JPH02167516A - Microfilm projection lens system - Google Patents

Microfilm projection lens system

Info

Publication number
JPH02167516A
JPH02167516A JP32260488A JP32260488A JPH02167516A JP H02167516 A JPH02167516 A JP H02167516A JP 32260488 A JP32260488 A JP 32260488A JP 32260488 A JP32260488 A JP 32260488A JP H02167516 A JPH02167516 A JP H02167516A
Authority
JP
Japan
Prior art keywords
lens
curvature
radius
focal length
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32260488A
Other languages
Japanese (ja)
Inventor
Toshihiko Ueda
上田 歳彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP32260488A priority Critical patent/JPH02167516A/en
Publication of JPH02167516A publication Critical patent/JPH02167516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To make a projection optical system compact on the whole by satisfying specific conditions as to the focal length of a 1st lens, the focal length of the whole system, the radius of curvature of the enlargement-side surface of a 5th lens, and the radius of curvature of the reduction-side surface of the 5th lens. CONSTITUTION:A stop is arranged at the front to form a type suitable to front stop constitution; and 1st - 3rd lenses are triplet lenses and 4th and 5th lenses are a positive lens and a negative lens for compensating an off-axis aberration. Each condition of 0.5<f1/f<0.95 and -1.2<r9/r10<-0.4 is satisfied by assuming the focal length of the 1st lens as f1, the focal length of the whole system as (f), the radius of curvature of the enlargement-side surface of the 5th lens as r9, and the radius of curvature of the reduction-side surface of the 5th lens as r10. Consequently, a lighting system is easily made common together with a projection lens system of other magnifications and the wide-view-angle lens system can be made compact.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、マイクロフィルムの像再生をおこなうため
に像回転機構を有するマイクロリーグあるいはリーダー
プリンタに使用されるマイクロフィルム投影レンズ系に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a microfilm projection lens system used in a microleague or reader printer having an image rotation mechanism for reproducing images of microfilm.

[従来の技術] マイクロフィルムはその作成時において各コマが原本の
文字の向きを縦横統一しないで記録したものが多く、不
揃で撮影されたものが多い。このため従来からリーグあ
るいはリーグブリンクによる映像再生時においては投影
レンズとスクリーン間つまり投影レンズの拡大側に像回
転プリズムを配置してスラリー上に投影される再生像の
縦・横位置を修正するようにしているのが一般的である
[Prior Art] Many microfilms are recorded in such a way that each frame of the original is not aligned vertically and horizontally when it is created, and is often photographed in an irregular manner. For this reason, conventionally, when reproducing images using league or league blink, an image rotation prism is placed between the projection lens and the screen, that is, on the magnifying side of the projection lens, to correct the vertical and horizontal positions of the reproduced image projected onto the slurry. It is common to do so.

しかし、従来の投影レンズ系は入射瞳の位置が投影レン
ズ系のほぼ中心に位置するために、その画角が広い場合
には挿入される像回転プリズムを投影レンズ系の拡大側
端面の至近位置に配設してち光束が広がってしまうため
に上記像回転プリズムが大型化してしまう。また、像回
転プリズムは光軸に平行平板を45度に傾斜させて配置
したものと等価であり、同じ像円径内でも場所によって
性能が異なり、像回転プリズムが大きい程軸上アステグ
マチズムの発生量が大きくなり(軸上アステグマチズム
はプリズム底面の長さに比例する)像の劣化を招き、ひ
いてはミラーを含めた投影光学系全体が大型化してしま
うといった欠点を有していた。
However, in conventional projection lens systems, the entrance pupil is located almost at the center of the projection lens system, so when the angle of view is wide, the inserted image rotation prism is placed close to the end surface on the enlarged side of the projection lens system. If the image rotation prism is disposed in the center of the prism, the light beam will be spread, and the size of the image rotation prism will increase. In addition, an image rotation prism is equivalent to a flat plate parallel to the optical axis tilted at 45 degrees, and its performance varies depending on the location even within the same image circle diameter, and the larger the image rotation prism, the more on-axis astegmatism will occur. The problem is that the axial astegmatism becomes large (axial astegmatism is proportional to the length of the bottom surface of the prism), leading to image deterioration, and the entire projection optical system including the mirror becomes larger.

このため、投影レンズ系において光束が最も収束する入
射瞳位置を投影レンズ系端面に位置させるいわゆる前絞
りタイプの投影レンズ系が種々提案されてきている。(
例えば、特公昭47−35027号公報、特公昭47−
35028号公報、特開昭57−4016号公報参照) [発明が解決しようとする問題点1 ところで、一般に前絞りタイプの投影レンズ系では、使
用可能な画角を広くとれず、像面湾曲。
For this reason, various so-called front aperture type projection lens systems have been proposed in which the entrance pupil position where the light beam is most converged in the projection lens system is located at the end face of the projection lens system. (
For example, Japanese Patent Publication No. 47-35027, Japanese Patent Publication No. 47-35027,
(Refer to Japanese Patent Laid-open No. 35028 and Japanese Patent Application Laid-Open No. 57-4016) [Problem 1 to be Solved by the Invention] By the way, in general, a front aperture type projection lens system cannot have a wide usable angle of view, resulting in field curvature.

