【発明の詳細な説明】[Detailed description of the invention]
[産業上の利用分野1
本発明は単純支持床版橋を連続的に結合して構成された
ジヨイントレス多径間床版橋に関するもので、都市内高
架橋、高速道路高架橋、その他の道路橋に最適な床版橋
に関する。
[従来の技術]
道路の高架橋としてm純支持形式の床版橋がある。この
ような単純支持床版橋には、鋼材とコンクリートとを一
体に組合わせた合成床版が用いられ、最近、特に、桁高
が低くか一つ十分な耐荷力と耐久性を持つ合成床版橋が
開発され、用いられている。
第3図はこのような単純支持床版橋の一例の構造を示す
もので1径間の橋として厚さが薄く軽量強靭で施工しや
すく、安価であるなど極めて優れた性能を有するもので
ある。
般に、都市内高架橋や高速道路の高架橋は多径間に亙っ
て架設される。第7図に、従来の単純支持床版橋をそれ
ぞれの径間に架設した床版橋を示す。このような橋梁は
橋脚1の各径間に単純支持床版橋2が載設されている。
単純支持条件は、各々の径間において、単純支持床版橋
2の一端は移ff1J+告:3、他端は固定前14であ
る。温度変化に対応−4るため、移動前3と固定前14
の間には伸縮継手15が設置6される。このように、単
純支持床1坂橋ては、温度変化に対応するため各径間ご
とに置端に伸縮継手15が必要である。このため、この
伸縮継手部で構造上の連続性が断たれる。こriによっ
て、次の問題がi=する。
す) 小輪のχL行性が悪くなる、
(2) 道路に段X−が(トシ、この段差による衝撃
と振動によって騒音問題が生ずる。
にD 漏水による桁端部のI帛食問題がある。
(’l) IIν持え、補修二■事等紺持管理の問題
が生じる。
特開昭61 57702には、これを解消するため、呂
径間に−に桁として〔p純鋼術を架設し、その1−にプ
レ上ヤス1−合成床版を連続施工する方法が小され−C
いるが、橋を二重に架設することになり、晶価て1間が
かかり、よた購jゐ上伸縮性に問題がある、
[1十の、1;うな問題を解消4−るために多径間連続
桁橋が用いられる。
第8図に、多径間連続桁橋20の支承耳5式を示す。多
径間連続桁橋20においては、1個の支承が固定前14
である他は、すべて移動音;3てあり、中間支承上では
それぞれ1個の沓で連続桁橋2を支持する。
多径間連続桁橋20は、伸縮継手は不要となるものの、
構造計算上不静定であり、また支点部(橋脚1上)にお
いて負の曲げモーメン1−を生じ、この負の曲げモーメ
ン1〜に対応するために床版上面側の引張応力に対する
対策を要する。;J−だ地震その他により橋脚1に地盤
変動や不等性下等が生じたときには設計時Gこ予想のつ
かない応力が生ずるなどの問題がある。すなわち、多径
間連続桁橋20は、設計計算が煩雑であり、施工が複雑
になる。特に、合成桁、合成床版橋、I) C床版橋等
では、コンクリ−1〜材のクリープ、乾燥収縮の問題が
あり、設計士その取扱いが難しい。
方、このような不静定の多径間連続桁橋における応力問
題を単純化した連続橋とし−C第9図に、jlす4にう
なrルバー橋がル〕る。ゲルパー橋は2.占シ持され−
C張出したEい、純支持桁21に他の桁22をビン結合
して4&設−)る連続橋であるが、このゲルパー橋は二
3径間番、二おいてのみ連続であり4径間以トては伸縮
継手を要すること、および地震時等にビン継トが/ツー
切断したときは落橋するおそれがル〕る。!tIf開
昭46−63516は基本的にこの1[5式に属する。
E発明が解決しようとする課題1
本斧明はl−記諸問題を解決した多径間床版橋を開発し
たものて、3 )7の径間ては、単純支持床1汲橋を用
いて設計3[p及び施工の中線明瞭化を図り、かつ多径
間に幻って、連続性を図ることにより、多径間連続区間
から伸縮継手を不要とし、riii述の問題を解決した
。
すなわち、h)7の径間では、単純支持の力学的)−動
を;jζし、かつ、多径間に亙−)で、コンクリ1−床
11〜と舗装部を連続させた床版橋を提供することを1
−11白と−・する、1
1課題を解決−46だめのf′段1
本発明は、[Industrial Application Field 1] The present invention relates to a jointless multi-span deck bridge constructed by continuously connecting simply supported deck slabs, and is ideal for urban viaducts, expressway viaducts, and other road bridges. Regarding the slab bridge. [Prior Art] As a road viaduct, there is a deck slab bridge of pure support type. For such simply supported deck slab bridges, composite deck slabs made by combining steel and concrete are used. A block bridge has been developed and is in use. Figure 3 shows the structure of an example of such a simply supported deck bridge.As a one-span bridge, it is thin, lightweight, strong, easy to construct, and has extremely excellent performance at low cost. . In general, urban viaducts and expressway viaducts are constructed over multiple spans. FIG. 7 shows a deck bridge in which conventional simply supported deck slabs are installed in each span. In such a bridge, a simply supported deck bridge 2 is mounted on each span of the piers 1. The simple support conditions are that, in each span, one end of the simply supported deck bridge 2 is moved ff1J + notice: 3, and the other end is 14 before being fixed. 3 before moving and 14 before fixing to accommodate temperature changes.
An expansion joint 15 is installed 6 between them. In this manner, a single-slope bridge with a simple support floor requires expansion joints 15 at the end of each span in order to cope with temperature changes. Therefore, structural continuity is broken at this expansion joint. Due to this, the next problem becomes i=. (2) There is a step X- on the road, and the impact and vibration caused by this step causes a noise problem. ('l) Problems arise in maintenance management such as maintenance, repair, etc. In order to solve this problem, in JP-A-61-57702, a - girder was added to the space between [p pure steel technique]. There is a method of constructing a concrete deck and continuously constructing a pre-prefabricated deck 1- composite deck slab on that 1-C.
However, the bridge would have to be built twice, which would take a long time, and there would be problems with elasticity. Multi-span continuous girder bridges are used for this purpose. FIG. 8 shows five types of bearing ears for the multi-span continuous girder bridge 20. In the multi-span continuous girder bridge 20, one bearing is
The rest of the bridges are all movable, and the continuous girder bridge 2 is supported by one shoe on each intermediate support. Although the multi-span continuous girder bridge 20 does not require expansion joints,
It is unstable in structural calculations, and a negative bending moment 1- is generated at the fulcrum (above the pier 1), and measures are required to deal with the tensile stress on the upper surface of the deck in order to cope with this negative bending moment 1~. . When ground movement or unevenness occurs in the pier 1 due to an earthquake or other cause, there are problems such as stress that cannot be predicted at the time of design. That is, the multi-span continuous girder bridge 20 requires complicated design calculations and is complicated to construct. In particular, in the case of synthetic girders, synthetic deck bridges, I) C deck bridges, etc., there are problems with creep and drying shrinkage of concrete materials, making it difficult for designers to handle them. On the other hand, the stress problem in such an indefinite multi-span continuous girder bridge is simplified as a continuous bridge. Gelper Bridge is 2. Possessed -
It is a continuous bridge constructed by connecting another girder 22 to the pure support girder 21 with an overhanging C-shaped girder, but this Gelper bridge has 23 spans and is continuous only in the 2nd span, and has 4 diameters. Expansion joints will be required at some point, and there is a risk of the bridge collapsing if the joints are severed during an earthquake. ! tIf Kaisho 46-63516 basically belongs to this type 1[5. E Problems to be Solved by the Invention 1 This Akimei has developed a multi-span deck bridge that solves the problems listed in 1-1. By clarifying the midline of design 3 [p and construction, and aiming for continuity in the multi-span continuous section, expansion joints were not required from the multi-span continuous section, and the problem described in iii was solved. . In other words, in the span h) 7, the deck slab bridge connects the concrete 1-floor 11~ and the paved section with simple support mechanical movement) and over multiple spans. 1 to provide
-11 white and -. 1 1 Solved the problem - f' stage 1 of 46 The present invention is as follows:
【n純支持で構成されたシjイントレス多径
間床版橋てあって、多径間橋梁において、各径間に架設
される中−純支持床版橋を各橋脚上において滑節結合し
、橋脚の1つを固定支承とし、曲の橋脚は可動支承とし
たことを特徴とする。
滑節結合としてピン結合のほかに、ゴムを介装した構造
としてもよ(、この場合桁高を低くすることができる。
また、可動支承としてゴムを介装した構造を用いれば従
来の可動支承に比し地震時の全体水平力を各橋脚に分散
さゼることかでき好適である。
[作用1
本発明の多径間床版橋は、
(i ) i、;本構造的に見て単純支持の床版橋であ
るから負のモーメントを生ずることがなく、また、力学
的に静定てあって不確定な要素がなく、かつ複雑な描込
計算を必要とせず、設計の確実性、信申n・1牛が極め
て高い。
(2)従って、複雑な応力に対応する困?1gな構造や
対策を必要とせず、安価である。
に3)橋脚の沈下、変動が起こっても、これに追随する
ことができ、かつ、複雑な応力を生じない。
(4)地震時に万一ピン切断を生しても落橋のおそれが
ない。
(5)伸縮継手が不要となるので、床版の寿命が長く、
車輌の走行性がよく、乗り心地が極めて良好である。
((つ)滑節結合はm純支持床版橋相亙をかけ違い構造
とし、このかけ違い部にピン支承を設けるとよい。これ
をゴムを介装した構造に代えることにより、ピン、ロー
ラ支承のものより安価なゴム支承を用いることができ、
ピン支承の場合に必要な支承部の高さ300〜600
m mを30−60mm程度に低くすることができる。
ピン支承ては支承部の高さが高く、合成床版橋やPC床
版橋のように構造全高が低い橋梁では、ビン支承の高さ
を確保することが難しい場合もあるが、ゴム支承てはこ
れが著しく改筈される。
(7)可動支承をローラ支承の代わりにゴムを介装した
溝迫とすれは、地震時にゴム支承は半固定の作用をなし
、全体木半力か各橋脚に分散される。ローラ支承を用い
た多径間床l1fli!橋では、地震によって生しる全
体木^)−刀を固定金の橋脚のみて負担するため、固定
金の橋脚が大断面になると共に、固定金の構造が大型と
なるか、ゴム支承てはこれを避けることか司籠となる。
[実施例]
実施例1
第1図は単純支持床版橋2(2a、2bJを結合した本
発明の実施例の多径床版橋の橋脚]上の構造例を示す断
面側面図である。
鉄筋コンクリート製または鋼製の橋脚1」−に合成床版
橋またはI) C床版橋からなる床版橋2aがローラ支
持移動前3上に支持されている。床版橋2aとこれに隣
接する床版橋2bとはかけ違い構造となっており、この
かけ違い部にビン支承4を設けて床版橋2aと2bが連
結されている。
床版橋2aと2bの間の隙間はその上面を発泡スヂロー
ル等の隙間材5で覆っている。床版橋2a、2bの上面
には床版コンクリート6、アスファルト舗装7が施され
ている。
この床版橋2a、2bはピン支承4を介して結合されて
いるので、床版橋2a、2b間に伸縮継手を設ける必要
がない。またこの橋は剛性の多径間連続桁橋のように橋
脚部において負の曲げモーメントを生ずることがない。
第4図は、本発明の単純支持で構成されたジヨイントレ
ス多径間床版橋を示す。全体の固定支承14は1つの橋
脚la上に固定されている。
本発明の多径間床版橋は各々の径間に於て、端は移動前
3、他端は固定金(ビン支承4は回転自由で、水平方向
の移動を拘束した固定金と同様のものである。)の条件
を満たす。すなわち、単純支持床版橋てありながら、連
続橋であり、伸縮継手を不要とし、床版については多径
間連続桁橋と同しような構造yfう式となっている。
実施例2
第2図にゴム支承を用いた実施例の支持部構造を小した
。
第1図のピン支承とローラ支承を用いたジヨイントレス
多径間床版橋の構造モデルでは、地震によって生しる水
平反力を第4図に示す橋脚la上の固定支承14のみで
負担する。即ち、両端の橋台間の」二部上死荷重に水平
震度Khを乗した(W 1+W2 +W3+・・−)X
Kh=Htが橋軸方向の地震荷重として、固定支承橋脚
1aおよびその中央に設置した固定支承14に作用する
のて、固定支承14の構造が大型になると共に固定支承
橋脚1aの横断面も大形のものが要求される。
第5図に示すように、ゴム支承8を用いると、各単純支
持床版橋2と各橋脚■との間に弾性はね16を介装して
いるのと同様の作動をなす。1−なわも、各橋脚lに作
用する地震時水平荷重Hiを両端の橋台北よび各橋脚に
それぞれ分散させることができる。
地震時水平荷重とゴム支承の剪断抵抗力の関係は次の通
りである。
第6図に弾性ゴム支承体30が剪断力を受けた様子を示
した。
各径間に働く死荷重反力W】に水羽震度K hを乗じた
W i X K h = Hiがそれぞれの支承上に働
くものとし、これらの水泪力Hiに対しではゴム支承体
30の剪断抵抗力Fが反力として作用するものとすると
、
(1し、l〜 ゴノ\支承体の支圧面積(crn”)△
水)1元変位(cm)
G、剪断弾性係数(k g / c m″)ΣTe:支
承体の弾性ゴムの総厚さ(cm)が成り)′fち、■1
式から
すなわち、地震時に各径間に生ずる水平荷重Hiに対し
て、伸性ゴムの総厚さ、支圧面積、剪11J目’11性
係数の組み合わせて水平変位△を満たすゴム支承体を装
着しておけはよい。
[発明の効果]
本発明の単純支持で構成されたジヨイントレス多径間床
版橋は以上の構成を有するので、(1)各ツノの径間で
は単純支持条件を満たす構造形態を採用することにより
、設計51算が容易で現場施工が簡単になり、また地盤
変動等があっても設計時予想しない応力を生ずることが
少なく信頼性が極めて高い。
(2)多径間床版橋において、伸縮編毛を省くことによ
り、
■ 車輌の走行性が向」二する。
■ 伸縮継手とタイヤの衝撃を防止することができる。
■ 伸縮継手からの漏水を防ぎ、鋼板の腐食を改暦する
。
(3)橋脚−トにおける支承は、ローラ支承1個となり
、橋脚中央に設置するため、地震時に落橋しに(い構造
となり耐震性が向−にする。
(4)さらに、ジヨイントレス多径間床版橋においてピ
ン支承、ローラ支承に代えてゴム支承を用いることによ
り、より経済性を同士させることができ、ビン支承高を
著しく低くし、橋脚支承−にの床版全高を低く押えるこ
とができる。
(5)ゴム支承の移動沓は地震時に半固定となり、全体
水平力がそれぞれの橋脚に分散されるため、固定支承の
構造がコンパクトになる。また、橋軸方向における橋脚
の幅を小さくすることができる。[In a multi-span bridge, the medium-to-pure support slab bridge constructed in each span is connected with slides on each pier. , one of the piers is a fixed bearing, and the curved piers are movable bearings. In addition to a pin connection as a sliding joint, it is also possible to use a structure with rubber interposed (in this case, the girder height can be lowered. Also, if a structure with rubber interposed as a movable support is used, it is possible to use a structure with rubber interposed as a movable support. It is preferable that the entire horizontal force during an earthquake can be dispersed to each pier compared to the above. [Action 1] The multi-span deck bridge of the present invention has Because it is a simply supported deck slab bridge, it does not generate negative moments, and it is mechanically static and has no uncertainties, and does not require complicated drawing calculations, making the design more reliable. , the reliability is extremely high. (2) Therefore, there is no need for complicated structures or countermeasures to deal with complex stresses, and it is inexpensive. (3) Even if subsidence or fluctuation of the piers occurs, , can follow this, and does not generate complicated stress. (4) Even if a pin breaks during an earthquake, there is no risk of the bridge collapsing. (5) Since no expansion joints are required, the life of the floor slab is longer.
The vehicle has good running performance and extremely comfortable ride. ((1) It is recommended that the sliding joint be constructed with an alternating structure between the two sides of the pure supporting slab bridge, and a pin support should be provided at this alternating portion. By replacing this with a structure in which rubber is interposed, pins, rollers, etc. Rubber bearings can be used, which are cheaper than conventional bearings.
Required height of the bearing part in case of pin bearing: 300 to 600
mm can be as low as about 30-60 mm. With pin bearings, the height of the bearing part is high, and in bridges with a low overall structural height, such as synthetic deck bridges and PC deck bridges, it may be difficult to ensure the height of the pin bearing, but with rubber bearings. This will be significantly changed. (7) In movable bearings with rubber interposed instead of roller bearings, the rubber bearings act as semi-fixed during an earthquake, and the force of the entire tree is distributed to each pier. Multi-span floor l1fli using roller bearings! In bridges, the entire tree that grows due to earthquakes ^) - Since the sword is carried only by the fixed metal piers, the fixed metal piers have a large cross section, and the structure of the fixed metal becomes large, or rubber bearings are not used. The best thing to do is to avoid this. [Example] Example 1 Fig. 1 is a cross-sectional side view showing a structural example of a simply supported deck bridge 2 (a pier of a multi-diameter deck bridge according to an embodiment of the present invention in which 2a and 2bJ are combined). A deck slab bridge 2a consisting of a composite slab bridge or an I) C deck slab bridge is supported on a roller support 3 on reinforced concrete or steel piers 1''. The deck slab bridge 2a and the adjacent deck slab bridge 2b have a different structure, and the deck bridges 2a and 2b are connected by providing a bottle support 4 in the different part. The upper surface of the gap between the deck bridges 2a and 2b is covered with a gap material 5 such as foamed cotton roll. A concrete slab 6 and an asphalt pavement 7 are applied to the upper surfaces of the slab bridges 2a and 2b. Since the deck bridges 2a and 2b are connected via the pin support 4, there is no need to provide an expansion joint between the deck bridges 2a and 2b. Additionally, this bridge does not generate negative bending moments at the piers unlike rigid multi-span continuous girder bridges. FIG. 4 shows a jointless multi-span deck bridge constructed with simple supports according to the present invention. The entire fixed bearing 14 is fixed on one pier la. In the multi-span deck bridge of the present invention, in each span, one end is a movable front 3, the other end is a fixed metal (the bin support 4 is free to rotate, and is similar to a fixed metal that restrains movement in the horizontal direction). ) satisfies the conditions. That is, although it is a simply supported deck slab bridge, it is a continuous bridge and does not require expansion joints, and the deck has a structure similar to that of a multi-span continuous girder bridge. Example 2 The support structure of the example using the rubber bearing shown in FIG. 2 was made smaller. In the structural model of the joint stress multi-span deck bridge using pin bearings and roller bearings shown in FIG. 1, the horizontal reaction force generated by an earthquake is borne only by the fixed bearings 14 on the piers la shown in FIG. 4. In other words, the horizontal seismic intensity Kh is multiplied by the upper dead load between the abutments at both ends (W 1+W2 +W3+...-)X
Since Kh=Ht acts as an earthquake load in the bridge axis direction on the fixed support pier 1a and the fixed support 14 installed in the center, the structure of the fixed support 14 becomes large and the cross section of the fixed support pier 1a also becomes large. A form is required. As shown in FIG. 5, when the rubber bearings 8 are used, the same operation is achieved as when elastic springs 16 are interposed between each simply supported deck bridge 2 and each pier (2). 1-The rope can also disperse the earthquake horizontal load Hi acting on each pier l to the abutment north at both ends and to each pier. The relationship between the horizontal load during an earthquake and the shear resistance of the rubber bearing is as follows. FIG. 6 shows how the elastic rubber support 30 is subjected to shearing force. It is assumed that the dead load reaction force W] acting on each span is multiplied by the water seismic intensity K h (W i Assuming that the shear resistance force F acts as a reaction force, (1, l~ Gono\bearing pressure area (crn”) of the bearing body)△
water) 1-dimensional displacement (cm) G, shear modulus of elasticity (kg / cm'') ΣTe: total thickness (cm) of elastic rubber of the support) 'fchi, ■1
From the formula, we can install a rubber support that satisfies the horizontal displacement △ by combining the total thickness of the elastic rubber, bearing pressure area, and shear coefficient of 11J for the horizontal load Hi that occurs in each span during an earthquake. It's good to keep it that way. [Effects of the Invention] Since the joint tress multi-span deck bridge constructed with simple support of the present invention has the above configuration, (1) by adopting a structural form that satisfies the simple support condition in each horn span, , design calculations are easy, construction on site is simple, and even if there is ground movement, stress that is not anticipated at the time of design is unlikely to occur, and reliability is extremely high. (2) In multi-span deck bridges, by eliminating the stretchable knitted hair, the running performance of vehicles is improved. ■ Can prevent impact between expansion joints and tires. ■ Prevent water leakage from expansion joints and prevent corrosion of steel plates. (3) The support on the pier is a single roller bearing, which is installed in the center of the pier, so the structure is difficult to prevent the bridge from collapsing in the event of an earthquake, and the earthquake resistance is improved. By using rubber bearings in place of pin bearings and roller bearings in bridge bridges, it is possible to achieve greater economic efficiency, significantly lowering the height of the bin bearings and keeping the overall height of the deck slabs on the pier bearings low. (5) The movable shoes of the rubber bearing become semi-fixed during an earthquake, and the entire horizontal force is distributed to each pier, making the structure of the fixed bearing more compact.Also, the width of the pier in the axial direction of the bridge can be reduced. be able to.
【図面の簡単な説明】[Brief explanation of the drawing]
第1図は本発明の第1の実施例の橋脚上部の構造図、第
2図は別の実施例の橋脚上部の構造図、第3図は合成床
版の一例の切欠斜視図、第4図は本発明の橋の全体構成
を示す側面図、第5図はゴノ\支承を用いた実施例の作
用を説明する側面図、第6図はゴム支承の挙動を説明す
る応力図、第7図は従来の単純桁高側面図、第8図は連
続桁橋の側面図、第つ]図はゲルパー橋の側面図である
。FIG. 1 is a structural diagram of the upper part of a pier according to the first embodiment of the present invention, FIG. 2 is a structural diagram of the upper part of a pier according to another embodiment, FIG. 3 is a cutaway perspective view of an example of a composite deck slab, and FIG. Figure 5 is a side view showing the overall configuration of the bridge of the present invention, Figure 5 is a side view explaining the action of the embodiment using gono\ bearings, Figure 6 is a stress diagram explaining the behavior of the rubber bearing, and Figure 6 is a stress diagram explaining the behavior of the rubber bearing. Figure 7 is a side view of a conventional simple girder bridge, Figure 8 is a side view of a continuous girder bridge, and Figure 1 is a side view of a Gelper bridge.