JPH0216551B2 - - Google Patents

Info

Publication number
JPH0216551B2
JPH0216551B2 JP4429482A JP4429482A JPH0216551B2 JP H0216551 B2 JPH0216551 B2 JP H0216551B2 JP 4429482 A JP4429482 A JP 4429482A JP 4429482 A JP4429482 A JP 4429482A JP H0216551 B2 JPH0216551 B2 JP H0216551B2
Authority
JP
Japan
Prior art keywords
ampoule
plate
impact
battery
support plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4429482A
Other languages
Japanese (ja)
Other versions
JPS58161248A (en
Inventor
Takashi Miura
Hirosuke Yamazaki
Tatsuro Yasuda
Kazunori Haraguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4429482A priority Critical patent/JPS58161248A/en
Publication of JPS58161248A publication Critical patent/JPS58161248A/en
Publication of JPH0216551B2 publication Critical patent/JPH0216551B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells
    • H01M6/38Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells by mechanical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、注液式電池における電解液を封入し
たアンプルの支持及び破壊装置に関するものであ
る。 注液式電池は周知の如く、長年月の保存に耐
え、必要な時に電池を密閉不活性状態から開放状
態にして、電解液を注入して使用するものと、電
解液を封入したガラスアンプルを内蔵して、必要
時に、外部衝撃その他の手段でこれを破壊し、電
解液を電池内へ流入するものとがある。 本発明は後者の改良に関するもので、従来
1500G程度の衝撃加速度で作動すればよかつたも
のが最近、作動範囲内拡大の要望が高まり、一層
低い外部衝撃で作動する注液電池が強く望まれる
ようになつた。このような背景から、製作が容易
で、信頼性が高く、輸送振動等、通常の取扱での
衝撃ではアンプルが破壊することはなく、しかも
900Gの衝撃では確実にアンプルが破壊する構造
を提供するものである。 過去において、衝撃によつてガラスアンプルを
破壊しようとする試みは数多く提案されている
が、以下に本発明と類似の2〜3の例を示す。 実開昭49−148423号公報に示されているのは、
中空円錐台形状を有する支持物品で、衝撃により
これが反転し、逆円錐台形状となり、ガラスアン
プルが受具底部の突起によつて破壊する構成であ
る。この方式の欠点は、少なくとも1500G以上の
大きな加速度がなければ、金属支持部品が反転し
ない点である。また円錐台形状の金属片は“しぼ
り”等の手段によつて製作することが普通である
ので、均一な強度のものを得難い欠点もある。 第2の試みは、実開昭42−3541号公報に示され
ている。この考案は、中心に孔を有し、複数の放
射状の手を有する金属片を、周囲の壁に保持さ
せ、衝撃によつて、この金属片がたわんで壁から
はずれて下へ落ち、アンプルが底部の突起によつ
て破壊されるものである。 この考案も前例同様に、最低1500G以上の加速
度を必要とし、またこの金属片を周囲の壁に保持
する方法が、この金属片の落下に大きく影響する
ので、再現性にとぼしいという欠点がある。 第3、第4の試みは、実開昭42−3542号公報お
よび実開昭42−3543号公報にみられるように、衝
撃によつて下向きに力を受ける電解液容器が複数
個の、可撓性を有する支持脚を押広げ、突起を有
する受台がスプリングによつて上方に押上げら
れ、電解液容器を破壊するものである。この考案
も複数の支持脚を広げるには最低1500Gの加速度
は必要で、かつほとんどすべての支持脚が同時に
開かないと、破壊のための突起が電解液容器の底
部に垂直にあたらず、信頼性の高いものを得るこ
とが困難であつた。 本発明はこのような従来の問題点を解決したも
のである。 この種の電池は、低加速度で確実にアンプルが
破壊されて作動しなければならないという要求と
ともに、輸送中、取扱い中等の通常うける衝撃に
よつて不要に電池が活性化されてはならないとい
う安全性上の問題がある。 本発明の主目的は、900Gの低衝撃で確実に作
動し、しかも輸送、取扱い時の衝撃にはガラスア
ンプルが破壊から耐え得る注液式電池を得ること
にある。 第1図はこれまでの一般的な注液式電池の断面
図で、電池ケース1内に収納された積層形のリン
グ状電池要素2の中心に、電解液3を封入したガ
ラスアンプル4が位置決め用スペーサ5にガイド
されて位置しており、これがリング状の金属バネ
板からなるアンプル支持板6の上に支えられてい
る。さらにこの支持板6は周囲内側に複数個の突
起7と底部に1個のアンプル破壊用突起8を有す
るコツプ状アンプル受具9の上におかれている。
10は出力端子、11はスペーサである。この電
池に矢印に示す上方向への加速度が加えられるこ
とにより、支持板6がたわんで突起7より下側へ
第2図の如く離脱してアンプル4がアンプル受具
9の底部突起8に衝突して破壊し、電解液を解放
する。第3図aはこれまでのアンプル支持板6を
示し、第3図b,cは本発明の支持板の例を示
す。bの例は金属バネ板6の上側にバネ板6と同
形状の合成樹脂、例えばポリプロピレンの薄板1
2を重ねあわせたもの、cの例は2板の金属バネ
板6の間へバネ板6と同形状の合成樹脂の薄板1
3をサンドイツチ状にはさんだもので、いずれも
第2図及び第3図aに示すこれまでの金属バネ板
単独の支持板の代りに電池内に装着したものであ
る。 このような金属バネ板と合成樹脂薄板との組合
わせによる作用は次のごとくである。第4図に示
したのは電池に加えられる衝撃時間と加速度Gと
の関係を示したものである。曲線BおよびCは注
液式電池を搭載した飛しよう体が例えば砲より発
射(投射)された時の注液式電池が受ける衝撃加
速度と衝撃時間の典形的な例であり、Bの場合は
一般的な発射衝撃加速度と衝撃時間、Cの場合は
最近要望が高まつてきた発射衝撃加速度の低い例
である。なおこの図には示していないが、発射衝
撃加速度の上限は、25000Gを越える場合もある。
いずれにしても通常それぞれの最大Gを与える時
間は10〜20ミリセカンドのように比較的長い時間
である。 これに対し、Aで示したのは典型的な輸送、取
扱い等で注液式電池に与えられる最大の衝撃パタ
ーンで、その最大値は300G弱、衝撃時間は数ミ
リセカンド以内である。低い衝撃加速度で電池を
活性化するには、例えば第2図の6で示される金
属バネ板の薄いものを使えば良い。しかしその場
合には輸送、取扱いの発電で作動しバネ板が脱落
し、アンプル破壊がされてしまう危険が増大す
る。 本発明は第4図Aに見られるような、BまたC
と比較して著しく短い時間の衝撃については、合
成樹脂薄板の衝撃吸収作用によつて、吸収してし
まうことができる。 合成樹脂薄板の衝撃吸収作用は、短時間の衝撃
は吸収するが、BまたはCのように長時間にわた
つて衝撃が加わつた場合は、合成樹脂薄板が圧縮
された状態が短時間で生じ、以後は衝撃が吸収さ
れないため、衝撃エネルギーをほとんど損うこと
なく作動する。 以下に具体的な本発明の実施例を示す。 例 1 外径16.5、内径6.5mmのステンレス鋼製バネ板
を単独で用いる場合と、バネ板上面0.08mmのポリ
プロピレン樹脂フイルムを重ね合わせた場合の、
バネ板厚さと作動状況(バネが突起7よりはずれ
る)との関係は表−1の通りである。なお表−1
で作動とはバネ板が作動してアンプルが破壊する
ことを意味しており、300Gの輸送振動では作動
せず、少なくとも900Gの放射衝撃では確実に作
動することが必要である。
