JPH02166248A - Mold material for precipitation hardening continuous casting - Google Patents

Mold material for precipitation hardening continuous casting

Info

Publication number
JPH02166248A
JPH02166248A JP32013488A JP32013488A JPH02166248A JP H02166248 A JPH02166248 A JP H02166248A JP 32013488 A JP32013488 A JP 32013488A JP 32013488 A JP32013488 A JP 32013488A JP H02166248 A JPH02166248 A JP H02166248A
Authority
JP
Japan
Prior art keywords
mold
precipitation hardening
mold material
continuous casting
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32013488A
Other languages
Japanese (ja)
Other versions
JP2869076B2 (en
Inventor
Kunio Nakajima
邦夫 中島
Yoshio Tsuda
津田 義夫
Masao Hosoda
征男 細田
Takayuki Tanaka
孝行 田中
Riyouichi Ishigane
良一 石金
Wataru Yago
亘 矢後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuetsu Gokin Chuko Kk
Chuetsu Metal Works Co Ltd
Original Assignee
Chuetsu Gokin Chuko Kk
Chuetsu Metal Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuetsu Gokin Chuko Kk, Chuetsu Metal Works Co Ltd filed Critical Chuetsu Gokin Chuko Kk
Priority to JP63320134A priority Critical patent/JP2869076B2/en
Publication of JPH02166248A publication Critical patent/JPH02166248A/en
Application granted granted Critical
Publication of JP2869076B2 publication Critical patent/JP2869076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To manufacture the material having high strength and high heat conductivity, having excellent high temp. toughness, particularly having high fatigue resistance and by which long service life characteristics of a mold can be obtd. by forming it with the compsn. contg. each prescribed amt. of Ni, Be, Zr, Mg and the balance Cu with inevitable impurities. CONSTITUTION:The above material for a precipitation hardening continuous casting mold is formed with the compsn. constituted of, by weight, 0.2 to 2.0% Ni, 0.05 to 0.5% Be, 0.5 to 1.5% Zr, 0.01 to 0.1% Mg and the balance Cu with inevitable impurities. In the mold material, each element of Ni, Be, Zr and Mg is added, in the ratio, to Cu which is the main ingredient to drastically improve high temp. elongation and to exceedingly improve thermal fatigue resistance. Then, the mold material has higher thermal fatigue resistance than not only that of tough pitch copper, phosphorus deoxidized copper and Ag-contg. phosphorus deoxidized copper which are the non-precipitation hardening material but also that of the above invention which is the precipitation hardening alloy. Thus, the mold material is most preferable as the mold material in continuous casting of steel or the like.

Description

【発明の詳細な説明】 本発明は、鋼等の連続鋳造に用いられ、高力、高熱伝導
は元より、高温靭性に優れ、特に疲労強度が大きく、鋳
型本来の長寿命化が得られる、析出硬化型連続鋳造用鋳
型材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is used for continuous casting of steel, etc., and not only has high strength and high thermal conductivity, but also has excellent high-temperature toughness, particularly high fatigue strength, and the inherent long life of the mold. This invention relates to a precipitation hardening type continuous casting mold material.

鋼の連続鋳造法が導入されて以来、その鋳型材料として
は、これまで主に非析出硬化型材料であるタフピッチ銅
、リン脱酸鋼、Ag入りリン脱酸銅が使用されてきたが
、最近、これらの材料に代わり析出硬化型材料であるク
ロム銅やCu−CrZr系合金が採用され、鋳型の耐用
寿命を大l]に延長している。これは析出硬化型材料の
方が非析出硬化型材料に比べ、熱伝導度はわずかに劣る
が、高温での強度が非常に大きいため、鋳型材料の寿命
を決定する要因である変形が著しく少ないからである。
Since the introduction of the continuous steel casting method, non-precipitation hardening materials such as tough pitch copper, phosphorus-deoxidized steel, and phosphorus-deoxidized copper containing Ag have been used as mold materials. In place of these materials, precipitation hardening materials such as chromium copper and Cu-CrZr alloys have been adopted, extending the useful life of the mold by a large amount. This is because precipitation-hardened materials have slightly lower thermal conductivity than non-precipitation-hardened materials, but their strength at high temperatures is much greater, resulting in significantly less deformation, which is a factor that determines the lifespan of mold materials. It is from.

