JPH0216569A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH0216569A
JPH0216569A JP16657788A JP16657788A JPH0216569A JP H0216569 A JPH0216569 A JP H0216569A JP 16657788 A JP16657788 A JP 16657788A JP 16657788 A JP16657788 A JP 16657788A JP H0216569 A JPH0216569 A JP H0216569A
Authority
JP
Japan
Prior art keywords
charge
charge transport
layer
oxidation potential
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16657788A
Other languages
Japanese (ja)
Inventor
Yoshihide Shimoda
下田 嘉英
Yoshimi Kojima
小島 義己
Eiji Imada
今田 英治
Hideaki Taniguchi
谷口 英明
Shuhei Tsuchimoto
修平 土本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP16657788A priority Critical patent/JPH0216569A/en
Publication of JPH0216569A publication Critical patent/JPH0216569A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0609Acyclic or carbocyclic compounds containing oxygen

Abstract

PURPOSE:To improve the sensitivity and preexposing characteristic of the separated-function type electrophotographic sensitive body by incorporating a specific anthanthrone compd. into a charge generating layer and incorporating a charge transfer material having a specific oxidation potential into the charge generating layer. CONSTITUTION:The charge generating layer consists of the layer contg. the anthanthrone compd. expressed by formula I and the charge transfer layer consists of the layer contg. The charge transfer material having 0.35-0.60V (on Ag/Ag<+> electrode) oxidation potential. The sensitivity is extremely degraded when the oxidation potential is higher than 0.60V and the preexposing characteristic is degraded and the surface potential after strong exposing is so lowered that the photosensitive body is not suitable for practicable use when the oxidation potential is lower than 0.35V. The separated-function type photosensitive body which has the excellent preexposing characteristic and high sensitivity and is suitable for the practicable use is obtd. by using the specific anthanthrone compd. as the charge generating material and optimizing the oxidation potential of the charge transfer material.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、電子写真用感光体に関する。さらに詳しく
は、電荷発生層と電荷輸送層とを備えた機能分離型電子
写真用感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a photoreceptor for electrophotography. More specifically, the present invention relates to a functionally separated electrophotographic photoreceptor comprising a charge generation layer and a charge transport layer.

(ロ)従来の技術 従来、セレン、硫化カドミウム、酸化亜鉛などの無機系
材料を用いた無機感光体にかわり、有機系材料を用いた
有機感光体の開発が行われている。
(b) Prior Art Conventionally, instead of inorganic photoreceptors using inorganic materials such as selenium, cadmium sulfide, and zinc oxide, organic photoreceptors using organic materials have been developed.

その理由としては、材料の加工性、材料選択の多様性、
低コスト、回収の不要等が挙げられる。
The reasons for this are the processability of the material, the diversity of material selection,
Examples include low cost and no need for collection.

有機感光体としては■光導電性化合物及び塗料等の増感
剤からなる感光体、■電荷移動錯体型光導電性化合物か
らなる感光体、■電荷発生層と電荷輸送層とからなる機
能分離型感光体などが挙げられるが、中でら■の機能分
離型感光体は材料選択の多様性、デバイス設計の容易さ
などの理由から現在実用化されている有機感光体の主流
を占めている。
Organic photoreceptors include: ■ Photoreceptors made of photoconductive compounds and sensitizers such as paints; ■ Photoreceptors made of charge transfer complex type photoconductive compounds; ■ Functionally separated type made of a charge generation layer and a charge transport layer. Examples include photoreceptors, among which functionally separated photoreceptors are the mainstream of organic photoreceptors currently in practical use due to their diversity in material selection and ease of device design.