TECHNICAL FIELD The present invention relates to a device for supporting and destroying an ampoule filled with an electrolyte in a liquid injection battery. As is well known, injection type batteries can withstand storage for many years and can be used by changing the battery from a sealed inactive state to an open state and injecting electrolyte when necessary, and glass ampoules filled with electrolyte. Some batteries have a built-in battery that is destroyed by external impact or other means when necessary, allowing the electrolyte to flow into the battery. The present invention relates to the latter improvement.
It used to be necessary to operate with an impact acceleration of around 1500G, but recently there has been a growing desire to expand the operating range, and there has been a strong desire for liquid injection batteries that can operate with even lower external impacts. Because of this background, the ampoule is easy to manufacture, highly reliable, and does not break due to shocks from normal handling such as transportation vibration.
This provides a structure that ensures that the ampoule is destroyed by a 900G impact. In the past, many attempts to break glass ampoules by impact have been proposed, and below are a few examples similar to the present invention. What is shown in Utility Model Application Publication No. 49-148423 is
The support article has a hollow truncated cone shape, and upon impact, this is inverted, forming an inverted truncated cone shape, and the glass ampoule is broken by the protrusion at the bottom of the receiver. The disadvantage of this method is that the metal supporting part will not flip unless there is a large acceleration of at least 1500 G. Furthermore, since truncated conical metal pieces are usually manufactured by means such as "squeezing", they also have the disadvantage that it is difficult to obtain uniform strength. A second attempt is shown in Japanese Utility Model Application Publication No. 42-3541. This idea involves holding a metal piece with a hole in the center and multiple radial hands against the surrounding wall, and the impact causes the metal piece to bend, detach from the wall, and fall down, creating an ampoule. It is destroyed by the protrusion on the bottom. Like the previous example, this idea also requires an acceleration of at least 1,500 G, and the method of holding the metal piece to the surrounding wall has a large effect on the fall of the metal piece, so it has the disadvantage of poor reproducibility. In the third and fourth attempts, as seen in Japanese Utility Model Application Publication No. 42-3542 and No. 42-3543, the electrolyte container, which is subjected to downward force due to impact, is composed of a plurality of flexible electrolyte containers. The flexible support legs are pushed apart, and the pedestal with the protrusion is pushed upward by the spring, destroying the electrolyte container. This design also requires an acceleration of at least 1500G to spread out multiple support legs, and if almost all support legs are not opened at the same time, the protrusion for destruction will not hit the bottom of the electrolyte container perpendicularly, making it unreliable. It was difficult to obtain high quality products. The present invention solves these conventional problems. This type of battery requires that the ampoule be reliably broken and operate under low acceleration, and that the battery must not be unnecessarily activated by normal shocks during transportation or handling. I have the above problem. The main object of the present invention is to obtain a liquid injection type battery that operates reliably with a low impact of 900G and whose glass ampoules can withstand damage during transportation and handling. Figure 1 is a cross-sectional view of a conventional injection type battery, in which a glass ampoule 4 filled with electrolyte 3 is positioned at the center of a stacked ring-shaped battery element 2 housed in a battery case 1. ampoule support plate 6 made of a ring-shaped metal spring plate. Further, this support plate 6 is placed on a pot-shaped ampoule holder 9 having a plurality of protrusions 7 on the inner side of the periphery and one ampoule breaking protrusion 8 on the bottom.
