluminum sesquichloride, and the like. In the method of the present invention, it is essential to use a catalyst prepared from each of the components (A), (B), and (C) above, and to have a specific molecular weight distribution regulator present in the polymerization reaction system. be. Here, water is used as the molecular weight distribution regulator, and the amount of water present during the polymerization reaction is 0.05% relative to the component (C) of the catalyst.
It should be in the range of ~0.3 times molar. If the amount of molecular weight distribution regulator in the reaction system is too small,
The effect of controlling the molecular weight distribution is not sufficient, and conversely, if the amount is too large, the polymerization activity of the catalyst will be significantly reduced, resulting in disadvantages such as the need for a deashing step. When producing polyethylene by the method of the present invention, a catalyst prepared from the above components (A), (B), and (C) and a molecular weight distribution regulator are added to the reaction system,
Furthermore, ethylene is introduced and reacted. There are no particular restrictions on the polymerization method and conditions, and solution polymerization, suspension polymerization, gas phase polymerization, etc. are all possible, and both continuous and discontinuous polymerization are possible, as well as one-stage polymerization. Multistage polymerization can also be carried out. Butane,
Inert solvents such as pentane, n-hexane, cyclohexane, heptane, benzene, toluene and the like are preferred. Furthermore, the ethylene pressure in the reaction system is 0.5 to 15
Kg/cm 2 G, preferably 1 to 10 Kg/cm 2 G, and the reaction temperature is 50 to 95°C, preferably 60 to 90°C.
The desired polyethylene can be obtained by stirring for minutes to 5 hours, preferably 30 minutes to 3 hours. The molecular weight during polymerization may be controlled by known means such as hydrogen. The types of polyethylene that can be polymerized by the method of the present invention include not only ethylene homopolymers, but also ethylene and a small amount of α-olefin, especially propylene, butene-1, pentene-1, etc. having 3 to 10 carbon atoms.
Examples include copolymers with α-olefin. Since the method of the present invention uses the above-mentioned catalyst, the catalyst activity is extremely high, and a sufficient effect can be obtained even with a small amount of use, and as a result, the deashing step (catalyst removal step) can be omitted. Moreover, according to the method of the present invention, the molecular weight distribution of the obtained polyethylene can be easily adjusted simply by adding a molecular weight distribution regulator without changing the catalyst or adding equipment. It is possible to improve the performance and workability. Furthermore, the resulting polyethylene, particularly polyethylene with a wide molecular weight distribution, has excellent moldability, particularly extrusion moldability into films, sheets, etc., and the surface of the molded product is also very beautiful. Next, examples of the present invention will be shown. In addition, in the following examples, all operations were performed under an argon stream. In addition, the evaluation of molecular weight distribution was performed at 190℃, 2.16
Kg load for melt index (MI 2.16 )
The melt flow ratio (FR) was the ratio of the melt index (MI 21.6 ) at a load of 21.6 kg. moreover,
The evaluation of resin pressure shows the measured output value of breaker plate out using an inflation molding machine with a diameter of 20 mm, a die at 195°C, and a discharge rate of 20/min. Examples 1 to 4 and Comparative Examples 1 to 4 (1) Production of solid catalyst component 1.0 g (8.8 mmol) of magnesium diethoxide and 1.06 g (8.8 mmol) of commercially available anhydrous magnesium sulfate were suspended in 50 ml of n-heptane. Then, 1.5 g (8.8 mmol) of silicon tetrachloride and 1.6 g (35.2 mmol) of ethanol were added, and the reaction was carried out at 80° C. for 1 hour. Next, 5 ml (45 mmol) of titanium tetrachloride was added and the mixture was heated at 98°C for 30 minutes.
Allowed time to react. After the reaction, the mixture was cooled and left to stand, and the supernatant liquid was removed by a decanting method. Next, 100 ml of n-heptane was added and the washing operation of stirring, standing, and removing the supernatant liquid was performed three times, and then 200 ml of n-heptane was added.