このような機能分離型の有機感光体の一例としては、電
荷発生層にクロログイアンプル−の有機アミン溶液を塗
布して形成した薄膜を用い、電荷輸送層にヒドラゾン化
合物を用いたもの(特公昭55−42380号公報)、
ジスアゾ化合物の電荷発生層とヒドラゾン化合物の電荷
輸送層とからなるもの(特開昭59−214035号公
報)、アズレニウム塩化化合物の電荷発生層とヒドラゾ
ン化合物等の電荷輸送層とからなるもの(特開昭59−
53850号公報)等が知られている。また、さらに電
荷発生物質として顔料の一種であるアンサンスロンやキ
ノン系化合物を用いる提案もなされている(米国特許第
3877935号明細書゛)。
An example of such a functionally separated organic photoreceptor is one in which the charge generation layer is a thin film formed by coating an organic amine solution of chlorodia ampule, and the charge transport layer is a hydrazone compound (Tokuko Showa). 55-42380),
A charge generation layer made of a disazo compound and a charge transport layer made of a hydrazone compound (JP-A-59-214035); a charge generation layer made of an azulenium chloride compound and a charge transport layer made of a hydrazone compound (JP-A-59-214035); 1982-
53850) etc. are known. Furthermore, it has been proposed to use anthanthrone, which is a type of pigment, or a quinone compound as a charge generating substance (US Pat. No. 3,877,935).

(ハ)発明が解決しようとする課題 上記従来の機能分離型有機感光体について、近年、感度
、耐久性の改善がなされてはいるものの実用に供される
ものはごく一部に限られている。
(c) Problems to be solved by the invention Although the sensitivity and durability of the conventional functionally separated organic photoreceptors mentioned above have been improved in recent years, only a few of them are put into practical use. .

その原因の1つとして、有機感光体が日光や室内照明な
どの強い光にさらされ4と、帯電性の低下をまねき、表
面電位が低下するという現象がある(以後、この現象を
「前露光特性」という)。
One of the reasons for this is the phenomenon that when an organic photoreceptor is exposed to strong light such as sunlight or indoor lighting,4 it leads to a decrease in chargeability and a decrease in surface potential. (referred to as "characteristics").

前露光特性が悪いと、強震光にさらされた部分の表面電
位低下をまねき、画像ムラが発生したり、画像が得られ
ないといった問題が生じる。そのため、該感光体の取り
扱いに注意を必要とし、取り扱いか複雑になったり、複
写機の機構で対応する場合、コストアダプにつながるこ
ととなる。この点から実用化にあたり、前露光特性に優
れた電子写真用感光体の開発か望まれていた。
If the pre-exposure characteristics are poor, the surface potential of the portion exposed to the strong vibration light will decrease, resulting in problems such as image unevenness or the inability to obtain an image. Therefore, care must be taken when handling the photoreceptor, which may result in complicated handling, or if the mechanism of the copying machine is used to handle the photoreceptor, costs may increase. From this point of view, it has been desired to develop an electrophotographic photoreceptor with excellent pre-exposure characteristics for practical use.

この発明は上記事情に鑑みてなされたものであり、高感
度であり、かつ、前露光特性に優れた機能分離型電子写
真用感光体を提供しようとするものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a functionally separated electrophotographic photoreceptor that is highly sensitive and has excellent pre-exposure characteristics.

(ニ)課題を解決するための手段及び作用一般に、導電
性支持体上に電荷発生層及び電荷輸送層を積層してなる
機能分離型電子写真用感光体において、感度アップを図
る方法としては、■電荷キャリヤ発生効率の向上、■電
荷発生層から電荷輸送層への電荷キャリア注入効率の向
上、■電荷キャリア輸送効率の向上が考えられる。しか
しながら、これまでに知られている有機光導電性材料よ
りも、飛躍的に大きなキャリヤ発生効率やキャリヤ輸送
効率を持った有機光導電性材料は未だ見出されていない
のが現状である。
(d) Means and effects for solving the problems In general, methods for increasing sensitivity in a functionally separated electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are laminated on a conductive support are as follows: Possible improvements include: (1) improvement in charge carrier generation efficiency, (2) improvement in charge carrier injection efficiency from the charge generation layer to the charge transport layer, and (2) improvement in charge carrier transport efficiency. However, at present, no organic photoconductive material has been found that has significantly higher carrier generation efficiency and carrier transport efficiency than the organic photoconductive materials known so far.

