JPH021650B2 - - Google Patents

Info

Publication number
JPH021650B2
JPH021650B2 JP56127264A JP12726481A JPH021650B2 JP H021650 B2 JPH021650 B2 JP H021650B2 JP 56127264 A JP56127264 A JP 56127264A JP 12726481 A JP12726481 A JP 12726481A JP H021650 B2 JPH021650 B2 JP H021650B2
Authority
JP
Japan
Prior art keywords
screw
fine powder
opening
supply port
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56127264A
Other languages
Japanese (ja)
Other versions
JPS5829644A (en
Inventor
Katsuichi Tanaka
Koji Hagimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP56127264A priority Critical patent/JPS5829644A/en
Publication of JPS5829644A publication Critical patent/JPS5829644A/en
Publication of JPH021650B2 publication Critical patent/JPH021650B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • B29C48/767Venting, drying means; Degassing means in the extruder apparatus in screw extruders through a degassing opening of a barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Description

【発明の詳細な説明】 本発明は噛み合型同方向回転押出機に係り、同
押出機の原料供給口よりバレル内に供給される微
粉体原料に包含される空気を抜く押出方法に関す
る。完全噛合型同方向回転の2軸押出機は多くの
原料において、混合、分散が良く、安定した押出
量を吐出するため従来から広く利用されている。
しかしながら従来から見かけ比重が小さい微粉体
樹脂もしくは同様の無機微粉体を多量に含むプラ
スチツク材料などを押出成形するとき押出機供給
部における原料の喰い込み量が押出量を限定する
場合が多い。これを解決する手段として例えば強
制供給装置(コンパクタ)を使用することは周知
である。しかしコンパクタを使用しても非常に細
かい粒子で見かけ比重が小さく流動化
(fluidzing)し易すい粉末ではその効果は完全で
はなく所望の押出量を得ることは難しく限られた
範囲の押出条件で運転するしかなかつた。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intermeshing type co-rotating extruder, and more particularly to an extrusion method for removing air contained in a fine powder raw material supplied into a barrel from a raw material supply port of the extruder. Fully intermeshing co-rotating twin-screw extruders have been widely used in the past because they can mix and disperse many raw materials well and deliver stable extrusion amounts.
However, conventionally, when extruding a fine powder resin with a small apparent specific gravity or a plastic material containing a large amount of similar inorganic fine powder, the amount of raw material fed into the feed section of the extruder often limits the amount of extrusion. It is well known to use, for example, forced feeding devices (compactors) as a means of solving this problem. However, even if a compactor is used, the effect is not perfect for powders that are very fine, have a low apparent specific gravity, and are easily fluidized, and it is difficult to obtain the desired amount of extrusion when operating under a limited range of extrusion conditions. I had no choice but to do it.

このような微粉体の供給部における喰い込みを
妨げている最大の要因は見かけ比重が小さい故に
微粉体が包含する多量の空気でありこの空気を多
量に含んだ材料が押出機内で圧縮され空気を分離
し、その空気はホツパ側に、すなわち材料の移動
方向と逆に流れその結果バレル内で微粉体が流動
状態となるためである。そのために材料の見かけ
摩擦係数が小さくなり粉末のスクリユによる圧縮
がおこりにくくなりその結果スクリユ本来の質量
諭送量は低下する。もちろんこの場合にもバレル
からの加熱によつて材料は加熱され軟化し、スク
リユによる剪断力とあいまつて圧縮溶融は進行す
るため押出作用は失われないが、押出機本来の機
能である材料を圧縮し主として機械的な剪断発熱
により溶融させることにより得られる押出量とは
はるかに低い能力しか発揮できない。
The biggest factor that prevents the fine powder from being fed into the supply section is the large amount of air that the fine powder contains due to its small apparent specific gravity.The material containing a large amount of air is compressed in the extruder and the air is released. This is because the separated air flows toward the hopper, that is, in the opposite direction to the direction of movement of the material, and as a result, the fine powder becomes fluid in the barrel. As a result, the apparent coefficient of friction of the material becomes smaller, making it difficult for the powder to be compressed by the screw, and as a result, the amount of mass transfer inherent to the screw decreases. Of course, in this case as well, the material is heated and softened by the heating from the barrel, and combined with the shearing force from the screw, the compression melting progresses, so the extrusion action is not lost, but the original function of the extruder is to compress the material. However, the extrusion capacity is much lower than that obtained by melting mainly by mechanical shear heat generation.