ml was added to obtain a dispersion of solid catalyst components. The amount of titanium supported on this product was determined by a colorimetric method and was found to be 12 mg-Ti/g-support. (2) Polymerization of ethylene In a 7-volume stainless steel autoclave, 55% of dry hexane, the solid catalyst component prepared above as the (A) component, triethylaluminum as the (B) component, diethylaluminum as the (C) component, and molecular weight distribution adjustment. Add a certain amount of water as a agent,
Furthermore, hydrogen was metered so that the polyethylene had the melt index (MI) shown in Table 1, and ethylene was continuously supplied so that the total pressure of the reactor was 8.3 Kg/cm 2 G. The reaction was carried out with stirring for a minute. After the reaction was completed, the obtained polyethylene was washed and dried, and its FR and resin pressure were measured. The results are shown in Table 1. Examples 5-7 and Comparative Examples 5-7 In a 7-volume stainless steel autoclave was added 2.7 g of dry hexane and the same as in Examples 1-4 above.
(A), (B), and (C) catalyst components were added, hydrogen was measured so that the resulting polyethylene had the intrinsic viscosity [η] shown in Table 2, and the total pressure of the reactor was 8.7.
Continuously supply ethylene so that the amount is 90 kg/cm 2 G.
After reacting at ℃ for 120 minutes with stirring, the temperature was lowered to 40℃. Next, the reactor was degassed, hydrogen was metered so that the polyethylene reached the MI shown in Table 2, and ethylene was continuously fed so that the total pressure of the reactor was 8.3 Kg/cm 2 G, and the molecular weight A predetermined amount of water as a distribution regulator shown in Table 2 was added to the autoclave, and a polymerization reaction was carried out at 80°C for 30 minutes with stirring. After the reaction was completed, the obtained polyethylene was washed and dried, and its FR and resin pressure were measured. The results are shown in Table 2. Example 8 and Comparative Example 8 In a 7 volume stainless steel autoclave was added 2.7 g of dry hexane and the same as in Examples 1 to 4 above.
(A), (B), and (C) catalyst components were added, hydrogen was measured so that the resulting polyethylene had the intrinsic viscosity [η] shown in Table 3, and the total pressure of the reactor was 8.7.
Continuously supply ethylene so that the amount is 90 kg/cm 2 G.
After reacting at ℃ for 120 minutes with stirring, the temperature was lowered to 40℃. Then, after degassing the reactor,
Hydrogen, 50 g of butene-1, and ethylene were continuously fed so that the resulting polyethylene had the MI shown in Table 3, and ethylene was added so that the total pressure of the reactor was 8.3 Kg/cm 2 G, while molecular weight distribution was adjusted. A predetermined amount of water as a reagent shown in Table 3 was placed in the autoclave, and a polymerization reaction was carried out at 80° C. for 30 minutes with stirring. After the reaction was completed, the polyethylene was washed and dried, and its FR and resin pressure were measured. The results are shown in Table 3.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法で用いる触媒の調製工程
を表わした図面である。
FIG. 1 is a drawing showing the steps for preparing a catalyst used in the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 (A)少なくともアルコキシマグネシウム、硫酸
マグネシウムおよび塩素含有チタン化合物を反応
させて得られる固体触媒成分、(B)一般式R1 3Al
(R1は炭素数1〜8のアルキル基またはシクロア
ルキル基を示す。)で表わされるトリアルキルア
ルミニウムおよび(C)一般式R2 oAlCl3-o(R2は炭素
数1〜8のアルキル基またはシクロアルキル基を
示し、nは0<n≦2を満たす実数を示す。)で
表わされる塩素含有アルミニウム化合物から調製
された触媒を用いてポリエチレンを製造するにあ
たり、重合反応時に分子量分布調節剤として水を
前記触媒の(C)成分に対して0.05〜0.3倍モルの割
合で存在せしめることを特徴とするポリエチレン
の製造方法。
1 (A) A solid catalyst component obtained by reacting at least alkoxymagnesium, magnesium sulfate, and a chlorine-containing titanium compound, (B) General formula R 1 3 Al
(R 1 represents an alkyl group having 1 to 8 carbon atoms or a cycloalkyl group.) and (C) the general formula R 2 o AlCl 3-o (R 2 is an alkyl group having 1 to 8 carbon atoms. or a cycloalkyl group, and n is a real number satisfying 0<n≦2. A method for producing polyethylene, characterized in that water is present in a molar ratio of 0.05 to 0.3 times the mole of component (C) of the catalyst.
JP175682A 1982-01-11 1982-01-11 Production of polyethylene Granted JPS58118804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP175682A JPS58118804A (en) 1982-01-11 1982-01-11 Production of polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP175682A JPS58118804A (en) 1982-01-11 1982-01-11 Production of polyethylene