10 is an output terminal, and 11 is a spacer. When acceleration is applied to this battery in the upward direction shown by the arrow, the support plate 6 is bent and detached from the protrusion 7 below as shown in FIG. 2, and the ampoule 4 collides with the bottom protrusion 8 of the ampoule holder 9. to break it down and release the electrolyte. FIG. 3a shows a conventional ampoule support plate 6, and FIGS. 3b and 3c show examples of the support plate of the present invention. In example b, a thin plate 1 of synthetic resin, for example polypropylene, having the same shape as the spring plate 6 is placed above the metal spring plate 6.
In the example of c, a thin synthetic resin plate 1 having the same shape as the spring plate 6 is placed between the two metal spring plates 6.
3 sandwiched in a sandwich-like structure, each of which is mounted inside the battery instead of the conventional support plate consisting of a single metal spring plate as shown in FIGS. 2 and 3a. The effect of the combination of such a metal spring plate and a thin synthetic resin plate is as follows. FIG. 4 shows the relationship between the impact time applied to the battery and the acceleration G. Curves B and C are typical examples of the impact acceleration and impact time that an injectable battery receives when a flying object equipped with an injectable battery is fired (projected) from a gun, for example. C is an example of a general launch impact acceleration and impact time, and C is an example of a low launch impact acceleration, which has been in increasing demand recently. Although not shown in this figure, the upper limit of launch impact acceleration may exceed 25,000G.
In any case, the time for applying each maximum G is usually a relatively long time, such as 10 to 20 milliseconds. On the other hand, A shows the maximum impact pattern that can be applied to a liquid-injected battery during typical transportation, handling, etc., with a maximum value of just under 300G and an impact duration of less than a few milliseconds. In order to activate the battery with a low impact acceleration, a thin metal spring plate shown at 6 in FIG. 2, for example, may be used. However, in that case, there is an increased risk that the spring plate will fall off due to the power generated during transportation and handling, and the ampoule will break. The present invention is applicable to B or C as seen in FIG. 4A.
Impacts that last for a significantly shorter period of time can be absorbed by the impact-absorbing effect of the synthetic resin thin plate. The impact-absorbing effect of the thin synthetic resin plate is that it absorbs short-term impacts, but when the impact is applied over a long period of time as in B or C, the thin synthetic resin plate becomes compressed in a short period of time. After that, the shock is no longer absorbed, so it operates with almost no loss of impact energy. Specific examples of the present invention are shown below. Example 1 When a stainless steel spring plate with an outer diameter of 16.5 mm and an inner diameter of 6.5 mm is used alone, and when a polypropylene resin film with a top surface of 0.08 mm is used,
Table 1 shows the relationship between the spring plate thickness and the operating condition (the spring comes off the protrusion 7). Furthermore, Table-1
Activation means that the spring plate activates and the ampoule breaks, and it does not activate under transportation vibrations of 300G, but must work reliably under radiation shock of at least 900G.