本発明はかかる完全噛合型2軸押出機における
微粉体原料あるいは微粉体を多量に含む材料の押
出における問題を解決する方法であつて微粉体の
包含する空気を押出機の供給口に逆流させずこれ
らの包含空気を供給口の下流に設けた放出口より
逃すことによつて粉と空気の相対速度を減少させ
流動化状態にさせずに押出すことによつて従来か
ら難点とされていた前記問題を改善し押出量の増
大を果すことを目的とした新しい押出方法であ
る。
The present invention is a method for solving problems in extruding fine powder raw materials or materials containing a large amount of fine powder in such a fully intermeshing twin-screw extruder, without causing the air contained in the fine powder to flow back into the supply port of the extruder. By releasing these trapped air through a discharge port provided downstream of the supply port, the relative velocity of the powder and air is reduced, and the powder and air are extruded without being fluidized. This is a new extrusion method that aims to improve the problem and increase the throughput.

次に本発明による1実施例を第1図により説明
すると、1は二軸押出機でバレル2内にスクリユ
3か全長に亙つて、同径で互いに噛合、同方向回
転している。4は原料供給口、5は、前記原料供
給口の下流に設けた空気抜き開口部である。6は
ベント孔である。前記スクリユ3には供給された
原料を容解し、混練を行う混練要素7が原料供給
口4と空気抜き開口部5の間に設けてある。取扱
う材料は大別して下記の2種類が考えられ、 (1) 微粉体材料がプラスチツク又はその他の有機
体の場合。
Next, one embodiment of the present invention will be described with reference to FIG. 1. Reference numeral 1 is a twin-screw extruder in which screws 3 are disposed within a barrel 2 over the entire length, have the same diameter, mesh with each other, and rotate in the same direction. 4 is a raw material supply port, and 5 is an air vent opening provided downstream of the raw material supply port. 6 is a vent hole. A kneading element 7 for dissolving and kneading the supplied raw material is provided in the screw 3 between the raw material supply port 4 and the air vent opening 5. The materials handled can be broadly classified into the following two types: (1) When the fine powder material is plastic or other organic matter.

(2) 微粉体材料が無機物で、プラスチツク材料と
共に混錬する場合 である。
(2) When the fine powder material is an inorganic substance and is kneaded with the plastic material.

前者は微粉体材料が未溶融状態のまゝ空気抜き
開口部に至るとある程度圧縮を受け、流動化して
いる微粉体及び加熱された空気は空気抜き開口部
で急激に開放状態となるため、前記空気抜き開口
部より吹き上り易い。
In the former case, when the fine powder material reaches the air vent opening in an unmolten state, it is compressed to some extent, and the fluidized fine powder and heated air suddenly become open at the air vent opening. It is easier to blow up than the other parts.

後者はプラスチツク材料が未溶融で無機物と充
分に混合していない状態のまゝ空気抜き孔開口部
に到達すると未溶融プラスチツク材料は前記開口
部でベントアツプと同様の現象が起き、前記無機
微粉体は前者と同様を前記開口部より吹き上つて
しまう。
In the latter case, when the plastic material reaches the opening of the air vent hole while being unmelted and not sufficiently mixed with the inorganic material, a phenomenon similar to venting occurs at the opening of the unmelted plastic material, and the inorganic fine powder is removed from the former. The same thing will blow up from the opening.

このように微粉体がいずれの場合であつてもバ
レル内のプラスチツク材料が未溶融状態の域で空
気抜き開口部を設けても空気のみを分離して排出
することが出来ない。
In either case, even if the plastic material in the barrel is in an unmelted state, even if an air vent opening is provided in the area where the plastic material in the barrel is in an unmelted state, it is not possible to separate and exhaust only the air.