Publications (2)

Publication Number Publication Date
JPS58118804A JPS58118804A (en) 1983-07-15
JPH0216763B2 true JPH0216763B2 (en) 1990-04-18

Family

ID=11510418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP175682A Granted JPS58118804A (en) 1982-01-11 1982-01-11 Production of polyethylene

Country Status (1)

Country Link
JP (1) JPS58118804A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992002563A1 (en) * 1990-07-27 1992-02-20 Nippon Petrochemicals Company, Limited Process for producing polyolefin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024783A1 (en) * 2002-09-11 2004-03-25 Japan Polypropylene Corporation POLYMERIZATION CATALYST FOR α-OLEFINS AND PROCESS FOR PRODUCTION OF α-OLEFIN POLYMERS THEREWITH

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992002563A1 (en) * 1990-07-27 1992-02-20 Nippon Petrochemicals Company, Limited Process for producing polyolefin
EP0494316A1 (en) * 1990-07-27 1992-07-15 Nippon Petrochemicals Co., Ltd. Process for producing polyolefin
EP0494316B1 (en) * 1990-07-27 1996-05-08 Nippon Petrochemicals Co., Ltd. Process for producing polyolefin

Also Published As

Publication number Publication date
JPS58118804A (en) 1983-07-15

Similar Documents

Publication Publication Date Title
US5104838A (en) Production of α-olefin polymers
CA1163617A (en) Catalyst for polymerization of olefins and polymerization process employing such catalyst
JP3285370B2 (en) Method for producing polyolefin
EP0376936B1 (en) A ziegler-Natta catalyst component
US5204303A (en) Preparation and use of a new ziegler-natta catayst component
US4199476A (en) Olefin polymerization catalyst
US4226964A (en) Process for polymerizing olefin
US4518751A (en) Process for the production of polyethylene
US4525554A (en) Process for polymerizing olefin
WO2001081433A1 (en) Catalyst for bulk polymerization, catalyst for vapor phase polymerization, method of polymerization using these, and olefin polymer obtained with these
JPH0368890B2 (en)
EP0043473B1 (en) Process for the production of polyethylene
JPH0216763B2 (en)
JP4505085B2 (en) Olefin polymerization catalyst, process for producing olefin polymer, and olefin polymer
JPH0313244B2 (en)
JP3091241B2 (en) New methyl isobutylalumoxane
JP3274509B2 (en) Olefin polymerization catalyst and method for producing olefin polymer
JP3391583B2 (en) Olefin polymerization catalyst
JPH1160624A (en) Olefin polymerization catalyst and prepapation of polyolefin
CN113683716B (en) Ethylene polymerization catalyst, preparation method thereof and preparation method of ethylene-isobutylene copolymer
JPS642604B2 (en)
JPS5814443B2 (en) Olefin polymerization method
JP3362747B2 (en) Method for producing olefin polymer
JPS638964B2 (en)
JPH0437083B2 (en)