非点収差が大きくなり、広画角のレンズ系ではコマ収差
の補正が困難であった。また、コンパクト化にも困難性
があった。さらに、前絞りであるために軸上色収差と倍
率色収差を同時に補正するための硝材の組合せが限定さ
れるといった設計上において非常に困難性を有している
Astigmatism becomes large, and it is difficult to correct coma aberration in a wide-angle lens system. Furthermore, there were also difficulties in making it compact. Furthermore, since it is a front diaphragm, the combination of glass materials for simultaneously correcting axial chromatic aberration and lateral chromatic aberration is limited, which is extremely difficult in terms of design.

この発明は、このような点に鑑みてなされたもので、入
射瞳を投影レンズ系の端部に配置して像回転プリズムを
小型化し、画角2ω=278°、Fナンバー3.3〜3
.8で諸収差がよく補正されて性能の良好な高倍率の投
影レンズ系を提供することを目的とする。
This invention was made in view of these points, and the entrance pupil is placed at the end of the projection lens system to miniaturize the image rotation prism, and the angle of view 2ω = 278° and the F number 3.3 to 3.
.. It is an object of the present invention to provide a high-magnification projection lens system in which various aberrations are well corrected and the performance is good.

[問題点を解決するための手段] この発明の第1項の発明は、拡大側より強い凸面を拡大
側に向けた正レンズの第1レンズと、両凹レンズの第2
レンズと、両凸レンズの第3レンズと、両凸レンズの第
4レンズと、両凹レンズの第5レンズより構成され、絞
りを第1レンズの拡大側端から第1レンズと第2レンズ
間との間に配置して構成されるマイクロフィルム投影用
レンズ系であって、第1レンズの焦点距離をf+、全系
の焦点距離をf、第5レンズの拡大側の面の曲率半径を
r9.第5レンズの縮小側の面の曲率半径をrl。とす
ると、 ■  0.5<f+ /f<0.95 ■ −1,2<re /rho<  0.4の条件を満
足するマイクロフィルム投影レンズ系である。
[Means for Solving the Problems] The invention of item 1 of the present invention includes a first lens that is a positive lens with a convex surface stronger than the magnifying side facing the magnifying side, and a second lens that is a biconcave lens.
It is composed of a lens, a third lens that is a biconvex lens, a fourth lens that is a biconvex lens, and a fifth lens that is a biconcave lens, and the aperture is located between the magnifying side end of the first lens and between the first lens and the second lens. This is a microfilm projection lens system arranged in such a manner that the focal length of the first lens is f+, the focal length of the entire system is f, and the radius of curvature of the enlargement side surface of the fifth lens is r9. The radius of curvature of the reduction side surface of the fifth lens is rl. Then, it is a microfilm projection lens system that satisfies the following conditions: (1) 0.5<f+/f<0.95 (2) -1,2<re/rho<0.4.

また、この発明の第2項の発明は、拡大側より強い凸面
を拡大側に向けた正レンズの第1レンズと、両凹レンズ
の第2レンズと、両凸レンズの第3レンズと、両凸レン
ズと両凹レンズの接合レンズよりなる第4レンズより構
成され、絞りを第1レンズの拡大側端から第1レンズと
第2レンズ間との間に配置したレンズ系で構成されるマ
イクロフィルム投影用レンズ系であって、第1レンズの
焦点距離をf+、全系の焦点距離をf、第4群の第5レ
ンズの拡大側の面の曲率半径をre、第5レンズの縮小
側の面の曲率半径をr、。とするとき、 ■o、5<f、/f<0.95 ■−2,0<re /r to<  1.2の条件を満
足するマイクロフィルム投影レンズ系である。
In addition, the invention of item 2 of this invention provides a first lens that is a positive lens with a convex surface stronger than the magnification side facing the magnification side, a second lens that is a biconcave lens, a third lens that is a biconvex lens, and a biconvex lens. A lens system for microfilm projection consisting of a fourth lens made of a cemented double-concave lens, with an aperture disposed from the enlargement side end of the first lens between the first lens and the second lens. where, the focal length of the first lens is f+, the focal length of the entire system is f, the radius of curvature of the enlargement side surface of the fifth lens in the fourth group is re, and the curvature radius of the reduction side surface of the fifth lens r,. This is a microfilm projection lens system that satisfies the following conditions: (1) o, 5<f, /f<0.95 (2) -2,0<re /r to<1.2.

[実 施 例] 以下、図面に基づいてこの発明の詳細な説明する。第1
図、第3図、第5図および第7図は、この発明の第1発
明の像回転プリズムを使用するマイクロフィルム投影レ
ンズ系の実施例1〜実施例4の構成を示す断面図である
。左側のスクリン側である拡大側より順に、強い凸面を
拡大側に向けた正レンズの第1レンズと9両凹レンズの
第2レンズと、両凸レンズの第3レンズと、両凸レンズ
の第4レンズおよび両凹レンズの第5レンズとから構成
され、右側の平行平面ガラスはマイクロフィルムホルダ
ーを示している。
[Example] Hereinafter, the present invention will be described in detail based on the drawings. 1st
3, 5, and 7 are cross-sectional views showing the configurations of Examples 1 to 4 of microfilm projection lens systems using the image rotation prism of the first aspect of the present invention. In order from the left screen side, which is the magnification side, the first lens is a positive lens with its strongly convex surface facing the magnification side, the second lens is a biconcave lens, the third lens is a biconvex lens, the fourth lens is a biconvex lens, and The parallel plane glass on the right side represents a microfilm holder.

そして、絞りSは第1レンズの拡大側端から第1レンズ
と第2レンズ間の間に配設される。即ち、第1図の実施
例1では第1レンズの後に、第3図、第5図および第7
図に示す実施例2〜4のレンズ系では第1レンズの前に
それぞれ絞りが設置されている。
The diaphragm S is disposed from the enlargement side end of the first lens to between the first lens and the second lens. That is, in Example 1 shown in FIG. 1, after the first lens, the lenses shown in FIGS.
In the lens systems of Examples 2 to 4 shown in the figure, a diaphragm is installed in front of the first lens.

この発明における投影レンズ系の特徴としては、前方に
絞りを配置し、開口効率を100%でFナンバー3.3
〜3.8と明るく、枚数が5枚と低廉にした点にある。
The projection lens system of this invention has a diaphragm in front, an aperture efficiency of 100%, and an F number of 3.3.
It is bright at ~3.8 and is inexpensive with only 5 sheets.

前方絞りに適したタイプということで、第1レンズ〜第
3レンズはトリブレット、第4レンズ。
The first to third lenses are triplet lenses, and the fourth lens is a type suitable for a front aperture.

第5レンズは軸外収差を補正すべく各々正レンズ、負レ
ンズという構成になっている。そして、これらのレンズ
系では、第1レンズの焦点距離をfl、全系の焦点距離
をf、第5レンズの拡大側の面の曲率半径をra、第5
レンズの縮小側の面の曲率半径なr+oとすると ■ 0.5<f、/f<0.95 ■ −1,2<rs /r’+o<  o、4の各条件
を満足させる。
The fifth lens is configured with a positive lens and a negative lens, respectively, in order to correct off-axis aberrations. In these lens systems, the focal length of the first lens is fl, the focal length of the entire system is f, the radius of curvature of the enlargement side surface of the fifth lens is ra, and the fifth lens is
When the radius of curvature of the surface on the reduction side of the lens is r+o, the following conditions are satisfied: (1) 0.5<f, /f<0.95 (2) -1,2<rs /r'+o<o, 4.

上記条件式のは、第1レンズの焦点距離の適切な範囲を
規定するものであって、前絞りでかつ球面収差の補正を
容易にするための条件である。
The above conditional expression defines an appropriate range of the focal length of the first lens, and is a condition for facilitating correction of spherical aberration at the front aperture.

この上限値を越えると、第1レンズのパワーが不足し、
第1群で発生する球面収差、コマ収差の補正を第2レン
ズ以降で行なうことが困難になる。下限値を越えると、
第1レンズのパワーが強くなりすぎ、第1レンズ、第2
レンズの平行偏芯の公差の管理が非常に厳しいものとな
る。
If this upper limit is exceeded, the power of the first lens will be insufficient,
It becomes difficult to correct spherical aberration and coma aberration occurring in the first lens group from the second lens onward. If the lower limit is exceeded,
The power of the first lens becomes too strong, and the power of the first lens becomes too strong.
Control of the tolerance of parallel eccentricity of the lens becomes extremely strict.

また、上記条件式■は、第3レンズ 第4レンズで正方
向に偏位したペッツバール和を適当値に保つための条件
である。この上限値を越えると、第5レンズへの入射光
束が19面により急激に曲げられることになり、第4レ
ンズ、第5レンズ間の軸上面間隔d9である空気間隔と
偏芯公差が非常に厳しいものとなる。また、下限値を越
えると非点隔差が増大し、倍率色収差の増大を招き、い
ずれも補正が困難となってしまう。
Moreover, the above conditional expression (2) is a condition for maintaining the Petzval sum, which is shifted in the positive direction between the third lens and the fourth lens, at an appropriate value. If this upper limit is exceeded, the incident light beam to the fifth lens will be sharply bent by the 19th surface, and the air gap and eccentricity tolerance, which is the axial surface distance d9 between the fourth and fifth lenses, will be extremely large. It will be tough. Moreover, when the lower limit is exceeded, the astigmatism difference increases, leading to an increase in lateral chromatic aberration, both of which become difficult to correct.

これらの各条件式を満足する実施例1〜実施例4のレン
ズ諸元を第1表〜第4表に示す。これらの各表では、ス
クリーンの拡大側より順に曲率半径r+、r2・・・・
、rl。、軸上面間隔dd2・・・・、d、2、硝材の
d線での屈折率をNN2.・・・、N6、硝材のアラへ
数υ1.ν2゜・・・・、シロの各面での数値を示し、
Sは絞りを示す。
Lens specifications of Examples 1 to 4 that satisfy each of these conditional expressions are shown in Tables 1 to 4. In each of these tables, the radius of curvature is r+, r2, etc. in order from the enlarged side of the screen.
, rl. , axial surface spacing dd2..., d, 2, the refractive index of the glass material at the d-line is NN2. ..., N6, the number υ1 to the roughness of the glass material. ν2゜..., shows the numerical value on each side of the white,
S indicates an aperture.

そして、実施例1〜実施例4の球面収差、正弦条件、非
点収差、歪曲の収差曲線図を第2図、第4区、第6図お
よび第8図にそれぞれ対応させて示す。
Aberration curve diagrams of spherical aberration, sine condition, astigmatism, and distortion of Examples 1 to 4 are shown in FIG. 2, Section 4, FIG. 6, and FIG. 8, respectively.

次に、第9図にこの発明の第2発明の像回転プリズムを
使用するマイクロフィルム投影レンズ系の構成を示す。
Next, FIG. 9 shows the configuration of a microfilm projection lens system using the image rotation prism of the second invention.

この例では、両凸レンズの第4レンズと両凹レンズの第
5レンズを接合レンズとして構成した点で上記実施例1
〜実施例4のレンズ系と相違している。即ち、左側のス
クリーン側の拡大側から順に、強い凸面を拡大側に向け
た正レンズの第1レンズと1両凹レンズの第2レンズと
、両凸レンズの第3レンズと、両凸レンズの第4レンズ
と両凹レンズの第5レンズの接合レンズの第4群とから
構成され、絞りSを第1レンズの拡大側端から第1レン
ズと第2レンズ間との間に配置して構成されている。そ
して、このレンズ系では、第1レンズの焦点距離をfl
、全系の焦点距離をf、第4群の接合レンズの第5レン
ズの拡大側の面の曲率半径をre、第5レンズの縮小側
の面の曲率半径をrlQとすると、■0.5<f、/f
<0.95 ■ −2,0<r9/rho<  1.2の各条件を満
足させる。
In this example, the fourth lens, which is a biconvex lens, and the fifth lens, which is a biconcave lens, are configured as a cemented lens.
-Different from the lens system of Example 4. That is, in order from the magnification side on the left screen side, the first lens is a positive lens with its strongly convex surface facing the magnification side, the second lens is a biconcave lens, the third lens is a biconvex lens, and the fourth lens is a biconvex lens. and a fourth group of cemented lenses consisting of a fifth lens that is a biconcave lens, and a diaphragm S that is arranged from the enlargement side end of the first lens between the first lens and the second lens. In this lens system, the focal length of the first lens is fl
, the focal length of the entire system is f, the radius of curvature of the enlargement side surface of the fifth lens of the fourth group of cemented lenses is re, and the radius of curvature of the reduction side surface of the fifth lens is rlQ, then ■0.5 <f, /f
<0.95 ■ -2,0<r9/rho<1.2.

上記条件式■は、前絞りでかつ球面収差の補正を容易に
するための条件である。この上限値を越えると、球面収
差、コマ収差の補正が困難になり、下限値を越えると第
1レンズ、第2レンズの偏芯の公差の管理が非常に厳し
いちのとなる。
The above conditional expression (2) is a condition for facilitating correction of spherical aberration at the front aperture. If this upper limit value is exceeded, it becomes difficult to correct spherical aberration and coma aberration, and if the lower limit value is exceeded, control of the eccentricity tolerance of the first lens and the second lens becomes extremely difficult.

また、上記条件式■は、第3レンズ、第4レンズで正方
向に偏位したペッツバール和を適当値に保つための条件
である。この上限値を越えると接合レンズである第4レ
ンズ、第5レンズ間の軸上面間隔と偏芯公差が非常に厳
しいものとなる。また、下限値を越えると非点隔差が増
大し、また、倍率色収差の増大を招き、いずれも補正が
困難となってしまう。
Moreover, the above conditional expression (2) is a condition for maintaining the Petzval sum, which is shifted in the positive direction, at an appropriate value in the third lens and the fourth lens. If this upper limit is exceeded, the axial distance and eccentricity tolerance between the fourth and fifth lenses, which are cemented lenses, will become extremely severe. Moreover, when the lower limit is exceeded, astigmatism increases and lateral chromatic aberration increases, both of which become difficult to correct.

これらの各条件式を満足する実施例5のレンズ諸元を第
5表に示すにの表においては、スクリーンの拡大側より
順に曲率半径r+、ri・・、r12、軸上面間隔d1
.d2・・・・、d1□、硝材のd線での屈折率をNl
、N2.・・・・、N6、硝材のアツベ数υ1.ν2.
・・・・、シロの各面での数値を示し、Sは絞りを示す
Table 5 shows the lens specifications of Example 5 that satisfy each of these conditional expressions, in order from the enlarged side of the screen, the radius of curvature r+, ri..., r12, and the axial distance d1.
.. d2..., d1□, the refractive index of the glass material at the d-line is Nl
, N2. ..., N6, the temperature of the glass material υ1. ν2.
. . . indicates the numerical value on each side of the white, and S indicates the aperture.

そして、この実施例5の縦収差曲線を第10図に対応さ
せて示す。
The longitudinal aberration curve of Example 5 is shown in correspondence with FIG. 10.

また、上記各実施例の各条件式の数値を纒めて第6表に
示す。
Further, the numerical values of each conditional expression of each of the above embodiments are summarized and shown in Table 6.

(以下余白) f=18.3 曲率半径 r   10.75 r2−74.54 第   1   表 FNO,=3. 3 軸上面間隔 屈折率(Nd) 7ツペ数(νd)d、 
 2.30  Nl  1.7435 171 49.
2絞り rs  −io、sa r、   10.61 rs  473.34 ra  −11,[18 19,02 re  (3,24 re  −11,86 rho  22.92 r(X) d20.O di   1.55 d4  1.00  N2  1.7552   ν2
 27.5ds  2.10 d、  2.60  Ns  1.8061  v33
3.3d?  0.75 d、  2.80  N41.7435  υ449.
2d9  1.60 d、o  1.50  Ns  1.7618 1/s
  26.6d++  7.90 d、23.(to  Na  1.5168  νg 
 64.2(フィルムホルダー) Σd =27.10 (白1it!I) f=18.2 曲率半径 S   絞り 12、13 r2−21.57 rs   −8,61 12,39 rt、  460.58 re   −9,81 r719.74 ra  (3,11 r9−11.16 rho  18.14 FNO,=3.3 軸上面間隔 屈折率(Nd) 7ツペ数(νd)1、6
667 1、7552 1、8061 1.7433 1.7618 3.0[l  N61.5168  シロ64゜2(フ
ィルムホルダー) Σd =27.68 (白硝) f=18.2 曲率半径 S   絞り r+  14.12 r2 −36.07 rs  −17,02 r4 85.08 rr、  131.75 re  (6,50 rt  12.00 rs  114.99 ra  −14,71 rho  12.4O r++   (1) r+z   (1) 第 表 FNO,=3.3 軸上面間隔 屈折率(Nd) 7ツベ数(νd)d24
.14  N。
(Margin below) f=18.3 Radius of curvature r 10.75 r2-74.54 1st Table FNO,=3. 3 Axis top surface distance Refractive index (Nd) 7-point number (νd) d,
2.30 Nl 1.7435 171 49.
2 apertures rs -io, sa r, 10.61 rs 473.34 ra -11, [18 19,02 re (3,24 re -11,86 rho 22.92 r(X) d20.O di 1.55 d4 1.00 N2 1.7552 ν2
27.5ds 2.10d, 2.60Ns 1.8061 v33
3.3d? 0.75 d, 2.80 N41.7435 υ449.
2d9 1.60 d, o 1.50 Ns 1.7618 1/s
26.6d++ 7.90d, 23. (to Na 1.5168 νg
64.2 (Film holder) Σd = 27.10 (White 1it!I) f = 18.2 Radius of curvature S Aperture 12, 13 r2-21.57 rs -8,61 12,39 rt, 460.58 re - 9,81 r719.74 ra (3,11 r9-11.16 rho 18.14 FNO, = 3.3 Axial spacing Refractive index (Nd) 7-point number (νd) 1,6
667 1, 7552 1, 8061 1.7433 1.7618 3.0 [l N61.5168 White 64°2 (film holder) Σd = 27.68 (white glass) f = 18.2 Radius of curvature S Aperture r+ 14. 12 r2 -36.07 rs -17,02 r4 85.08 rr, 131.75 re (6,50 rt 12.00 rs 114.99 ra -14,71 rho 12.4O r++ (1) r+z (1) Table FNO, = 3.3 Axis spacing Refractive index (Nd) 7-beam number (νd) d24
.. 14 N.

da  0.60 (L  O,90 ds   6.28 d62.90 d70.63 da  2.49 d、  1.47 d、、  1.56N5 d++  4.00 d1□ 3.00  Na  1.5168  υ66
4.2(フィルムホルダー) 29.3 51.7 47.3 27.6 1.6734 1.6710 1.7883 1、7006 1.6405 N。
da 0.60 (L O,90 ds 6.28 d62.90 d70.63 da 2.49 d, 1.47 d,, 1.56N5 d++ 4.00 d1□ 3.00 Na 1.5168 υ66
4.2 (Film holder) 29.3 51.7 47.3 27.6 1.6734 1.6710 1.7883 1, 7006 1.6405 N.

(白組) f=18. 1 曲率半径 r+   8.01 r276.01 S   絞り ra  −22,46 r’<   7.39 ra  210.18 ra  −13,66 rt   16.23 r8−17.41 r910.71 r+o   ■ r++   ω 第   5   表 FNO,=3.3 軸上面間隔 屈折率(Nd) 7’ツペ数(νd)d、
  2.07  N、  1.8350  ν、  4
3.0d20.10 ds  1.09 a40.63  N21.7618  シイ266ds
  2.03 d、  1.91  N31.8042  ν346.
5d、  1.69 da  2.39  N41.8350 17− 43
.0a91.79  N51.[l[134υ、  3
8.[ldl。7.60 d++  3.00  Na  1.5168  Va
  64.2  (白組)(フィルムホルダー) Σd =24.30 f=20.6 曲率半径 r112.09 r2 −80.92 S   絞り rs  Jl、91 r411.88 r5532.83 ra  (2,34 rt   21.38 r8−14.72 re  (3,28 r、。 25.16 r    o。
(White group) f=18. 1 Radius of curvature r+ 8.01 r276.01 S Aperture ra -22,46 r'< 7.39 ra 210.18 ra -13,66 rt 16.23 r8-17.41 r910.71 r+o ■ r++ ω 5th Table FNO, = 3.3 Axis spacing Refractive index (Nd) 7' Tsupe number (νd) d,
2.07 N, 1.8350 ν, 4
3.0d20.10 ds 1.09 a40.63 N21.7618 C266ds
2.03 d, 1.91 N31.8042 ν346.
5d, 1.69 da 2.39 N41.8350 17-43
.. 0a91.79 N51. [l[134υ, 3
8. [ldl. 7.60 d++ 3.00 Na 1.5168 Va
64.2 (White set) (Film holder) Σd =24.30 f=20.6 Radius of curvature r112.09 r2 -80.92 S Aperture rs Jl, 91 r411.88 r5532.83 ra (2,34 rt 21 .38 r8-14.72 re (3,28 r,. 25.16 r o.

r+2  (1) 第   4   表 FNO,=3.8 軸上面間隔 屈折率(Nd) 7ツペ数(νd)d、 
 2.50  N、  1.7433  ν、  49
.2631.71 (L  1.14  N2 1.7552  シイ2フ
、5a、  2.39 d、  2.85  Nz  1.8061  v、 
 33.3d、  0.85 d、  3.19  N4 1.7433  ν449
.2d、  1.71 d、、  1.71  NB  1.7618  ν、
  26.6d   9.40 dl。3.00  N61.5168  シロ  64
.2  (白組)(フィルムホルダー) [発明の効果] 以上述説明したように、この発明の拡大側に像回転プリ
ズムを配置してマイクロフィルムを投影するレンズ系は
、光束が最も収束する入射瞳位置を投影レンズ系の拡大
側端面に配置し、像回転プリズムをその端面の至近位置
に配設することにより投影像の劣化を最小限にとどめる
ととちに、像回転プリズムおよび投影光学系全体のコン
パクト化を図ることができる。しかも、比較的に高倍率
であり焦点距離が短いにもかかわらず瞳位置がマイクロ
フィルム面から比較的に遠く、他の倍率の投影レンズ系
とともに照明系の共通化も図りやすくなる。
r+2 (1) Table 4 FNO, = 3.8 Axis top surface spacing Refractive index (Nd) 7-point number (νd) d,
2.50 N, 1.7433 ν, 49
.. 2631.71 (L 1.14 N2 1.7552 Sea 2F, 5a, 2.39 d, 2.85 Nz 1.8061 v,
33.3d, 0.85 d, 3.19 N4 1.7433 ν449
.. 2d, 1.71 d,, 1.71 NB 1.7618 ν,
26.6d 9.40 dl. 3.00 N61.5168 Shiro 64
.. 2 (White set) (Film holder) [Effects of the invention] As explained above, the lens system of this invention that projects a microfilm by disposing an image rotation prism on the enlargement side has an entrance pupil where the light flux is most converged. By arranging the image rotation prism at the enlarged side end face of the projection lens system and arranging the image rotation prism close to the end face, deterioration of the projected image can be minimized, and the image rotation prism and the entire projection optical system can be can be made more compact. Furthermore, despite the relatively high magnification and short focal length, the pupil position is relatively far from the microfilm surface, making it easier to share the illumination system with projection lens systems of other magnifications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例1の構成を示す側断面図、 第2図は、上記第1図の投影レンズ系の収差曲線図、 第3図は、本発明の実施例2の構成を示す側断面図、 第4図は、上記第3図の投影レンズ系の収差曲線図、 第5図は、本発明の実施例3の構成を示す側断面図、 第6図は、上記第5図の投影レンズ系の収差曲線図 第7図は、本発明の実施例4の構成を示す側断面図、 第8図は、上記第7図の投影レンズ系の収差曲線図、 第9図は、本発明の実施例5の構成を示す側断面図、 第10図は、上記第9図の投影レンズ系の収差曲線図で
ある。 特許出願人 ミノルタカメラ株式会社
FIG. 1 is a side sectional view showing the configuration of Example 1 of the present invention, FIG. 2 is an aberration curve diagram of the projection lens system shown in FIG. 1, and FIG. 3 is the configuration of Example 2 of the present invention. FIG. 4 is an aberration curve diagram of the projection lens system shown in FIG. 3, FIG. 5 is a side sectional view showing the configuration of Example 3 of the present invention, and FIG. FIG. 5 is an aberration curve diagram of the projection lens system. FIG. 7 is a side sectional view showing the configuration of Example 4 of the present invention. FIG. 8 is an aberration curve diagram of the projection lens system shown in FIG. 7. 10 is a side sectional view showing the configuration of Example 5 of the present invention, and FIG. 10 is an aberration curve diagram of the projection lens system shown in FIG. 9. Patent applicant Minolta Camera Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)拡大側より強い凸面を拡大側に向けた正レンズの
第1レンズと、両凹レンズの第2レンズと、両凸レンズ
の第3レンズと、両凸レンズの第4レンズと、両凹レン
ズの第5レンズより構成され、絞りを第1レンズの拡大
側端から第1レンズと第2レンズ間との間に配置したレ
ンズ系において、 〔1〕0.5<f_1/f<0.95 〔2〕−1.2<r_9/r_1_0<−0.4の条件
を満足するマイクロフィルム投影レンズ系。 ただし、f_1;第1レンズの焦点距離 f;全系の焦点距離 r_9;第5レンズの拡大側の面の曲率 半径 r_1_0;第5レンズの縮小側の面の曲率半径
(1) A first lens that is a positive lens with a convex surface that is stronger than the magnification side facing the magnification side, a second lens that is a biconcave lens, a third lens that is a biconvex lens, a fourth lens that is a biconvex lens, and a third lens that is a biconcave lens. [1] 0.5<f_1/f<0.95 [2] In a lens system composed of 5 lenses, with the aperture disposed between the enlargement side end of the first lens and between the first lens and the second lens, ] A microfilm projection lens system that satisfies the following conditions: -1.2<r_9/r_1_0<-0.4. However, f_1; focal length of the first lens f; focal length of the entire system r_9; radius of curvature of the enlargement side surface of the fifth lens r_1_0; radius of curvature of the reduction side surface of the fifth lens
(2)拡大側より強い凸面を拡大側に向けた正レンズの
第1レンズと、両凹レンズの第2レンズと、両凸レンズ
の第3レンズと、両凸レンズの第4レンズと両凹レンズ
の第5レンズの接合レンズよりなる第4群より構成され
、絞りを第1レンズの拡大側端から第1レンズと第2レ
ンズ間との間に配置したレンズ系において、 〔3〕0.5<f_1/f<0.95 〔4〕−2.0<r_9/r_1_0<−1.2の条件
を満足するマイクロフィルム投影レンズ系。
(2) A first lens that is a positive lens with a convex surface that is stronger than the magnification side facing the magnification side, a second lens that is a biconcave lens, a third lens that is a biconvex lens, a fourth lens that is a biconvex lens, and a fifth lens that is a biconcave lens. [3] 0.5<f_1/ in a lens system that is composed of a fourth group consisting of a cemented lens and in which the aperture is disposed from the magnifying side end of the first lens between the first lens and the second lens. A microfilm projection lens system that satisfies the following conditions: f<0.95 [4]-2.0<r_9/r_1_0<-1.2.
JP32260488A 1988-12-21 1988-12-21 Microfilm projection lens system Pending JPH02167516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32260488A JPH02167516A (en) 1988-12-21 1988-12-21 Microfilm projection lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32260488A JPH02167516A (en) 1988-12-21 1988-12-21 Microfilm projection lens system

Publications (1)

Publication Number Publication Date
JPH02167516A true JPH02167516A (en) 1990-06-27

Family

ID=18145565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32260488A Pending JPH02167516A (en) 1988-12-21 1988-12-21 Microfilm projection lens system

Country Status (1)

Country Link
JP (1) JPH02167516A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197665A (en) * 2009-02-25 2010-09-09 Olympus Corp Image pickup optical system and image pickup apparatus using the same
JP2010224521A (en) * 2009-02-27 2010-10-07 Konica Minolta Opto Inc Imaging lens, imaging device, and mobile terminal
JP2011209554A (en) * 2010-03-30 2011-10-20 Fujifilm Corp Image pickup lens, image pickup device and portable terminal device
JP2012189893A (en) * 2011-03-11 2012-10-04 Olympus Corp Imaging optical system and imaging apparatus using the same
JP2013101402A (en) * 2013-02-20 2013-05-23 Olympus Corp Imaging optical system and imaging apparatus including the same
JP2013109374A (en) * 2013-02-20 2013-06-06 Olympus Corp Imaging optical system and imaging apparatus with the same
WO2013175782A1 (en) * 2012-05-24 2013-11-28 富士フイルム株式会社 Image pickup lens, and image pickup apparatus provided with image pickup lens
JP2014142665A (en) * 2009-04-07 2014-08-07 Fujifilm Corp Imaging lens, imaging apparatus, and portable terminal equipment
WO2014119283A1 (en) * 2013-02-04 2014-08-07 コニカミノルタ株式会社 Image pickup optical system and image pickup device, as well as digital equipment
WO2014155460A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Imaging lens and imaging device equipped with imaging lens
US8976466B2 (en) 2011-03-11 2015-03-10 Olympus Corporation Imaging optical system and imaging apparatus using the same
JP2015200855A (en) * 2014-04-10 2015-11-12 カンタツ株式会社 imaging lens
US10101562B2 (en) 2014-11-12 2018-10-16 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US10379322B2 (en) 2017-02-08 2019-08-13 Largan Precision Co., Ltd. Optical imaging system, imaging apparatus and electronic device