この発明の発明者らは、電荷発生層から電荷輸送層への
電荷キャリア注入効率が感度を決定する重要な因子であ
ることに着目した。
The inventors of the present invention have focused on the fact that the efficiency of charge carrier injection from the charge generation layer to the charge transport layer is an important factor determining sensitivity.

ところで、機能分離型電子写真用感光体において、感度
と電荷輸送材料のイオン化ポテンシャルとの間に相関性
があるとの報告(例えば、IEEE\ 化ポテンシャルの代用特性としての酸化電位と機能分離
型電子写真用感光体の感度及び前露光特性を測定した結
果、電荷輸送材料の酸化電位がある特定の範囲の値のと
ころでのみ、機能分離型電子写真用感光体の感度及び前
露光特性が共に良好となる事実を見出しこの発明に到達
した。
By the way, it has been reported that in functionally separated electrophotographic photoreceptors, there is a correlation between sensitivity and the ionization potential of the charge transport material (for example, IEEE As a result of measuring the sensitivity and pre-exposure characteristics of photographic photoreceptors, it was found that both the sensitivity and pre-exposure characteristics of functionally separated electrophotographic photoreceptors are good only when the oxidation potential of the charge transport material is within a certain range. We discovered this fact and arrived at this invention.

かくしてこの発明によれば、導電性支持体上に電荷発生
層及び電荷輸送層を積層してなる機能分離型電子写真用
感光体において、前記電荷発生層が下記構造式[Iコニ で示されるアンサンスロン化合物を含む層からなり、前
記電荷輸送層が0.35〜0.60V (対Ag/Ag
”電極)の酸化電位を有する電荷輸送材料を含む層から
なることを特徴とする電子写真用感光体が提供される。
Thus, according to the present invention, in a functionally separated electrophotographic photoreceptor comprising a charge generation layer and a charge transport layer laminated on a conductive support, the charge generation layer has the following structural formula [Iconi]. The charge transport layer is composed of a layer containing a sulon compound, and the charge transport layer is 0.35 to 0.60V (vs. Ag/Ag
There is provided an electrophotographic photoreceptor comprising a layer containing a charge transporting material having an oxidation potential of that of the "electrode".

この発明は、特定の電荷発生材料を含有する電荷発生層
と、特定の範囲の酸化電位を有する電荷輸送材料を含有
する電荷輸送層との組合わせを特徴とする機能分離型電
子写真用感光体に関するしのである。
The present invention provides a functionally separated electrophotographic photoreceptor characterized by a combination of a charge generation layer containing a specific charge generation material and a charge transport layer containing a charge transport material having an oxidation potential in a specific range. This is a related story.

この発明の感光体の電荷発生層に用いられる特定の電荷
発生材料としては、上記式[Nで表されるジブロモアン
サンスロンが用いられる。この化合物は多環キノン系顔
料としてモノライト レッド(Monolite Re
d) 2 Y (1,C,1,社製)の名称で入手可能
である。上記特定の電荷発生材料は、適当な分散媒に分
散させて所定の基板上に塗工・乾燥する等、当該分野で
公知の方法により電荷発生層に形成される。通常この電
荷発生層は、0.05〜5μm程度の膜厚に形成される
ことが好ましい。
As a specific charge generating material used in the charge generating layer of the photoreceptor of the present invention, dibromoanthanthrone represented by the above formula [N] is used. This compound is used as a polycyclic quinone pigment called Monolite Red.
d) It is available under the name 2Y (manufactured by 1, C, 1, Inc.). The above-mentioned specific charge generation material is formed into a charge generation layer by a method known in the art, such as by dispersing it in a suitable dispersion medium, coating it on a predetermined substrate, and drying it. Usually, this charge generation layer is preferably formed to have a thickness of about 0.05 to 5 μm.