空気のみを分離し排出させるためには、空気抜
き開口部に到達する前にプラスチツク材料をある
程度溶融状態とさせなければならない。そこで前
述のように微粉体がプラスチツク材料の場合は微
粉体を溶融させるための混練要素7が原料供給口
4より空気抜き開口部5の間で必要となる。混練
要素7には第1図のようにピツチの小さなスクリ
ユ、あるいは文献プラスチツクVOL29No.12P54に
記載されているようにニーデングブロツクが一般
的に用いられる。勿論、ニーデングブロツクはこ
の部分で材料が完全に充満されないような送り作
用を有するような組合せとしなくてはならない。
また微粉体が無機材料の場合は、プラスチツク材
料を溶融すると共に無機微粉体とある程度混ぜ合
わせるための前記混練要素7が同様に原料供給口
4と空気抜き開口部5の間に必要となる。たゞし
ここで重要なことはスクリユ3に溶融あるいは混
練のための要素7を使用するがプラスチツク材料
がこの要素7部分でバレル2の断面内に完全に充
満するような区域を設けたり材料に対し強い圧縮
を与えるような昇圧域を設けずに溶融あるいは混
練を行うようにしなくてはならない。さもないと
空気は開口部に至らず原料供給口に逆流してしま
う。
In order to separate and discharge only the air, the plastic material must be in a molten state to some extent before reaching the air vent opening. Therefore, as mentioned above, when the fine powder is a plastic material, a kneading element 7 for melting the fine powder is required between the raw material supply port 4 and the air vent opening 5. As the kneading element 7, a screw with a small pitch as shown in FIG. 1 or a kneading block as described in the literature PLASTICS VOL 29 No. 12 P54 is generally used. Of course, the combination of kneading blocks must be such that the feeding action is such that this area is not completely filled with material.
If the fine powder is an inorganic material, the kneading element 7 for melting the plastic material and mixing it to some extent with the inorganic fine powder is similarly required between the raw material supply port 4 and the air vent opening 5. However, what is important here is that the screw 3 is provided with an element 7 for melting or kneading, and that there is a zone in which the plastic material completely fills the cross section of the barrel 2 with this element 7, or that the material is On the other hand, melting or kneading must be carried out without providing a pressure increase area that would give strong compression. Otherwise, the air will not reach the opening and will flow back into the raw material supply port.

本発明において圧縮部とは実質的にスクリユ内
が材料により完全に充満している部分を指し、ス
クリユ3による圧縮はなくても例えば加熱により
部分的に材料が膨張してスクリユ3の溝を密に充
満した場合は、そのような部分を圧縮部と見倣す
ものである。
In the present invention, the compressed part refers to a part where the inside of the screw is completely filled with material, and even if there is no compression by the screw 3, the material partially expands due to heating, for example, and closes the groove of the screw 3. If the area is filled with water, such a part is considered to be a compressed area.

従つてバレル2内に材料が完全に充満すること
なくある程度、混練要素により溶融され、材料内
部に含まれる空気は分離され前記空気抜き開口部
5から外部へガスは流れるように構成されてい
る。このようなことを有効に行うためのスクリユ
形状については当該業者にとつて周知のことであ
る。同方向回転噛合形二軸押出機では一般にスク
リユ溝深さhには第2図に示すように全長にわた
つてほぼ一定であり、スクリユ形態上からくる圧
縮は第1図のスクリユ3aおよび7で示すように
ピツチPの変化により行われる。このようなもの
の輪送能力については、例えば文献An Analysis
of the Coveying Characteristics of Twin−
Screw Co−Rotating Extruders.SPE37th
ANTEC、Technical Paper P181(May1979)
の第14図に記載されているように、スクリユ構
内の材料の充満率εに比例してて輪送量は増大
し、同時にスクリユのネジレ角φとしてcos2φと
に比例する。ここでスクリユ中において前記開口
部5と供給口4との間で実質的にガス流が封止さ
れることのないようにするためには、開口部5と
供給口4間の任意の位置において前述した充満率
εが1以下になるようなφ或いはピツチPを選択
すればよい。さらに溝深hが変る場合も同様にし
て求めた輪送量について充満率ε<1であるよう
にすればよい。なお前記文献の輪送量は溶融体に
ついてのものであるが、固体についても充満率に
ついては同様に取扱うことができる。
Therefore, the material is not completely filled in the barrel 2 but is melted to some extent by the kneading element, the air contained inside the material is separated, and the gas flows to the outside from the air vent opening 5. The screw shape for effectively accomplishing this is well known to those skilled in the art. In a co-rotating intermeshing twin-screw extruder, generally the screw groove depth h is approximately constant over the entire length as shown in Figure 2, and the compression due to the screw configuration is caused by screws 3a and 7 in Figure 1. This is done by changing the pitch P as shown. Regarding the transport capacity of such things, for example, refer to the document An Analysis
of the Coveying Characteristics of Twin−
Screw Co−Rotating Extruders.SPE37th
ANTEC, Technical Paper P181 (May1979)
As shown in FIG. 14, the feed amount increases in proportion to the filling rate ε of the material in the screw chamber, and at the same time, it increases in proportion to cos 2 φ as the helix angle φ of the screw. Here, in order to prevent the gas flow from being substantially sealed between the opening 5 and the supply port 4 in the screw, it is necessary to It is sufficient to select φ or pitch P such that the filling rate ε described above is 1 or less. Furthermore, even when the groove depth h changes, it is sufficient to set the filling rate ε<1 for the wheel feed amount determined in the same manner. Note that although the conveyance amount in the above-mentioned document refers to a molten body, the filling rate of a solid can be treated in the same manner.

