JPH02167210A - Dental filling material - Google Patents

Dental filling material

Info

Publication number
JPH02167210A
JPH02167210A JP63320391A JP32039188A JPH02167210A JP H02167210 A JPH02167210 A JP H02167210A JP 63320391 A JP63320391 A JP 63320391A JP 32039188 A JP32039188 A JP 32039188A JP H02167210 A JPH02167210 A JP H02167210A
Authority
JP
Japan
Prior art keywords
bacteria
type titanium
rutile
titanium oxide
filling material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63320391A
Other languages
Japanese (ja)
Other versions
JP2517374B2 (en
Inventor
Seigo Nagame
永目 誠吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63320391A priority Critical patent/JP2517374B2/en
Publication of JPH02167210A publication Critical patent/JPH02167210A/en
Application granted granted Critical
Publication of JP2517374B2 publication Critical patent/JP2517374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a dental filler inhibiting the growth of plaque-forming bacteria in oral cavities to control the adhesion of the bacteria by adding the fine particles of rutile type titanium dioxide to a filling resin. CONSTITUTION:The fine particles (the smaller the particle sizes are, the more preferable the particles are) of rutile type titanium dioxide are added to a BIS-GMA or cyanoacrylate filling resin prepared by reacting bisphenol A with glycidyl methacrylate in a ratio of 1-15mg per 250mg of the filling resin. The rutile type titanium dioxide has the quality of a semiconductor and inhibits the growth of plaque-forming bacteria and the bacteria relating to dental caries due to a photoctalyst reaction thereof.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、小窩裂溝の填塞、結電歯(虫歯)の充填など
に用いる歯科用填塞材に関し、特番、二ロ腔内での歯垢
形成細菌の発育を抑制し、細菌が付着しにくい歯科用填
塞材に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a dental filling material used for filling pits and fissures, filling electrified teeth (cavities), etc. This invention relates to a dental filling material that suppresses the growth of plaque-forming bacteria and that makes it difficult for bacteria to adhere.

(従来の技術) MNA歯の原因は、口腔内の細菌、特に乳酸菌の一種で
あるストレプトコッカス・ミュータンスが歯の表面に付
着した食物残査を分解して乳酸を生じ、この酸のために
歯のエナメル質、続いて象牙質の無機物(主としてリン
酸カルシウム)を溶出し、更に有機質が蛋白質溶解菌の
酵素によって分解されて生ずることにある。特に小g裂
溝部は形態が非常に複雑で、細菌が侵入して付着し易く
、清栂が困難なため#A蝕が発生し易い。この小窩裂溝
部分を填塞材で密閉封鎖して口腔内環境から隔離し。
(Prior art) The cause of MNA teeth is that bacteria in the oral cavity, especially Streptococcus mutans, which is a type of lactic acid bacteria, decomposes food residue adhering to the tooth surface and produces lactic acid. This is due to the elution of inorganic substances (mainly calcium phosphate) from the enamel and dentin, and the organic substances are further decomposed by the enzymes of proteolytic bacteria. In particular, the minor g fissures have a very complex morphology and are easy for bacteria to invade and adhere to, and are difficult to clean, so #A erosion is likely to occur. This pit and fissure area is hermetically sealed with a filling material and isolated from the oral environment.

鯖蝕の発生を抑制することは古くから行われている。Suppressing the occurrence of mackerel caries has been practiced for a long time.

そして、このような填塞材にフッ素化合物を混入させて
用い、小窓裂+?、7部を密閉封〕(すると共に。
Then, using such a filling material mixed with a fluorine compound, small fenestration cleft +? , 7 copies hermetically sealed] (with.

填塞材から徐放するフッ素の作用により歯質を積極的に
強化し、結電の罹l△を防ぐことも試みられている。
Attempts have also been made to actively strengthen the tooth structure using the action of fluoride slowly released from the filling material, thereby preventing the risk of electrostatic formation.

(発明が解決しようとする課題) 本発明は、填塞材にフッ素化合物を混入して用い、歯質
そのものを強化してmMの発生を抑制するという従来の
考え方を変え、填塞材に鯖蝕を発生させる細菌の発育を
抑制する作用をなす物質を混入し、もって#A蝕の罹患
を防ぐことを課題とするものである。
(Problems to be Solved by the Invention) The present invention changes the conventional concept of using a fluorine compound mixed into a filling material to strengthen the tooth structure itself and suppress the occurrence of mM. The objective is to prevent #A erosion by incorporating a substance that inhibits the growth of bacteria.