【表】 例 2 外径16.5、内径6.5mmのステンレス鋼バネ板2
枚の間に1枚の同一形状をしたポリプロピレンフ
イルムをサンドイツチ状にはさみ込んで併用した
場合の例を表−2に示す(なお、2枚のバネ板厚
さは同一とした)。またポリプロピレンフイルム
なしは、2枚のバネ板を重ねただけの状態を示
す。表−2は、夫々の条件においてのバネ板作動
有無を示したものである。 なお、バネ板としては、燐青銅板、合成樹脂製
薄板としては、ポリアミドフイルムを用いても同
様の効果がある。
[Table] Example 2 Stainless steel spring plate 2 with outer diameter 16.5 and inner diameter 6.5 mm
Table 2 shows an example in which a polypropylene film having the same shape is sandwiched between the sheets in a sandwich-like manner and used in combination (the thickness of the two spring plates were the same). In addition, "without polypropylene film" indicates a state in which only two spring plates are stacked on top of each other. Table 2 shows whether or not the spring plate was activated under each condition. The same effect can be obtained even if a phosphor bronze plate is used as the spring plate, and a polyamide film is used as the synthetic resin thin plate.

【表】【table】

【表】 表−1でバネ板のみの場合は、300Gの輸送振
動で作動せず、900Gの放射加速度で作動する領
域は厚さ0.1の場合のみであるが、ポリプロピレ
ンフイルムとの組合せでは、バネ板厚さ0.07〜
0.1mmの領域である。また表−2ではバネ板のみ
の場合は、300Gの輸送振動で作動せず、900Gの
放射衝撃値で作動する領域は存在せず、ポリプロ
ピレンフイルムをサンドイツチ状にした場合は、
バネ板厚さが2枚で0.08〜0.12mmの領域であり、
ステンレス鋼板バネとポリプロピレンフイルムと
を重ね合わせると効果があることが明らかであ
る。 このことにより、低い放射衝撃値で活性化可能
の電池は、金属バネ板を薄くしてゆくことで可能
になるが、その際輸送、取扱い時の振動で誤つて
作動してしまう危険を、合成樹脂フイルムが防止
してくれるもので、その効果はきわめて大であ
る。 なお合成樹脂フイルムの材質や厚さは本実施例
に限定されるものではなく、また金属バネ板との
組合せも単に重ね合わすほか、一体に固定する等
必要な特性によつて変えることができる。
[Table] In Table 1, in the case of only a spring plate, it does not operate under 300G transport vibration, and the area that operates under 900G radial acceleration is only in the case of thickness 0.1, but in combination with polypropylene film, the spring plate Plate thickness 0.07~
The area is 0.1mm. Furthermore, in Table 2, in the case of only a spring plate, there is no region in which it does not operate with a transport vibration of 300G, and there is no region in which it operates with a radiation shock value of 900G, and in the case of a polypropylene film in the form of a sandwich
The thickness of two spring plates is in the range of 0.08 to 0.12 mm,
It is clear that superimposing a stainless steel leaf spring and a polypropylene film is effective. As a result, batteries that can be activated with a low radiation shock value can be made by thinning the metal spring plate, but in doing so, the risk of accidental activation due to vibration during transportation and handling is reduced. The resin film prevents this, and its effect is extremely large. The material and thickness of the synthetic resin film are not limited to those in this embodiment, and the combination with the metal spring plate can be changed depending on the required characteristics, such as simply overlapping or fixing them together.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこれまでの一般的な注液式電池の断面
図、第2図はアンプル支持板とコツプ状アンプル
受具との位置関係を示す断面図、第3図aは従来
の、同b,cは本発明のアンプル支持板の構造を
それぞれ示す側面図、第4図は電池に加えられる
衝撃時間と加速度Gとの関係を示す図である。 1……電池ケース、2……電池要素、4……ガ
ラスアンプル、6……アンプル支持板、7……突
起、8……アンプル破壊用突起、9……コツプ状
アンプル受具、12,13……合成樹脂薄板。
Fig. 1 is a cross-sectional view of a conventional injection type battery, Fig. 2 is a cross-sectional view showing the positional relationship between the ampoule support plate and the cup-shaped ampoule receiver, and Fig. 3 a is a cross-sectional view of a conventional injection type battery. , c are side views showing the structure of the ampoule support plate of the present invention, and FIG. 4 is a diagram showing the relationship between the impact time applied to the battery and the acceleration G. DESCRIPTION OF SYMBOLS 1...Battery case, 2...Battery element, 4...Glass ampoule, 6...Ampoule support plate, 7...Protrusion, 8...Protrusion for destroying ampoule, 9...Cop-shaped ampoule holder, 12, 13 ...Synthetic resin thin plate.