上記の説明において注意すべきことは、一般に
プラスチツクは押出機に供給され押出機内で第1
図において原料供給口4→スクリユ3a→混練要
素7の順に進行していく過程で、バレル2からの
加熱あるいはスクリユ3からの剪断力による摩擦
発熱などにより温度が上昇しその結果多孔性の粉
体や、内部の気孔内に水分その他ガスを含んでい
る粉粒体などでは、嵩が増大するために、容積輪
送量が大きくなつて同一スクリユ寸法では充満率
ε1となり閉塞状態になることもあり得る。こ
のような状態においても空気抜き開口部5と供給
口4間の閉塞を生じさせないように、該当する部
分をε<1となるようスクリユの溝深さh、ピツ
チPを選択することは、当該業者には容易にでき
ることである。文献プラスチツクエージ77−2、
87頁にある混練用同方向回転二軸押出機(TEM)
の構造と特徴に記載されているように、スクリユ
ピツチの異るスクリユエレメントの組立による構
造をもつている押出機では、実際に閉塞する部分
のスクリユエレメントをよりピツチの大きなもの
に交換することによつても達成できる。何れにし
ても二軸押出機においては区間前記開口部5と供
給口4でプラスチツク材料でガス流が封止されな
いようなスクリユ形状の選定或いはそのような運
転条件を、本来押出機に要求される混練条件、そ
の他の押出条件から著しく外れることなく選定す
ることは、困難なく実施することができる。
In the above explanation, it should be noted that plastics are generally fed into an extruder and
In the process of progressing in the order of raw material supply port 4 → screw 3a → kneading element 7 in the figure, the temperature rises due to heating from barrel 2 or frictional heat generation due to shearing force from screw 3, and as a result, porous powder In the case of powders and granules that contain moisture or other gases in their internal pores, the bulk increases, so the volumetric transport rate increases, and with the same screw size, the filling rate becomes ε1, which can lead to a blockage state. obtain. In order to prevent blockage between the air vent opening 5 and the supply port 4 even in such a state, it is up to the manufacturer to select the groove depth h and pitch P of the screw so that ε<1 in the relevant part. This is something that can be done easily. Literature Plastic Age 77-2,
Co-rotating twin screw extruder (TEM) for kneading on page 87
As described in the structure and characteristics of the extruder, which is constructed by assembling screw elements with different screw pitches, it is necessary to replace the screw element in the part that actually closes with one with a larger pitch. This can also be achieved by In any case, in a twin-screw extruder, selection of a screw shape or operating conditions such that the gas flow is not blocked by plastic material at the opening 5 and the supply port 4 in the section, or such operating conditions, is required in the extruder. Selection can be made without difficulty without significantly deviating from the kneading conditions and other extrusion conditions.

一般に使用されている脱気のためのベンと、本
発明における空気抜き開口の異なる点は開口部の
手前に昇圧域(圧縮部)を設けるか否かであり、
仮に空気抜き開口部にてベントと同等の減圧を行
つたならば昇圧域がないため原料供給口と通じ微
粉体を吸込むことになり通常のベントは不可能で
ある。
The difference between the generally used vent for deaeration and the air vent opening in the present invention is whether or not a pressurizing region (compression section) is provided in front of the opening.
If the air vent opening were to be depressurized to the same level as a vent, there would be no pressure increase area, and the fine powder would be sucked in through the raw material supply port, making normal venting impossible.