(課題を解決するための手段) 本発明者等は、ルチル型酸化チタニウム(TiO2)の
殺菌性について検討した結果、これがストレブ1へコツ
カス・ミュータンスなどの歯垢形成、結電に関与する各
種口腔内細菌すこ対して発育抑制効果があり、これを歯
科用填塞材に混入しても上記効果が発揮されることを知
見し1本発明を完成した。
(Means for Solving the Problems) As a result of studying the bactericidal properties of rutile-type titanium oxide (TiO2), the present inventors found that it is effective against various bacteria that are involved in plaque formation and electrification, such as Streb 1 and C. mutans. The present invention was completed based on the finding that it has a growth inhibiting effect on oral bacteria, and that the above effect can be achieved even when mixed with dental filling materials.

すむわち、本発明は、填塞用レジンにルチル型酸化チタ
ニウム微粒子を混入してなる歯科用填塞材である。
In other words, the present invention is a dental filling material made by mixing rutile-type titanium oxide fine particles into a filling resin.

酸化チタニウムには、結晶形によりアナターゼ型、ルチ
ル型及びブルーカイト型の3つの形態があるが、本発明
ではルチル型酸化チタニウムを用いる。ルチル型酸化チ
タニウムは半導体の性質をもち、光触媒反応により#I
垢形成細菌、鵬蝕に関与する細菌の発aを抑制する。
Titanium oxide has three forms depending on its crystal form: anatase type, rutile type, and brookite type. In the present invention, rutile type titanium oxide is used. Rutile-type titanium oxide has semiconducting properties, and through photocatalytic reaction, #I
Suppresses the growth of plaque-forming bacteria and bacteria involved in tooth decay.

したがって、填塞用レジンにルチル型酸化チタニウムを
混入しておくと、この酸化チタニウムの作用により、填
塞材に上記細菌が付着しにくくなり、したがって歯垢形
成、鵬蝕の発生を防止することができる。
Therefore, if rutile-type titanium oxide is mixed into the filling resin, the action of this titanium oxide will make it difficult for the bacteria mentioned above to adhere to the filling material, thereby preventing the formation of dental plaque and the occurrence of dental caries. .

本発明で用いるルチル型酸化チタニウム微粒子の粒径は
小さいほど良い効果が得られる。すなわち填塞処理後の
填塞材表面にルチル型酸化チタニウムが露出あるいは近
接している部位はど細菌に対する発育抑制効果が著しい
から、填塞材の表面に均一にルチル型酸化チタニウム微
粒子が分布するようなるべく粒径の小さいものを使用す
る。
The smaller the particle size of the rutile-type titanium oxide fine particles used in the present invention, the better the effect. In other words, areas where rutile-type titanium oxide is exposed or close to the surface of the filler after filling treatment have a significant growth inhibiting effect on bacteria, so the fine particles of rutile-type titanium oxide should be distributed as uniformly on the surface of the filler as possible. Use one with a small diameter.

また、ルチル型酸化チタニウム微粒子の混入量は、多い
ほど細菌の発育抑制効果がある反面、填塞材の物性に影
響を及ぼす。この混入量は一般に填塞材250mgに対
し1mg〜□ 15B(w/vでは0.4−6.0%)
が好ましい。この程度の混入量では、填塞材の曲げ強度
は多少劣化するものの、硬さの劣化は特にみられない。
Furthermore, the larger the amount of rutile-type titanium oxide fine particles mixed in, the more effective it is to suppress the growth of bacteria, but it also affects the physical properties of the plugging material. The amount of this mixture is generally 1 mg to □ 15B (0.4-6.0% w/v) for 250 mg of the filling material.
is preferred. With this amount of mixing, although the bending strength of the filling material deteriorates to some extent, no particular deterioration in hardness is observed.