然しなから、これからの鋼の連続鋳造は、これまでより
も単位生産量を大きくし、所謂高速連鋳化してゆく傾向
にあるので、クロム銅などにおいても高速連鋳の際の変
形が問題となり、鋳型材に対しては、熱伝導度をある程
度低下させても、さらに高温強度及び疲労強度の向上が
要求されている。
However, in the future, continuous casting of steel will tend to have a larger unit production volume than in the past, and the trend will be toward so-called high-speed continuous casting, so deformation during high-speed continuous casting will become a problem even for chromium copper etc. For mold materials, even if the thermal conductivity is reduced to some extent, further improvements in high temperature strength and fatigue strength are required.

本発明者等は、この要求に答えるべく、高力、高熱伝導
、高温靭性を兼備したCu−Ni−Be系の析出硬化型
連続鋳造用鋳型材料を先に開発し、既に提供してきた(
特公昭63−3940号、以下これをr先発明合金」と
する)。
In order to meet this demand, the present inventors have developed and already provided a Cu-Ni-Be-based precipitation hardening mold material for continuous casting that combines high strength, high thermal conductivity, and high-temperature toughness (
(Japanese Patent Publication No. 63-3940, hereinafter referred to as the "prior invention alloy").

確かにこの先発明合金によりクロム銅などよりは高温強
度が向上し、また、鋳型の変形防止にも向上が認められ
、この変形による鋳型寿命の短命化という点では著しく
改良された。また鋳型寿命は、長期間使用に際して、メ
ニカス近くの鋳型面に熱疲労による割れを生じるという
いわゆる疲労強度の問題がある。
It is true that the recently invented alloy has improved high-temperature strength compared to chromium copper, etc., and has also been found to be better able to prevent mold deformation, resulting in a significant improvement in terms of shortening mold life due to deformation. Furthermore, the life of the mold is affected by the problem of so-called fatigue strength, in which cracks occur on the mold surface near the menicus due to thermal fatigue during long-term use.

このような熱疲労割れは、鋳型材料の高温における伸び
と密切な関係があり、高温伸びの大きい材料はど熱疲労
割れは抑制されることから、真に鋳型の長寿命化のため
には高温延性(高温における引張伸び)の大きい材料が
望まれるところである。ところが前記先発明合金は、例
えば、使用温度400°Cにおける伸びは8%以下で、
真の長寿命化のためには、更に伸びが必要とされる。
Such thermal fatigue cracking is closely related to the elongation of the mold material at high temperatures, and thermal fatigue cracking is suppressed in materials with high elongation at high temperatures. A material with high ductility (tensile elongation at high temperatures) is desired. However, the above-mentioned prior invention alloy has an elongation of 8% or less at a service temperature of 400°C, for example.
Further elongation is required for true longevity.

本発明の鋳型材料は、上記の実情に鑑みて前記先発明合
金を改良して得られたもので、重量比でNi : 0.
2〜2.0%、Be:0.05〜0.5%、Zr:0.
6〜1.5%、Mg : 0.01−0.1%、残部C
u及び不可避不純物から構成され、この材料に溶体化処
理、及び時効処理の熱処理を与えて、高力、高熱伝導で
あって、なお且つ高温における伸びが大きく、熱疲労割
れを防止して、鋳型本来の長寿命化を得ることができる
析出硬化型連続鋳造用鋳型利料としたことを特徴とする
ものである。
The mold material of the present invention was obtained by improving the alloy of the prior invention in view of the above circumstances, and has a weight ratio of Ni: 0.
2-2.0%, Be: 0.05-0.5%, Zr: 0.
6-1.5%, Mg: 0.01-0.1%, balance C
This material is made of U and inevitable impurities, and is heat treated by solution treatment and aging treatment to have high strength, high thermal conductivity, and high elongation at high temperatures, preventing thermal fatigue cracking, and forming molds. The present invention is characterized in that it is a precipitation hardening type continuous casting mold that can provide a long service life.