本発明はプラスチツク材料の種類と、それに適
したスクリユを構成したうえで、適切な位置に開
口部を設することによりバレル内の空気を自然に
外へ排出させることが出来る。
In the present invention, the air inside the barrel can be naturally discharged by selecting the type of plastic material and configuring a screw suitable for that material, and then providing an opening at an appropriate position.

次に本発明による実施例を下記に示す。 Next, examples according to the present invention will be shown below.

実施例 1 押出機:東芝機械製 噛み合型同方向回転二軸押
出機、形式TEM−50 スクリユ径53φ 原料:ポリマー(75重量%)+無機微粉体(15重
量%)(見かけ比重0.05) 押出機の供給口にポリマーと無機微粉体を各々
別々の定量供給装置を使用して同時投下した。
Example 1 Extruder: Toshiba Machine intermeshing co-rotating twin screw extruder, model TEM-50 Screw diameter 53φ Raw materials: Polymer (75% by weight) + inorganic fine powder (15% by weight) (apparent specific gravity 0.05) Extrusion The polymer and the inorganic fine powder were simultaneously dropped into the feed port of the machine using separate quantitative feeding devices.

結果:(イ) 空気抜き開口部のない場合、最大押出
量90Kg/H (ロ) 空気抜き開口部を設けた場合、最大押出量
175Kg/H いずれの場合もスクリユ回転数600r.p.m 実施例 2 押出機:東芝機械製 噛み合型同方向回転二軸押
出機、形式TEM−100 スクリユ径94φ 原料:スチレン系微粉体(50重量%)+無機微粉
体(50重量%) いずれも200メツシユ通過したものでプリブレ
ンド品(見かけ比重0.5)である。
Results: (a) If there is no air vent opening, the maximum extrusion amount is 90Kg/H (b) If the air vent opening is provided, the maximum extrusion amount is
175Kg/H Screw rotation speed 600r.pm in either case Example 2 Extruder: Toshiba Machine Co-rotating co-rotating twin screw extruder, model TEM-100 Screw diameter 94φ Raw material: Styrene fine powder (50% by weight) ) + inorganic fine powder (50% by weight) Both have passed 200 meshes and are pre-blended products (apparent specific gravity 0.5).

結果:(イ) 空気抜き開口部無し 最大押出量300
Kg/H (ロ) 空気抜き開口部有り 最大押出量750Kg/
H スクリユ回転数は300r.p.m 以上の結果からも明らかなように、微粉体原料
の押出量は従来法に比べ大巾な増量が見られ、約
2倍の押出量が見られる。
Result: (a) No air vent opening Maximum extrusion amount 300
Kg/H (b) With air vent opening Maximum extrusion amount 750Kg/
As is clear from the results that the H screw rotation speed is 300 rpm or higher, the amount of extrusion of the fine powder raw material is significantly increased compared to the conventional method, and the amount of extrusion is about twice that of the conventional method.

また原料によつてはそれ以上の効果が期待出来
る。
Further, depending on the raw material, even greater effects can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を示す図。第2図は
スクリユの説明図。 2……バレル、3……スクリユ、4……原料供
給口、5……空気抜き開口部。
FIG. 1 is a diagram showing one embodiment of the present invention. Figure 2 is an explanatory diagram of the screw. 2... Barrel, 3... Skrill, 4... Raw material supply port, 5... Air vent opening.

Claims (1)

【特許請求の範囲】[Claims] 1 原料が微粉体あるいは微粉体を多量に含む材
料を用いる完全噛合型同方向回転二軸押出機にお
ける押出方法において、材料供給口より下流のバ
レルに前記材料に包含する空気を排出するための
開口部を1個所以上設け、バレル全域に亘りフラ
イト外径が一定の完全噛合型スクリユを設け前記
材料供給口と開口部の間は材料の圧縮がなく材料
を溶解もしくは混練のみ行う混練要素を備え前記
両口の間で材料中に包含される空気を前記開口部
より抜くことを特徴とする微粉体材料の空気抜き
押出方法。
1. In an extrusion method using a fully intermeshing type co-rotating twin screw extruder in which the raw material is fine powder or a material containing a large amount of fine powder, an opening for discharging air contained in the material is provided in the barrel downstream from the material supply port. A fully intermeshing type screw having a flight diameter constant over the entire barrel is provided, and a kneading element is provided between the material supply port and the opening to melt or knead the material without compressing the material. 1. A method for extruding a fine powder material for air removal, characterized in that air contained in the material is removed from the opening between the two openings.
JP56127264A 1981-08-13 1981-08-13 Air deflation pushing by twin-screw extruder Granted JPS5829644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56127264A JPS5829644A (en) 1981-08-13 1981-08-13 Air deflation pushing by twin-screw extruder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56127264A JPS5829644A (en) 1981-08-13 1981-08-13 Air deflation pushing by twin-screw extruder