填塞用レジンとしては、ビスフェノール^とグリシジル
メタクリレートとを反応して得られるBlS−GMA系
のもの、アクリル酸エステルのα位の炭素に結合してい
る水素の一つがCN基で置換されたシアノアクリレート
系のもの、メチルメタアクリレートとトリーハーブチル
ボランとを反応して得られるアクリル系のもの、又はウ
レタン系のものなどが用いられる。またこれらの中にフ
ィラーとして石英、リチウムアルミナムシリケード、バ
リウムガラス、コロイダルシリカなどを混入しても良い
Filling resins include BIS-GMA-based resins obtained by reacting bisphenol^ and glycidyl methacrylate, and cyanoacrylates in which one of the hydrogens bonded to the α-carbon of an acrylic ester is replaced with a CN group. An acrylic type obtained by reacting methyl methacrylate and tri-herbyl borane, or a urethane type are used. In addition, quartz, lithium aluminum silicate, barium glass, colloidal silica, etc. may be mixed into these as fillers.

実施例 填塞材としてティースメイト−5(クラレ社製の填塞材
の商標名、ビスフェノールAとグリシジルメタアクリレ
ートとを反応して得たBIS−GMA)を用い、この中
に光触媒反応の半導体微粒子である粒径1.44μし比
重4.2のルチル型酸化チタニウムを混入して、硬化さ
せた。酸化チタニウムの混入量ば填塞材25 (l m
 Kに対し1mg、5mg及びlOB(w/vはそれぞ
れ0.4%、2.0%及び4.0%)とした。
Examples Teeth Mate-5 (trade name of a filler made by Kuraray Co., Ltd., BIS-GMA obtained by reacting bisphenol A and glycidyl methacrylate) was used as a filler, and semiconductor fine particles for photocatalytic reaction were contained in the filler. Rutile type titanium oxide having a particle size of 1.44 μm and a specific gravity of 4.2 was mixed and hardened. The amount of titanium oxide mixed in is the filler 25 (l m
1 mg, 5 mg, and 1 OB (w/v 0.4%, 2.0%, and 4.0%, respectively) for K.

この3種の填塞材及び対照としてルチル型酸化チタニウ
ム微粒子を混入しない填塞材について、次の要領で填塞
材への細菌の付着状態を試験した。
These three types of packing materials and a control material containing no rutile-type titanium oxide fine particles were tested for adhesion of bacteria to the packing materials in the following manner.

試験に用いた菌種は、ストレプトコッカス・ミュータン
スイングブリット株、NCTC10449株及びG5−
5株の3菌であり537℃で24時間、 T、S、13
(Trypticasa Say液体)培地で前培養し
たものを併試した。
The bacterial species used in the test were Streptococcus mutanswingbrit strain, NCTC10449 strain, and G5-
5 strains of 3 bacteria at 537℃ for 24 hours, T, S, 13
(Trypticasa Say liquid) culture medium was also used.

上記4種の填塞材を生理食塩水中で滅菌し、2000ル
ツクスの光を120分間照射後、上記各菌液100μk
を加えたT、S、B培地にそれぞれ浸漬し、37℃で4
8時間培養した。培養後、試料を10rsQの滅菌生理
食塩水で洗浄、さらに30秒間超音波処理して菌を脱離
させ、その菌液の100μ氾をT、S寒天平板上に塗抹
し、37℃で48時間培養、生菌数を測定した。填塞材
表面での菌の観察は、培養後、適法により試料を作成し
て走査型電子顕微鏡で行った。
The above four types of packing materials were sterilized in physiological saline, and after irradiation with 2000 lux light for 120 minutes, 100 μk of each of the above bacterial solutions were sterilized.
immersed in T, S, and B medium containing
It was cultured for 8 hours. After incubation, the sample was washed with 10rsQ sterile physiological saline, and treated with ultrasonic waves for 30 seconds to remove the bacteria. A 100μ flood of the bacterial solution was smeared onto a T, S agar plate and incubated at 37°C for 48 hours. Culture and viable bacterial counts were measured. Observation of bacteria on the surface of the packing material was performed using a scanning electron microscope after culturing and preparing samples using a suitable method.

試験の結果は次のとおりであった。The results of the test were as follows.

(1)ルチル型酸化チタニウム混入填塞材に付着した菌
量を調べた結果は第1図のとおりであった。
(1) The amount of bacteria adhering to the rutile-type titanium oxide-containing filling material was investigated and the results were as shown in Figure 1.

第1図は填塞材へのルチル型酸化チタニウムの混入量と
填塞材への菌の付着量との関係をしめす。
FIG. 1 shows the relationship between the amount of rutile-type titanium oxide mixed into the filling material and the amount of bacteria adhering to the filling material.