即ち、CuにNi及びBeを添加して析出時効合金とし
、高温における高強度、高熱伝導性を保持せしめると共
に、これにZrを0.6%〜1.5%(重量比)とMg
を更に添加することによって、高温強度を強化すると共
に、高温伸びを一層強化して、前記先発明合金の熱疲労
強度を著しく増大した鋳型材料なのである。
That is, Ni and Be are added to Cu to form a precipitation aging alloy to maintain high strength and high thermal conductivity at high temperatures, and 0.6% to 1.5% (weight ratio) of Zr and Mg are added to the alloy.
By further adding , this mold material has enhanced high temperature strength and further enhanced high temperature elongation, thereby significantly increasing the thermal fatigue strength of the above-mentioned prior invention alloy.

次に、本発明鋳型材料において、成分組成範囲を上記の
通りに限定した理由を説明する。
Next, in the mold material of the present invention, the reason why the component composition range is limited as described above will be explained.

NiはBeの溶解度を下げるのに添加する。0.2%よ
りも少ない添加では効果がうすく、2%を越えると添加
の割には効果が上がらず、逆に高熱伝導性を阻害する。
Ni is added to lower the solubility of Be. If it is added less than 0.2%, the effect will be weak, and if it exceeds 2%, the effect will not increase in spite of the addition, and on the contrary, high thermal conductivity will be inhibited.

Beは析出時効により強度を高めるのに重要な元素であ
り、0.05%以下では強度が上がらず、0゜5%以上
になると熱伝導性が非常に悪くなるたけでなく、高価な
元素であるため不経済である。
Be is an important element for increasing strength through precipitation aging, and if it is less than 0.05%, the strength will not increase, and if it is more than 0.5%, not only will the thermal conductivity become very poor, but it is also an expensive element. Therefore, it is uneconomical.

ZrはCuと凝二元系の析出時効をするので、材料の強
度上昇に役立つと同時に、高温で伸びを出すのに必要な
元素である。特に、前記した鋳型の熱疲労割れ発生を防
止するためには、0.6%以下では殆んど効果を期待で
きす、1゜5%以上では添加の割には効果が少ない上に
、元素の酸化が著しいので鋳造性が悪くなる。
Since Zr performs coagulation binary precipitation aging with Cu, it is an element that is useful for increasing the strength of the material and at the same time is necessary for elongation at high temperatures. In particular, in order to prevent the occurrence of thermal fatigue cracking in molds as described above, if the amount is less than 0.6%, most effects can be expected, but if it is more than 1.5%, the effect is small, and the element oxidation is significant, resulting in poor castability.

Mgはやはり高温での伸びを改善するために添加するが
、0.01%以下では効果が小さく、0.1%以上では
熱伝導性が悪くなり、鋳型材には不適当である。
Mg is added to improve elongation at high temperatures, but if it is less than 0.01%, the effect is small, and if it is more than 0.1%, the thermal conductivity deteriorates, making it unsuitable for mold materials.

本発明による鋳型材料は、上記のように、主体になるC
uに対して特定の割合で、N1、Be、 Zr、Mgの
諸元素を添加し、高温伸びを犬、きく改良し熱疲労強度
を格段に向上させた析出硬化型銅合金であって、非析出
硬化型材料であるタフピッチ銅やリン脱酸銅、Ag入り
リン脱酸銅は勿論、析出硬化型材料である前記先発明、
合金(比較例合金1)や従来例Cu−0r−Zr系合金
(比較例合金2)よりも耐熱疲労強度が大きい連続鋳造
用鋳型材料なのである。
As mentioned above, the mold material according to the present invention is mainly composed of C.
It is a precipitation-hardening copper alloy that has N1, Be, Zr, and Mg added in specific ratios to u, greatly improving high-temperature elongation and significantly improving thermal fatigue strength. Not only tough pitch copper, phosphorus-deoxidized copper, and phosphorus-deoxidized copper containing Ag, which are precipitation hardening materials, but also the above-mentioned previous invention, which is a precipitation hardening material.
It is a mold material for continuous casting that has higher thermal fatigue strength than the alloy (Comparative Example Alloy 1) and the conventional Cu-0r-Zr alloy (Comparative Example Alloy 2).