この発明の感光体の電荷輸送層には、特定の範囲の酸化
電位を有する電荷輸送材料が用いられる。
A charge transport material having an oxidation potential within a specific range is used in the charge transport layer of the photoreceptor of the present invention.

上記酸化電位とは、溶媒としてアセトニトリル、電解支
持剤として過塩素酸テトラ−n−ブチルアンモニウム、
参照iiiとしてAg/Ag’電極を用いてサイクリッ
クポルタンメトリー法により測定されるもののうち、第
−酸化波のピーク電位(以下Eoxと表示)を意味する
The above oxidation potential refers to acetonitrile as a solvent, tetra-n-butylammonium perchlorate as an electrolytic support agent,
Reference iii refers to the peak potential of the -th oxidation wave (hereinafter referred to as Eox) among those measured by cyclic portammetry using an Ag/Ag' electrode.

前述したごとく電荷輸送材料のイオン化ポテンシャルと
、機能分離積層型電子写真用感光体の感度との間に相関
性が確認されており、電荷輸送材料のイオン化ポテンシ
ャルが小さい程、高感度であるとされている。一方、こ
の発明者らにより電荷輸送材料のイオン化ポテンシャル
と、機能分離積層型電子写真用感光体の前露光特性との
間にも相関性かあり、電荷輸送材料のイオン化ポテンシ
ャルが小さい程、前露光特性が悪くなることが見出され
た。すなわち、前露光特性は、強震光により発生した電
荷キャリアが感光体中に蓄積され、その蓄積された電荷
キャリアが強露光後の帯電時、感光体表面の電荷を打ち
消すために表面電位の低下をまねくことが原因であると
考えられる。このことは、強震光により感光体中に蓄積
されろ電荷キャリア数が多い程、前露光特性が悪(なる
ということであり、今回の実験結果は電荷輸送材料のイ
オン化ポテンシャルが小さい程、感光体中に蓄積される
電荷キャリア数が多くなるということかできる。この原
因としては、■電荷輸送材料のイオン化ポテンシャルが
小さい程、電荷発生層から電荷輸送層への電荷キャリア
注入効率が高いために、強震光により発生した電荷キャ
リアが電荷輸送層に注入され蓄積される割合が高くなる
、■電荷輸送材料のイオン化ポテンシャルが小さい程、
電荷輸送材料の吸収スペクトルの吸収端が長波長側にシ
フトし、電荷輸送層で吸収される光量が増加するために
、強震光により電荷輸送層中で発生し蓄積される電荷キ
ャリア数が多くなる、などが考えられる。以上のことか
ら電荷輸送材料のイオン化ポテンシャルが、ある特定の
範囲の値のところでのみ感度及び前露光特性が共に優れ
た電子写真用感光体が得られることが判明した。
As mentioned above, a correlation has been confirmed between the ionization potential of the charge transport material and the sensitivity of the functionally separated laminated electrophotographic photoreceptor, and it is said that the smaller the ionization potential of the charge transport material, the higher the sensitivity. ing. On the other hand, the inventors found that there is a correlation between the ionization potential of the charge transport material and the pre-exposure characteristics of the functionally separated layered electrophotographic photoreceptor; It was found that the characteristics deteriorated. In other words, the pre-exposure characteristics are such that charge carriers generated by strong vibration light are accumulated in the photoreceptor, and when the accumulated charge carriers are charged after strong exposure, the surface potential decreases to cancel the charge on the photoreceptor surface. This is thought to be caused by stumbling. This means that the greater the number of charge carriers accumulated in the photoreceptor due to strong vibration light, the worse the pre-exposure characteristics will be.The results of this experiment show that the smaller the ionization potential of the charge transport material, the worse the photoreceptor. It can be said that the number of charge carriers accumulated in the charge transport layer increases.The reason for this is: (1) The smaller the ionization potential of the charge transport material, the higher the charge carrier injection efficiency from the charge generation layer to the charge transport layer. The rate at which charge carriers generated by strong motion light are injected into the charge transport layer and accumulated increases; ■The smaller the ionization potential of the charge transport material, the more
The absorption edge of the absorption spectrum of the charge transport material shifts to the longer wavelength side and the amount of light absorbed by the charge transport layer increases, so the number of charge carriers generated and accumulated in the charge transport layer by strong vibration light increases. , etc. are possible. From the above, it has been found that an electrophotographic photoreceptor with excellent sensitivity and pre-exposure characteristics can be obtained only when the ionization potential of the charge transport material is within a certain range of values.