Claims (1)

【特許請求の範囲】[Claims] 1 発電要素の中央空洞部に位置する電解液を封
入したガラスアンプルと、前記アンプルを支持す
るリング状アンプル支持板と、前記アンプル支持
板を支持する複数の突起を周囲に有し、かつ内底
部にアンプル破壊用突起を設けたコツプ状アンプ
ル受具とを備え、前記アンプル支持板は、金属製
のリング状バネ板とこれと同形状の合成樹脂薄板
とを重ね合わせて構成されている注液式電池。
1. A glass ampoule containing an electrolyte located in the central cavity of the power generation element, a ring-shaped ampoule support plate supporting the ampoule, and a plurality of protrusions supporting the ampoule support plate around the periphery, and an inner bottom portion. The ampoule support plate is constructed by overlapping a metal ring-shaped spring plate and a thin synthetic resin plate of the same shape. type battery.
JP4429482A 1982-03-18 1982-03-18 Liquid injection type battery Granted JPS58161248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4429482A JPS58161248A (en) 1982-03-18 1982-03-18 Liquid injection type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4429482A JPS58161248A (en) 1982-03-18 1982-03-18 Liquid injection type battery

Publications (2)

Publication Number Publication Date
JPS58161248A JPS58161248A (en) 1983-09-24
JPH0216551B2 true JPH0216551B2 (en) 1990-04-17

Family

ID=12687484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4429482A Granted JPS58161248A (en) 1982-03-18 1982-03-18 Liquid injection type battery

Country Status (1)

Country Link
JP (1) JPS58161248A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019004140B4 (en) * 2019-06-12 2021-01-14 Diehl & Eagle Picher Gmbh Activation device for a battery for an electronic ignition mechanism
CN113686213B (en) * 2021-07-19 2023-04-07 沈阳理工大学 Micro fuse chemical power supply quick activation mechanism and method thereof

Also Published As

Publication number Publication date
JPS58161248A (en) 1983-09-24

Similar Documents

Publication Publication Date Title
US3718235A (en) Spring trigger assembly for mixing dual liquids
JPH0216551B2 (en)
US3169889A (en) Storage battery cell and method of making the same
US3744419A (en) Pyrotechnic device
US3229949A (en) Dewar flask holder
JPH09270249A (en) Battery structural body
JPH09259842A (en) Sealed rectangular battery
US2934584A (en) Alkaline cell having controlled vents
US2918514A (en) Breaker mechanism for deferredaction batteries
US2918516A (en) Deferred action battery containing frangible ampoule and breaker construction
US10478915B2 (en) Joining method
JPH10302811A (en) Liquid injection type battery
US1967575A (en) Electron discharge device
KR101002301B1 (en) High-pressure gas container
US2754021A (en) Container stabilizer
JP4083363B2 (en) Injection battery
JPH0216550B2 (en)
JP2713998B2 (en) Sealed battery
US4603780A (en) Carton for housing fragile containers
US3431147A (en) Platform style ampule breaker
JPH05325930A (en) Safety valve device for alkaline storage battery
CN110098354A (en) A kind of novel battery safety anti-explosive case
US2989576A (en) Ampule breaker
JPS6210979Y2 (en)
JPS603873A (en) Manufacture of storage battery