表は、本発明に係る実施例合金群と上記比較例合金とに
ついて、その化学成分並びに電気伝導度を比較した数値
を示し、また、第1図ないし第3図は、前記各合金の代
表例について高温時に於ける性能試験、■高温引張り強
さ(第1図)、高温耐力(第2図)、高温伸び(第3図
)を比較した数値を曲線グラフにより示したものである
。また、第4図は各合金の代表例について回転曲げ疲労
強度を曲線グラフにて示したものである。
The table shows numerical values comparing the chemical composition and electrical conductivity of the example alloy group according to the present invention and the above-mentioned comparative example alloy, and Figures 1 to 3 show representative examples of each of the above-mentioned alloys. A performance test at high temperature for the following figures: (1) Comparison of high-temperature tensile strength (Figure 1), high-temperature yield strength (Figure 2), and high-temperature elongation (Figure 3) is shown in a curve graph. Moreover, FIG. 4 shows the rotating bending fatigue strength of representative examples of each alloy in a curve graph.

第1図ないし第4図から明らかなように、本発明銅合金
は、現在、鋳型材として使用されているCu−Cr−Z
r系合金(比較例合金2)よりも強度が大きい上に、鋳
型の使用温度である300〜400°Cで伸びが大きく
、強度と靭性を備えた材料であり、また同系の材料であ
る先発間合金(比較例合金1)と比較しても、本発明の
目的である高温強度、高温伸び、特に疲労強度に優れて
いることが分かる。
As is clear from FIGS. 1 to 4, the copper alloy of the present invention is compatible with Cu-Cr-Z, which is currently used as a mold material.
In addition to being stronger than the r-based alloy (comparative example alloy 2), it has greater elongation at the mold usage temperature of 300 to 400°C, and is a material with strength and toughness. Even when compared with the intermediate alloy (Comparative Example Alloy 1), it can be seen that it is excellent in high-temperature strength, high-temperature elongation, and especially fatigue strength, which are the objectives of the present invention.

以上のように、本発明の銅合金は、高温における強度と
伸びが一層向上しており、特に疲労強度が高く、鋼等の
連続鋳造における鋳型材料として最適の特性を具備して
いるものである。
As described above, the copper alloy of the present invention has further improved strength and elongation at high temperatures, particularly high fatigue strength, and has the optimum properties as a mold material for continuous casting of steel etc. .

比較例合金1 : 先発間合金 比較例合金2 : 従来例Cu−Cr−Zr合金Comparative example alloy 1: Preliminary alloy Comparative example alloy 2: Conventional example Cu-Cr-Zr alloy

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は、本発明に係る実施例合金と比較
例合金とについて、各々、高温引張り強さ、高温耐力、
高温伸びを比較した曲線グラフである。 また第4図は上記各合金について、回転曲げ疲労強度を
比較した曲線グラフである。 中越合金鎚工株式会社 区 OJ 塗 日 怨 口 寸 絵
Figures 1 to 3 show the high temperature tensile strength, high temperature yield strength, and
It is a curve graph comparing high temperature elongation. Moreover, FIG. 4 is a curve graph comparing the rotating bending fatigue strength of each of the above alloys. Chuetsu Alloy Hammer Co., Ltd. OJ Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)重量比で、Ni:0.2〜2.0%、Be:0.0
5〜0.5%、Zr:0.6〜1.5%、Mg:0.0
1〜0.1%、残部Cu及び不可避不純物からなる組成
を有することを特徴とする析出硬化型連続鋳造用鋳型材
料。
1) Weight ratio: Ni: 0.2-2.0%, Be: 0.0
5-0.5%, Zr: 0.6-1.5%, Mg: 0.0
A precipitation hardening type continuous casting mold material having a composition of 1 to 0.1% Cu, the balance being Cu and unavoidable impurities.
JP63320134A 1988-12-19 1988-12-19 Precipitation hardening mold material for continuous casting Expired - Lifetime JP2869076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63320134A JP2869076B2 (en) 1988-12-19 1988-12-19 Precipitation hardening mold material for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63320134A JP2869076B2 (en) 1988-12-19 1988-12-19 Precipitation hardening mold material for continuous casting

Publications (2)

Publication Number Publication Date
JPH02166248A true JPH02166248A (en) 1990-06-26
JP2869076B2 JP2869076B2 (en) 1999-03-10

Family

ID=18118086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63320134A Expired - Lifetime JP2869076B2 (en) 1988-12-19 1988-12-19 Precipitation hardening mold material for continuous casting

Country Status (1)