この発明において、上記のごときイオン化ポテンシャル
の特定の範囲としては、前記測定法に基づく酸化電位で
代用して表され、0.35〜o、aovの値が選択され
る。o、aovよりも高いときは感度か著しく低下し、
0.35Vよりも低いときは、前露光特性が悪くなり、
強露光後の表面電位低下が著しく実用に供しないものと
なる。上記酸化電位はさらに0.40〜o、sovの範
囲がより好ましいものである。
In this invention, the specific range of the ionization potential as described above is represented by the oxidation potential based on the measurement method described above, and a value of 0.35 to o, aov is selected. When it is higher than o, aov, the sensitivity decreases significantly,
When it is lower than 0.35V, the pre-exposure characteristics deteriorate,
The surface potential decreases significantly after intense exposure, making it impractical. The above oxidation potential is more preferably in the range of 0.40 to o.sov.

この発明において、上記特定の範囲の酸化電位を有する
電荷輸送材料は、当該分野で通常用いられるヒドラゾン
系化合物、ピラゾリン系化合物、トリフェニルアミン系
化合物、トリフェニルメタン系化合物、オキサジアゾー
ル系化合物、オキサゾール系化合物またはスチルベン系
化合物等から選択して用いろことかできる。具体的には
後述する実施例に記載されたものが好ましいものとして
挙げられろが、これらに限定されるものではない。
In this invention, the charge transport material having an oxidation potential within the above-mentioned specific range includes hydrazone compounds, pyrazoline compounds, triphenylamine compounds, triphenylmethane compounds, oxadiazole compounds, It can be selected from oxazole compounds, stilbene compounds, and the like. Specifically, those described in the Examples described below are preferred, but the invention is not limited thereto.

この発明の感光体の電荷輸送層は、上記選択された電荷
輸送材料を用いて当該分野で通常の方法に従って形成さ
れる。すなわち上記電荷輸送材料の適当量をメラミン樹
脂、エポキシ樹脂、シリコン樹脂、ポリウレタン樹脂、
アクリル樹脂、塩化ビニル−酢酸ビニル共重合体樹脂、
ポリカーボネート樹脂、フェノキシ樹脂等の粘着性樹脂
の溶液に加え、これを前記電荷発生層上に塗布・乾燥す
ることにより形成される。また蒸着法により形成される
ものであってもよい。かかる電荷輸送層の形成膜厚は、
通常5〜50μm程度が適している。
The charge transport layer of the photoreceptor of the present invention is formed using the charge transport material selected above according to a method common in the art. That is, an appropriate amount of the above charge transport material is added to melamine resin, epoxy resin, silicone resin, polyurethane resin,
Acrylic resin, vinyl chloride-vinyl acetate copolymer resin,
It is formed by adding a solution of an adhesive resin such as polycarbonate resin or phenoxy resin to the charge generating layer and drying it. Alternatively, it may be formed by a vapor deposition method. The thickness of the charge transport layer is:
Usually about 5 to 50 μm is suitable.