Publications (2)

Publication Number Publication Date
JPS5829644A JPS5829644A (en) 1983-02-21
JPH021650B2 true JPH021650B2 (en) 1990-01-12

Family

ID=14955721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56127264A Granted JPS5829644A (en) 1981-08-13 1981-08-13 Air deflation pushing by twin-screw extruder

Country Status (1)

Country Link
JP (1) JPS5829644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118763A1 (en) 2012-02-07 2013-08-15 三菱レイヨン株式会社 Resin mixture fabrication method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4633240B2 (en) * 2000-09-13 2011-02-16 東京インキ株式会社 Extrusion molding method with twin screw extruder
ES2895035T3 (en) 2015-07-16 2022-02-17 Japan Steel Works Ltd Method for producing a resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512770A (en) * 1974-06-28 1976-01-10 Ikegai Iron Works Ltd Tajikuoshidashikino sukuryuu
JPS51138748A (en) * 1975-05-28 1976-11-30 Japan Steel Works Ltd Device for mixing and melting plastic compound material
JPS53129374A (en) * 1977-04-18 1978-11-11 Japan Steel Works Ltd:The Double-shaft kneading and deairing extruder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512770A (en) * 1974-06-28 1976-01-10 Ikegai Iron Works Ltd Tajikuoshidashikino sukuryuu
JPS51138748A (en) * 1975-05-28 1976-11-30 Japan Steel Works Ltd Device for mixing and melting plastic compound material
JPS53129374A (en) * 1977-04-18 1978-11-11 Japan Steel Works Ltd:The Double-shaft kneading and deairing extruder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118763A1 (en) 2012-02-07 2013-08-15 三菱レイヨン株式会社 Resin mixture fabrication method

Also Published As

Publication number Publication date
JPS5829644A (en) 1983-02-21

Similar Documents

Publication Publication Date Title
US3183553A (en) Crammer feeder for extruder
JP3758682B2 (en) Block element continuous extrusion method and apparatus
JP4252016B2 (en) Extruder
CN110869184B (en) Method and device for extruding a thermomechanically deformable material in the form of a bulk material and screw extruder of compact design
JP3434418B2 (en) High-melting point resin dewatering system with co-rotating twin screw extruder
JP4402841B2 (en) Method and apparatus for extruding low bulk density polycarbonate material
JP4448510B2 (en) Waste plastic processing equipment
US3870284A (en) Extruder screws
US6280074B1 (en) Continuous mixer
US4461734A (en) Process for plasticization and pumping of low bulk density plastics
US4350657A (en) Low-energy extruder-pump system
CN102205620A (en) Differential-speed conical twin-screw extruder
JP3803457B2 (en) Biaxial continuous kneading extrusion equipment
AU735360B2 (en) Rotor for a mixer and mixer having the same
JPH021650B2 (en)
EP2915652A1 (en) Method and apparatus for producing masterbatch pellets from waste toner
Isherwood et al. The Effect of Metered Starve Feeding on the Performance of a Small Extruder
JP2978227B2 (en) Twin screw press dewatering method for hydropolymer containing rubber component and dehydrator
JP3530334B2 (en) Continuous kneader and rotor of continuous kneader
EP2915837B1 (en) Method and apparatus for producing masterbatch from waste toner powders
JP2000210931A (en) Apparatus and method for manufacture of impact resistant thermoplastic resin
JPH0732357A (en) Molding equipment for mixture of plastic and molding method using the equipment
Wiedmann et al. Twin-screw extruders in ceramic extrusion
WO2024034420A1 (en) Biaxial continuous kneading extrusion device
JPS5810126B2 (en) Continuous kneading machine