Country Link
JP (1) JP2869076B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079574A1 (en) * 2000-04-14 2001-10-25 Sms Demag Aktiengesellschaft Use of a hardenable copper alloy for molds
EP1314495A2 (en) * 2001-11-21 2003-05-28 KM Europa Metal Aktiengesellschaft Sleeve for a casting roll of a twin roll continuous caster
EP1314789A1 (en) * 2001-11-21 2003-05-28 KM Europa Metal Aktiengesellschaft Precipitation hardenable copper alloy for manufacturing moulds
EP1340564A2 (en) * 2002-02-15 2003-09-03 KM Europa Metal Aktiengesellschaft Hardenable copper alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117891A (en) * 1984-07-03 1986-01-25 ロザイ工業株式会社 Rotary type continuous heating furnace
JPS633940A (en) * 1986-06-23 1988-01-08 Bridgestone Corp Preparation of non-slip device for tire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117891A (en) * 1984-07-03 1986-01-25 ロザイ工業株式会社 Rotary type continuous heating furnace
JPS633940A (en) * 1986-06-23 1988-01-08 Bridgestone Corp Preparation of non-slip device for tire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079574A1 (en) * 2000-04-14 2001-10-25 Sms Demag Aktiengesellschaft Use of a hardenable copper alloy for molds
EP1314495A2 (en) * 2001-11-21 2003-05-28 KM Europa Metal Aktiengesellschaft Sleeve for a casting roll of a twin roll continuous caster
EP1314789A1 (en) * 2001-11-21 2003-05-28 KM Europa Metal Aktiengesellschaft Precipitation hardenable copper alloy for manufacturing moulds
EP1314495A3 (en) * 2001-11-21 2003-12-10 KM Europa Metal Aktiengesellschaft Sleeve for a casting roll of a twin roll continuous caster
AU2002302077B2 (en) * 2001-11-21 2008-10-02 Kme Germany Gmbh & Co. Kg Temperable Copper Alloy as Material for Producing Casting Moulds
NO340437B1 (en) * 2001-11-21 2017-04-24 Kme Germany Gmbh & Co Kg Casting roll for a two-roll casting plant
EP1340564A2 (en) * 2002-02-15 2003-09-03 KM Europa Metal Aktiengesellschaft Hardenable copper alloy
EP1340564A3 (en) * 2002-02-15 2005-04-27 KM Europa Metal Aktiengesellschaft Hardenable copper alloy

Also Published As

Publication number Publication date
JP2869076B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
US20090180920A1 (en) Aluminum zinc magnesium silver alloy
US4656003A (en) Copper alloy and production of the same
EP2083093A1 (en) Copper alloy for seamless pipes
JPS60215734A (en) Al-base alloy and production of product therefrom
US4486250A (en) Copper-based alloy and method for producing the same
US3392016A (en) Copper-zirconium alloy
US4377424A (en) Mold of precipitation hardenable copper alloy for continuous casting mold
FI66916B (en) HAIRDBAR NYSILVERLIKNANDE CU-ZN-NI-MN-LEGERING
JPH02166248A (en) Mold material for precipitation hardening continuous casting
JPH04198460A (en) Production of casting mold member for continuous casting
FI87239B (en) EN FOERBAETTRAD METALLEGERING PAO BASIS AV KOPPAR, SPECIELLT FOER FRAMSTAELLNING AV ELEKTRONISKA AKPONENTER.
US3369893A (en) Copper-zinc alloys
JP4293580B2 (en) Corson alloy for metal mold and manufacturing method thereof
JPS5925941A (en) Cylinder and screw member for injection molding machine and extruder for plastic material and its production
JPH11189834A (en) High strength trolley wire and its manufacture
JPH02111835A (en) Mold material for electromagnetic stirring
US3627593A (en) Two phase nickel-zinc alloy
JP3563311B2 (en) Copper alloy electrode material for resistance welding and method for producing the same
JPH0285330A (en) Copper alloy having good press bendability and its manufacture
JPS61153246A (en) Softening resisting and high strength copper alloy for superior thermal conductivity
CN86108289A (en) Novel wear resistant corrosion resistant cobalt base alloy
KR960015217B1 (en) Making method of cu-cr-zr-mg-ce-la-nd-pd alloy
KR0182223B1 (en) Cu-cr-zr-mg-mischmetal alloy and the heat treatment thereof
JPS633941B2 (en)
JPH0959730A (en) Copper alloy for heat resistant metal mold such as metal mold for glass forming

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

EXPY Cancellation because of completion of term