なお、本発明に用いる導電性支持体としては、基体自体
が導電性をもつもの、例えば、アルミニウム、アルミニ
ウム合金、銅、亜鉛、ステンレス、ニッケル、クロム、
チタン等を用いることができ、その他にアルミニウム、
アルミニウム合金、酸化インジウム、酸化錫等を真空蒸
着法により皮膜形成した層を有するプラスチック、導電
性粒子をプラスチックや紙に含浸した基体、導電性ポリ
マーを有するプラスチック等を用いることができる。
The conductive support used in the present invention may be one in which the base itself is conductive, such as aluminum, aluminum alloy, copper, zinc, stainless steel, nickel, chromium,
Titanium, etc. can be used, as well as aluminum,
Plastics having a layer formed by vacuum deposition of aluminum alloy, indium oxide, tin oxide, etc., bases made of plastic or paper impregnated with conductive particles, plastics having conductive polymers, etc. can be used.

ただし導電性基体には半導電性のものも包含される。However, conductive substrates also include semiconductive substrates.

以下、この発明を実施例により更に具体的に説明するが
、これらによってこの発明が限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited by these.

(ホ)実施例 実施例1 下記構造式[I]: で示される多環キノン系顔料であるジブロモアンサンス
ロン(Monolite Red 2 Y : 1.C
,1社製)2重量部、フェノキシ樹脂(PK[IH:ユ
ニオンカーバイド社製)1重量部、1.4−ジオキサン
97重量部をボールミル分散機により12時間分散した
。この分散液をアルミ蒸着PET (メタルミー x 
100Ts:東しく昧)製)上にベーカーアプリケータ
ーにて塗工し、乾燥して、膜厚0,8μmの電荷発生層
を形成した。
(E) Examples Example 1 Dibromoanthanthrone (Monolite Red 2 Y: 1.C), which is a polycyclic quinone pigment represented by the following structural formula [I]:
2 parts by weight of phenoxy resin (PK [IH: manufactured by Union Carbide Company]) and 97 parts by weight of 1,4-dioxane were dispersed for 12 hours using a ball mill disperser. This dispersion was applied to aluminum-deposited PET (Metal Me x
100Ts (manufactured by Toshikumai)) using a Baker applicator and dried to form a charge generation layer with a thickness of 0.8 μm.

一方、下記構造式[■]: [ただし、上述したサイクリックポルクンメトリー法に
より測定された第1酸化波のピーク電位(以下酸化電位
:Eoxとして示す) =0.37V ]で示されるヒ
ドラゾン系化合物1重量部、ポリカーボネート樹脂(P
CZ :三菱ガス化学社製)1重量部と、ジクロルメタ
ン8重量部を混合し、撹拌機で撹拌溶解させた。この溶
液を上記で形成された電荷発生層上に、ベーカーアプリ
ケーターにて塗工し、加熱乾燥して膜厚20μmの電荷
輸送層を形成し、機能分離積層型電子写真用感光体を得
た。
On the other hand, a hydrazone system represented by the following structural formula [■]: [However, the peak potential of the first oxidation wave (hereinafter referred to as oxidation potential: Eox) measured by the above-mentioned cyclic polkunmetry method = 0.37 V] 1 part by weight of compound, polycarbonate resin (P
1 part by weight of CZ (manufactured by Mitsubishi Gas Chemical Co., Ltd.) and 8 parts by weight of dichloromethane were mixed and dissolved by stirring with a stirrer. This solution was applied onto the charge generation layer formed above using a baker applicator and dried by heating to form a charge transport layer having a thickness of 20 μm, thereby obtaining a functionally separated layered electrophotographic photoreceptor.

このようにして作製した感光体を、川口電機(株)製静
電紙試験装置Model 5P−428を用いて、スタ
ティックモードで一5kVにてコロナ帯電し、暗所で5
秒間保持した後、照度5 luxで露光し、帯電特性を
調べた。帯電特性としては初期電位(Vo)、5秒間暗
減衰さけた時の電位を1/2に減衰させるのに必要な露
光量(E+/l)を測定した。
The thus prepared photoreceptor was corona charged at 5 kV in static mode using an electrostatic paper tester Model 5P-428 manufactured by Kawaguchi Electric Co., Ltd.
After being held for a second, it was exposed to light at an illuminance of 5 lux, and the charging characteristics were examined. As for the charging characteristics, the initial potential (Vo) and the exposure amount (E+/l) required to attenuate the potential to 1/2 after avoiding dark decay for 5 seconds were measured.