各菌株ともルチル型酸化チタニウム混入量が増加するに
従い、生菌数は減少する傾向が認められた。
For each strain, it was observed that the number of viable bacteria tended to decrease as the amount of rutile titanium oxide added increased.

(2)走査型電子顕微鏡による観察では、ルチル型酸化
チタニウムを混入しない対照群とルチル型酸化チタニウ
ム混入量を変えた試yA群とを対比した結果、対照群の
填塞材表面にはストレプトコッカス・ミュータンス、f
ンブリット株が多数の連鎖菌体として61察されたが、
試験群では菌体は殆ど観察されず、菌の産生した多糖体
が多数118!察された。
(2) In observation using a scanning electron microscope, we compared the control group without rutile titanium oxide mixed with the trial yA group in which the amount of rutile titanium oxide mixed was changed. chest of drawers, f
61 bacteria were detected as numerous streptococcal bacteria.
In the test group, almost no bacterial cells were observed, and a large number of polysaccharides produced by the bacteria were 118! It was noticed.

またNCTC株については、対照群の填塞材表面に連鎖
菌体が多数みられたが、試験群の填塞材のルチル型酸化
チタニウムが露出あるいは近接している部位では菌体が
殆ど観察されなかった。さらに03−5株については、
対照群の填塞材表面には連鎖菌体が多数見られたが、試
験群の填塞材のルチル型酸化チタニウムが露出あるいは
近接する部位では、他の2菌株と異なり菌体が凝集する
像がvA祭された。
Regarding the NCTC strain, many streptobacterial cells were observed on the surface of the packing material in the control group, but almost no bacterial cells were observed in areas where the rutile-type titanium oxide of the packing material in the test group was exposed or close to it. . Furthermore, regarding the 03-5 strain,
Many streptococcal bacteria were seen on the surface of the control group's packing material, but unlike the other two strains, bacterial cells aggregated in the areas where the rutile-type titanium oxide of the test group's packing material was exposed or close to vA. It was enshrined.

以上のように、ルチル型酸化チタニウム微粒子を混入し
た填塞材は、それを混入しない填塞材に比し、細菌の付
着が少ない。
As described above, the packing material containing rutile-type titanium oxide fine particles has less adhesion of bacteria than the packing material containing no rutile titanium oxide particles.

(発明の効果) 本発明は、小窩裂溝の填塞材などに用いる歯科用填塞材
にルチル型酸化チタニウムの微粒子を混入し、このルチ
ル型酸化チタニウムの細菌発a抑制作用により、填塞材
表面での歯垢形成ないしは酷蝕に関与する細菌の発育が
抑制でき、その結果填塞材への細111の付着が減少し
、もって結電の罹患を防ぐことができるという格別の効
果を奏する。
(Effects of the Invention) The present invention mixes fine particles of rutile-type titanium oxide into a dental filling material used as a filling material for pits and fissures, and the surface of the filling material is The growth of bacteria involved in plaque formation or severe dental erosion can be suppressed, and as a result, the adhesion of the fine particles 111 to the filling material is reduced, thereby providing a special effect of preventing the occurrence of electrical discharge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ルチル型酸化チタニウムの填塞材への混入量
と該填塞材への付着菌1【どの関係を示す図である。
FIG. 1 is a diagram showing the relationship between the amount of rutile-type titanium oxide mixed into a packing material and the bacteria 1 attached to the packing material.

Claims (1)

【特許請求の範囲】[Claims] 1 填塞用レジンにルチル型酸化チタニウム微粒子を混
入してなる歯科用填塞材。
1. A dental filling material made by mixing rutile-type titanium oxide fine particles into a filling resin.
JP63320391A 1988-12-21 1988-12-21 Dental filling material Expired - Fee Related JP2517374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63320391A JP2517374B2 (en) 1988-12-21 1988-12-21 Dental filling material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63320391A JP2517374B2 (en) 1988-12-21 1988-12-21 Dental filling material

Publications (2)

Publication Number Publication Date
JPH02167210A true JPH02167210A (en) 1990-06-27
JP2517374B2 JP2517374B2 (en) 1996-07-24

Family

ID=18120946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63320391A Expired - Fee Related JP2517374B2 (en) 1988-12-21 1988-12-21 Dental filling material

Country Status (1)