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8441743B2 (en) 2009-02-25 2013-05-14 Olympus Corporation Image pickup optical system and image pickup apparatus using the same
US8976462B2 (en) 2009-02-25 2015-03-10 Olympus Corporation Image pickup optical system and image pickup apparatus using the same
JP2010197665A (en) * 2009-02-25 2010-09-09 Olympus Corp Image pickup optical system and image pickup apparatus using the same
US8508836B2 (en) 2009-02-25 2013-08-13 Olympus Corporation Image pickup optical system and image pickup apparatus using the same
JP2013225159A (en) * 2009-02-27 2013-10-31 Konica Minolta Inc Imaging lens, imaging apparatus and portable terminal
JP2010224521A (en) * 2009-02-27 2010-10-07 Konica Minolta Opto Inc Imaging lens, imaging device, and mobile terminal
US8654241B2 (en) 2009-02-27 2014-02-18 Konica Minolta Opto, Inc. Image pickup lens, image pickup apparatus, and mobile terminal
US8724005B2 (en) 2009-02-27 2014-05-13 Konica Minolta Opto, Inc. Image pickup lens, image pickup apparatus, and mobile terminal
JP2014142665A (en) * 2009-04-07 2014-08-07 Fujifilm Corp Imaging lens, imaging apparatus, and portable terminal equipment
JP2011209554A (en) * 2010-03-30 2011-10-20 Fujifilm Corp Image pickup lens, image pickup device and portable terminal device
US8976466B2 (en) 2011-03-11 2015-03-10 Olympus Corporation Imaging optical system and imaging apparatus using the same
JP2012189893A (en) * 2011-03-11 2012-10-04 Olympus Corp Imaging optical system and imaging apparatus using the same
WO2013175782A1 (en) * 2012-05-24 2013-11-28 富士フイルム株式会社 Image pickup lens, and image pickup apparatus provided with image pickup lens
CN104395806A (en) * 2012-05-24 2015-03-04 富士胶片株式会社 Image pickup lens, and image pickup apparatus provided with image pickup lens
CN104395806B (en) * 2012-05-24 2017-06-30 富士胶片株式会社 Pick-up lens and possesses the camera head of the pick-up lens
US9170403B2 (en) 2012-05-24 2015-10-27 Fujifilm Corporation Imaging lens and imaging apparatus equipped with the imaging lens
WO2014119283A1 (en) * 2013-02-04 2014-08-07 コニカミノルタ株式会社 Image pickup optical system and image pickup device, as well as digital equipment
JPWO2014119283A1 (en) * 2013-02-04 2017-01-26 コニカミノルタ株式会社 Imaging optical system, imaging apparatus and digital apparatus
JP2013109374A (en) * 2013-02-20 2013-06-06 Olympus Corp Imaging optical system and imaging apparatus with the same
JP2013101402A (en) * 2013-02-20 2013-05-23 Olympus Corp Imaging optical system and imaging apparatus including the same
WO2014155460A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Imaging lens and imaging device equipped with imaging lens
JP2015200855A (en) * 2014-04-10 2015-11-12 カンタツ株式会社 imaging lens
US10101562B2 (en) 2014-11-12 2018-10-16 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US10386613B2 (en) 2014-11-12 2019-08-20 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US10551595B2 (en) 2014-11-12 2020-02-04 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US10712541B2 (en) 2014-11-12 2020-07-14 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US10871637B2 (en) 2014-11-12 2020-12-22 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US11262556B2 (en) 2014-11-12 2022-03-01 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US11614604B2 (en) 2014-11-12 2023-03-28 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US11867886B2 (en) 2014-11-12 2024-01-09 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US10379322B2 (en) 2017-02-08 2019-08-13 Largan Precision Co., Ltd. Optical imaging system, imaging apparatus and electronic device
US11709346B2 (en) 2017-02-08 2023-07-25 Largan Precision Co., Ltd. Optical imaging system, imaging apparatus and electronic device
US11988817B2 (en) 2017-02-08 2024-05-21 Largan Precision Co., Ltd. Optical imaging system, imaging apparatus and electronic device

Similar Documents

Publication Publication Date Title
US4596447A (en) Conversion type varifocal lens system
JPH02167516A (en) Microfilm projection lens system
JP2991524B2 (en) Wide-angle lens
JPH10253885A (en) Wide angle zoom lens system
US6493157B1 (en) Image-capturing lens
US4770508A (en) Conversion lens releasably attached behind master lens
JPS5833211A (en) Small-sized photographic lens
JPS6132653B2 (en)
US4176915A (en) Wide angle lens
JPS6275609A (en) Projection lens for microfilm
JP3335129B2 (en) Copying lens and image copying apparatus using the same
US4740067A (en) Projection lens system
JP4340432B2 (en) Projection zoom lens
JPH04333813A (en) Microfilm projection lens system
JPH03230112A (en) Projection lens system
JPS6046687B2 (en) Projection/Photography Lens
US4013346A (en) Enlarging lens system
JP2006235372A (en) Projection lens and projector device
JPS5978315A (en) Focusing system of wide-angle lens for photography
US3929397A (en) Projection lens
JPH0694992A (en) Photographic lens
JPS631561B2 (en)
JPH02173712A (en) Microfilm photographic lens system
JPH05303033A (en) Microfilm projection lens system
US3376090A (en) Modified 4-member gaussian projection objective