更に強震光による電位低下を調べるため、感光体に30
001uxで5秒間強露光を行った直後に、前記と同様
の帯電特性測定を行い、強露光後の初期電位(V O′
)を測定した。この結果を下記[第1表]に示した。
Furthermore, in order to investigate the potential drop due to strong-motion light, the photoreceptor was
Immediately after strong exposure at 001ux for 5 seconds, the charging characteristics were measured in the same way as above, and the initial potential after strong exposure (VO'
) was measured. The results are shown in Table 1 below.

実施例2〜6 実施例1において、構造式[11]で示された化合物の
かわりに、下記構造式[1]〜[■]で示された化合物
をそれぞれ用いた以外は実施例1と同様に感光体を作製
し、実施例1と同様の測定を行った。
Examples 2 to 6 Same as Example 1 except that the compounds represented by the following structural formulas [1] to [■] were used instead of the compound represented by the structural formula [11] in Example 1. A photoreceptor was prepared and the same measurements as in Example 1 were performed.

この結果を[第1表」に併せて示した。The results are also shown in [Table 1].

(以下余白) C,H。(Margin below) C, H.

H3 Js [第1表コ 比較例1及び2 実施ρ月において、構造式[L]で示された化合物のか
わりに、下記構造式[■](比較例1)または[IX]
(比較例2)で示された化合物を用いた以外は、実施例
1と同様の測定を行った。この結果を下記[第2表]に
示した。
H3 Js [Table 1 Comparative Examples 1 and 2 In the month of implementation, the following structural formula [■] (Comparative Example 1) or [IX] was substituted for the compound represented by the structural formula [L].
The same measurements as in Example 1 were performed except that the compound shown in (Comparative Example 2) was used. The results are shown in Table 2 below.

[第1表]および[第2表]に示す結果を、電荷輸送材
料の酸化電位と、感光体の感度及び前露光特性(M、’
/V、)の関係についてまとめたしのを第1図に示す。
The results shown in [Table 1] and [Table 2] are calculated based on the oxidation potential of the charge transport material and the sensitivity and pre-exposure characteristics (M,'
/V, ) is summarized in Figure 1.

なお該図において付した1〜6の番号および記号ア、イ
は、それぞれ順に実施例1〜6および比較例1.2に対
応する感光体を示す。
Note that the numbers 1 to 6 and symbols A and B shown in the figure indicate photoreceptors corresponding to Examples 1 to 6 and Comparative Examples 1 and 2, respectively.

第1図の結果より、電荷輸送材料の酸化電位が0.35
V以下では、強震光による表面電位低下が大きく、また
0、60V以上では感度が低下するために、共に実用に
供し得ず、0.35〜0.60Vの範囲、好ましくは0
.40〜(1,50Vの範囲の値であるときに、前露光
特性に優れかつ高感度な機能分離型電子写真用感光体が
得られることがわかる。
From the results shown in Figure 1, the oxidation potential of the charge transport material is 0.35.
Below V, the surface potential drop due to strong motion light is large, and above 0.60 V, the sensitivity decreases, so both cannot be put to practical use.
.. It can be seen that when the value is in the range of 40 to 1,50 V, a functionally separated electrophotographic photoreceptor with excellent pre-exposure characteristics and high sensitivity can be obtained.

(へ)発明の効果 この発明によれば、特定のアンサンスロン化合物を電荷
発生材料として用いると共に、電荷輸送材料の酸化電位
を最適化することにより、前露光特性に優れかつ高感度
で実用に供し得る、機能分離型感光体を提供することが
できる。
(F) Effects of the Invention According to this invention, by using a specific anthanthrone compound as a charge generating material and optimizing the oxidation potential of the charge transporting material, it can be put to practical use with excellent pre-exposure characteristics and high sensitivity. Thus, a functionally separated photoreceptor can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電荷輸送材料の酸化電位と、感光体の感度およ
び前露光特性との関係を示すグラフ図である。 補正の内容 ■。 明細書第6頁第1行の [
FIG. 1 is a graph showing the relationship between the oxidation potential of a charge transport material and the sensitivity and pre-exposure characteristics of a photoreceptor. Contents of correction■. [ in the first line of page 6 of the specification]

Claims (1)

【特許請求の範囲】 1、導電性支持体上に電荷発生層及び電荷輸送層を積層
してなる機能分離型電子写真用感光体において、前記電
荷発生層が、下記構造式[ I ]:▲数式、化学式、表
等があります▼・・・・・・[ I ] で示されるアンサンスロン化合物を含む層からなり、前
記電荷輸送層が0.35〜0.60V(対Ag/Ag^
+電極)の酸化電位を有する電荷輸送材料を含む層から
なることを特徴とする電子写真用感光体。
[Claims] 1. In a functionally separated electrophotographic photoreceptor comprising a charge generation layer and a charge transport layer laminated on a conductive support, the charge generation layer has the following structural formula [I]: ▲ There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・It consists of a layer containing an anthanthrone compound represented by [I], and the charge transport layer has a voltage of 0.35 to 0.60V (vs. Ag/Ag^
1. An electrophotographic photoreceptor comprising a layer containing a charge transport material having an oxidation potential of +electrode).
JP16657788A 1988-07-04 1988-07-04 Electrophotographic sensitive body Pending JPH0216569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16657788A JPH0216569A (en) 1988-07-04 1988-07-04 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16657788A JPH0216569A (en) 1988-07-04 1988-07-04 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH0216569A true JPH0216569A (en) 1990-01-19

Family

ID=15833849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16657788A Pending JPH0216569A (en) 1988-07-04 1988-07-04 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH0216569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9336200B2 (en) 2009-05-13 2016-05-10 International Business Machines Corporation Assisting document creation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9336200B2 (en) 2009-05-13 2016-05-10 International Business Machines Corporation Assisting document creation

Similar Documents

Publication Publication Date Title
JP2526969B2 (en) Electrophotographic photoreceptor
JP2770539B2 (en) Electrophotographic photoreceptor
JPH0216569A (en) Electrophotographic sensitive body
US5066557A (en) Styrene butadiene copolymers as binders in mixed pigment generating layer
JPH06345742A (en) Pyrazine compound and electrophotographic photoreceptor containing the same
JP3649759B2 (en) 2,3-diphenylindene compound and electrophotographic photoreceptor containing the same
JP2814739B2 (en) Electrophotographic photoreceptor
JPH05134435A (en) Electrophotographic sensitive body
JPH0216571A (en) Electrophotographic sensitive body
JP3114394B2 (en) Electrophotographic photoreceptor
JP2671544B2 (en) Electrophotographic photoreceptor
JPH01224771A (en) Photoconductive coating film and electrophotographic sensitive body using said coating film
JPH07244390A (en) Electrophotographic photoreceptor
JPS63208849A (en) Electrophotographic sensitive body
JPH0756364A (en) Electrophotographic photoreceptor
JPS63148264A (en) Electrophotographic sensitive body
JPH05134434A (en) Electrophotographic sensitivity body
JPH01120563A (en) Electrophotographic sensitive body
JPS63311258A (en) Organic photoconductive material for electrophotography
JPH06230592A (en) Electrophotogtaphic sensitive body
JPH0756368A (en) Electrophotographic photoreceptor
JPH06222593A (en) Electrophotographic sensitive body
JPH0524505B2 (en)
JPS63155047A (en) Electrophotographic sensitive body
JP2000242014A (en) Electrophotographic photoreceptor