Country Link
JP (1) JP2517374B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130112A (en) * 1996-10-31 1998-05-19 Agency Of Ind Science & Technol Composite material inhibiting propagation of various saprophytes
EP1352617A1 (en) * 2002-04-10 2003-10-15 Tp Orthodontics, Inc. Epoxy resin bonding pad for a ceramic orthodontic appliance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167346A (en) * 1974-12-09 1976-06-10 Lion Dentifrice Co Ltd
JPS5883610A (en) * 1981-11-11 1983-05-19 Lion Corp Composition for oral cavity
JPS6127916A (en) * 1984-07-18 1986-02-07 Yoshinori Nakagawa Dentifrice
JPS6286003A (en) * 1985-10-11 1987-04-20 Tokuyama Soda Co Ltd Photopolymerizable composite composition
US4762863A (en) * 1987-03-30 1988-08-09 Mitsubishi Rayon Co., Ltd. Photopolymerizable dental composition containing a hexafunctional urethane methacrylate based on isocyanuric acid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167346A (en) * 1974-12-09 1976-06-10 Lion Dentifrice Co Ltd
JPS5883610A (en) * 1981-11-11 1983-05-19 Lion Corp Composition for oral cavity
JPS6127916A (en) * 1984-07-18 1986-02-07 Yoshinori Nakagawa Dentifrice
JPS6286003A (en) * 1985-10-11 1987-04-20 Tokuyama Soda Co Ltd Photopolymerizable composite composition
US4762863A (en) * 1987-03-30 1988-08-09 Mitsubishi Rayon Co., Ltd. Photopolymerizable dental composition containing a hexafunctional urethane methacrylate based on isocyanuric acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130112A (en) * 1996-10-31 1998-05-19 Agency Of Ind Science & Technol Composite material inhibiting propagation of various saprophytes
EP1352617A1 (en) * 2002-04-10 2003-10-15 Tp Orthodontics, Inc. Epoxy resin bonding pad for a ceramic orthodontic appliance

Also Published As

Publication number Publication date
JP2517374B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
Sodagar et al. Effect of TiO 2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in Orthodontics
Hojati et al. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles
Cheng et al. Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms
Shibata et al. Antifungal effect of acrylic resin containing apatite-coated TiO2 photocatalyst
Chong et al. Antibacterial activity of potential retrograde root filling materials
Jasso-Ruiz et al. Silver nanoparticles in orthodontics, a new alternative in bacterial inhibition: in vitro study
Olsson et al. Plaque formation in vivo and bacterial attachment in vitro on permanently hydrophobic and hydrophilic surfaces
Łuczaj-Cepowicz et al. Antibacterial activity of selected glass ionomer cements
Yalcin et al. Evaluation of antibacterial effects of pulp capping agents with direct contact test method
Rajabnia et al. Anti-Streptococcus mutans property of a chitosan: Containing resin sealant
Li et al. Long-term antibacterial properties and bond strength of experimental nano silver-containing orthodontic cements
Swetha et al. Antibacterial and mechanical properties of pit and fissure sealants containing zinc oxide and calcium fluoride nanoparticles
Mirhashemi et al. Evaluation of antimicrobial properties of nano-silver particles used in orthodontics fixed retainer composites: an experimental in-vitro study
Zayed et al. Evaluation of the antibacterial efficacy of different bioactive lining and pulp capping agents
Rolland et al. A randomised trial comparing the antibacterial effects of dentine primers against bacteria in natural root caries
Obeid et al. The effect of using nanoparticles in bioactive glass on its antimicrobial properties
JPH02167210A (en) Dental filling material
Alkhalidi et al. Antibacterial properties of new calcium based cement prepared from egg shell
Fang et al. Antibacterial functionalization of an experimental self-etching primer by inorganic agents: microbiological and biocompatibility evaluations
Espejo et al. Evaluation of three different adhesive systems using a bacterial method to develop secondary caries in vitro
Frolov et al. Germicidal adhesives with nanoparticles of metals for prevention of recurrence of caries
Khalaf et al. Surface Coating of Gypsum‐Based Molds for Maxillofacial Prosthetic Silicone Elastomeric Material: Evaluating Different Microbial Adhesion
Mushashe et al. Effect of biofilm exposure on marginal integrity of composite restoration
Lefebvre et al. The cytotoxic effects of denture base resin sealants.
JP2517374C (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees