JPH02164775A - Production of cubic boron nitride sintered body - Google Patents

Production of cubic boron nitride sintered body

Info

Publication number
JPH02164775A
JPH02164775A JP63318574A JP31857488A JPH02164775A JP H02164775 A JPH02164775 A JP H02164775A JP 63318574 A JP63318574 A JP 63318574A JP 31857488 A JP31857488 A JP 31857488A JP H02164775 A JPH02164775 A JP H02164775A
Authority
JP
Japan
Prior art keywords
sintered body
molded body
grooves
pressure
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63318574A
Other languages
Japanese (ja)
Inventor
Taku Kawasaki
卓 川崎
Hiroaki Tanji
丹治 宏彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP63318574A priority Critical patent/JPH02164775A/en
Publication of JPH02164775A publication Critical patent/JPH02164775A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide heat sinks having high dimensional accuracy in large quantities at a low cost by cutting grooves in the surface of a pyrolytic BN molded body when this molded body is treated at high temp. and pressure to produce the subject sintered body. CONSTITUTION:Grooves 2 are cut in the surface of a pyrolytic BN molded body 1, e.g., with a diamond grindstone. Since the molded body 1 is made of soft ceramic, it can easily be subjected to machining such as cutting or polishing. The molded body 1 having the grooves 2 is treated at high temp. and pressure to obtain a cubic BN sintered body. When the molded body 1 is treated at high temp. and pressure after the grooves 2 are filled with a metal having >=1,500 deg.C m.p. such as Mo or Ta, the sides of the grooves 2 can be prevented from sticking to each other during the treatment at high temp. and pressure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、立方晶窒化は5X(OBN)焼結体の製造方
法に関する。cBN焼結体は半導体レーず、IC1マイ
ク0波素子等の放熱用ヒートシンクに用いられる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing cubic nitrided 5X (OBN) sintered bodies. The cBN sintered body is used not only for semiconductor lasers but also for heat sinks for heat dissipation in IC1 microphone 0-wave devices and the like.

〔従来の技術〕[Conventional technology]

半導体レーデ等の発熱性個別半導体素子は、発生する熱
による素子性能の劣化や暴走を防ぐため、ヒートシンク
を介してパッケージのベースに取り付けらハる。ヒート
シンク材料としては、電気絶縁性でかつ高熱伝導性の立
方晶窒化はう素(cBN)焼結体等が適している。cB
N焼結体を製造する方法としては、例えば化学気相蒸着
法(OVD法)によって製造される熱分解蓋化+t5X
(p−BN)成形体を、高温高圧下に処理する方法があ
る(特公昭63−394号公報)。この方法で製造され
るcEN焼結体は使用する高温−超高圧力発生装置の大
きさにもよるが例えば直径数10sn、淳さ数龍の円板
の形状をしており、切断、研磨等でヒートシンクの形状
に加工される。従来、cBN焼結体の切断には、レーデ
−あるいはダイヤモンド砥石が用いられた。しかしなが
らこれらの方法にはいずれも問題点があった。まずレー
デ−による切断ではレーデ−照射時に発生する熱により
切断個所周間のcBNの結晶性が低下してヒートシンク
の熱漬導本が低下するという問題があった。一方ダイヤ
モンド砥石による切断の場合は高精度の切断が可能であ
るが、cBNがダイヤモンVに次ぐ高い硬度を有するた
め、ダイヤモンド砥石の摩耗量が大きく、生産性が低い
という問題があった。
Heat generating individual semiconductor elements such as semiconductor radars are attached to the base of the package via a heat sink to prevent the element performance from deteriorating or running out of control due to the heat generated. As the heat sink material, a cubic boron nitride (cBN) sintered body, etc., which is electrically insulating and highly thermally conductive, is suitable. cB
As a method for manufacturing the N sintered body, for example, pyrolysis capping + t5X manufactured by chemical vapor deposition method (OVD method) is used.
There is a method of treating a (p-BN) molded body under high temperature and high pressure (Japanese Patent Publication No. 63-394). The cEN sintered body produced by this method has the shape of a disc with a diameter of several tens of nanometers, depending on the size of the high-temperature/ultra-high pressure generator used, and can be cut, polished, etc. It is processed into the shape of a heat sink. Conventionally, a radar or diamond grindstone has been used to cut cBN sintered bodies. However, all of these methods have problems. First, cutting by radar has a problem in that the heat generated during radar irradiation lowers the crystallinity of the cBN around the circumference of the cut location, resulting in a reduction in the thermal conductivity of the heat sink. On the other hand, when cutting with a diamond grindstone, highly accurate cutting is possible, but since cBN has the second highest hardness after Diamond V, there is a problem that the amount of wear of the diamond grindstone is large and productivity is low.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、cBN焼結体をヒートシンクとして利用する
場合の上述した切断加工技術の問題点を改善するもので
あって、熱伝導率が高く、かつ寸法精度の高いヒートシ
ンクを大量かつ安価に提供しようとするものである。
The present invention aims to improve the above-mentioned problems in cutting technology when using a cBN sintered body as a heat sink, and aims to provide heat sinks with high thermal conductivity and high dimensional accuracy in large quantities and at low cost. That is.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は、以下を要旨とする立方晶窒化fi
5素焼結体の製造方法である。
That is, the present invention provides cubic nitride fi
This is a method for manufacturing a five-component sintered body.

1、熱分鱗窒化はう未成形体の表面に溝を設けた後高温
高圧処理を行うことを特徴とする立方晶窒化はう素焼給
体の製造方法。。
1. A method for producing a cubic nitrided borax filler body, which comprises forming grooves on the surface of a thermally scaled nitrided unformed body and then subjecting it to high-temperature and high-pressure treatment. .

2、溝に融点が1500℃以上である金属を充填するこ
と特徴とする請求項1に記載の立方晶窒化はう素焼給体
の製造方法。
2. The method for manufacturing a cubic nitrided borage feeder body according to claim 1, wherein the groove is filled with a metal having a melting point of 1500° C. or higher.

以下、さらに詳しく本発明について説明する。The present invention will be explained in more detail below.

本発明のcBN焼結体の原料であるP−BN成形体は、
化学気相蒸着法(OVD法)によって製造されたものが
使用される。すなわち、例えば米国特許第315200
6号明細書に開示されているように、三塩化はう素(B
Cl2)等のノ10デン化はう素ガスとアンモニアガス
とを原料とし、5 Q Torr以下の減圧下1400
〜2300℃の温度で、黒鉛等の基材の表面上に窒化は
う素を気相から析出させることによって製造されたもの
が使用される。
The P-BN molded body, which is the raw material for the cBN sintered body of the present invention, is
Those manufactured by chemical vapor deposition (OVD) are used. That is, for example, U.S. Pat. No. 315,200
As disclosed in Specification No. 6, boron trichloride (B
Cl2), etc., is prepared using boron gas and ammonia gas as raw materials, and under reduced pressure of 5 Q Torr or less at 1,400 m
Those produced by depositing boron nitride from the gas phase on the surface of a substrate such as graphite at a temperature of ~2300°C are used.

P−BN成形体はaBN焼結体と異なり軟質のセラミッ
クであるため切断、研磨等の機械加工が容易に行える。
Unlike the aBN sintered body, the P-BN molded body is made of soft ceramic, and therefore machining such as cutting and polishing can be easily performed.

そこで例えばダイヤモンド砥石を用いてP−BN表面に
溝を設けることができる。溝の幅は使用するダイヤモン
ド砥石の厚さによって定まり、通常は0.01〜0.数
龍である。また、溝の深さはダイヤモンP砥石の切込み
深さによって自由に定められ、さらには溝と溝との間隔
は必要とするヒートシンクの寸法に応じて定められる。
Therefore, grooves can be formed on the P-BN surface using, for example, a diamond grindstone. The width of the groove is determined by the thickness of the diamond grinding wheel used, and is usually 0.01 to 0. It is a number dragon. Furthermore, the depth of the grooves is freely determined by the depth of cut of the Diamond P grindstone, and furthermore, the distance between the grooves is determined according to the required dimensions of the heat sink.

その−例を第1図に示す。An example of this is shown in FIG.

以上のようにして溝の設けれたP−BN成形体は、((
)、(ロ)等により高温高圧処理が行われる。高温高圧
処理にはベルト型装置のような高温・超高圧力発生装置
が用いられる。
The P-BN molded body provided with grooves as described above is ((
), (b), etc., high temperature and high pressure treatment is performed. For high-temperature and high-pressure processing, a high-temperature and ultra-high pressure generating device such as a belt-type device is used.

fl)、直接高温高圧下で処理する。(温度:1800
℃以上、好ましくは2100〜2500℃、圧カニ 6
Q kbar以上、好ましくは651cbar以上;特
開昭54−3510号公報)(ロ) Mg5BN3等の
触媒を拡散含浸させた後に高温高圧処理(温度:130
0℃以上、圧カニ4万気圧以上)する。(特開昭62−
108772号公報) すなわち、本発明の請求項1に記載の方法によれば、溝
が設けれたP−BN成形体はそのままもしくはMg5B
IJ3等の触媒を拡散含浸させた後の状態で高温高圧処
理用の容器に充填される。一方、請求項2に記載の方法
によれば、首が設けられたP−BN成形体はそのままも
しくはMg5BN3等の触媒を拡散含浸させた後の状態
でこれらの溝を金属で充填し、しかる後に高温高圧処理
用の容器に充填される。このとき使用される金属として
は高温高圧処理温度が高いため融点が1500℃以上の
金属であるモリブデン(MO)、タンタル(Ta)等が
適している。溝に金属を充填することによって、溝の壁
面同士が高温高圧処理の際に癒着するのを防止すること
ができる。
fl), directly treated under high temperature and high pressure. (Temperature: 1800
℃ or higher, preferably 2100-2500℃, pressure crab 6
Q kbar or more, preferably 651 cbar or more; JP-A-54-3510) (b) After diffusion impregnation with a catalyst such as Mg5BN3, high temperature and high pressure treatment (temperature: 130 cbar or more)
0°C or higher, pressure 40,000 atmospheres or higher). (Unexamined Japanese Patent Publication 1986-
108772) That is, according to the method according to claim 1 of the present invention, the P-BN molded body provided with the grooves can be used as is or with Mg5B.
After being diffused and impregnated with a catalyst such as IJ3, it is filled into a container for high temperature and high pressure treatment. On the other hand, according to the method according to claim 2, the grooves of the P-BN molded body provided with the neck are filled with metal as it is or after being diffused and impregnated with a catalyst such as Mg5BN3, and then the grooves are filled with metal. It is filled into a container for high-temperature and high-pressure processing. Suitable metals to be used at this time include molybdenum (MO), tantalum (Ta), and the like, which have melting points of 1500° C. or higher because the high temperature and high pressure treatment temperature is high. By filling the groove with metal, it is possible to prevent the wall surfaces of the groove from adhering to each other during high temperature and high pressure treatment.

高温高圧処理用の容器に充填されたP−BN成形体は高
温高圧処理によりcBN焼結体に変換する。
The P-BN molded body filled in a container for high temperature and high pressure treatment is converted into a cBN sintered body by high temperature and high pressure treatment.

生成したcBN焼結体には、高温高圧処理前に原料P−
BN成形体に設けた溝が残っている。cBN焼結体の表
面を研磨した後この溝の位置でレーデ−もしくはダイヤ
モンド砥石による切断を行うと、溝の深さの分だけ切断
に要する切込み量が減少する。従って先ずレーザーによ
る切断では、切断に要するレーデ−のエネルギーおよび
時間が従来の方法に比べ大幅に減少するため、従来問題
となっていた切断個所周囲のcBNの結晶性低重による
ヒートシンクの熱伝導率低下を防止できるだけでなく、
生産性を増大させることができる。さらにダイヤモンド
砥石による切断においても砥石の摩耗量および切断に要
する時間が従来の方法に比べ大幅に減少するため、生産
性を増大させることができる。従って本発明の方法によ
り良質の立方晶窒化はう素焼給体よりなるヒートシンク
を大量に製造することができる。
The produced cBN sintered body is treated with raw material P- before high-temperature and high-pressure treatment.
The grooves provided in the BN molded body remain. If the surface of the cBN sintered body is polished and then cut with a radar or diamond grindstone at the groove position, the depth of cut required for cutting is reduced by the depth of the groove. Therefore, first of all, with laser cutting, the laser energy and time required for cutting are significantly reduced compared to conventional methods, which reduces the thermal conductivity of the heat sink due to the low crystallinity of cBN around the cutting point, which has been a problem in the past. Not only can you prevent the decline, but also
Productivity can be increased. Furthermore, even when cutting with a diamond grindstone, the amount of wear of the grindstone and the time required for cutting are significantly reduced compared to conventional methods, so productivity can be increased. Therefore, by the method of the present invention, heat sinks made of high quality cubic nitrided borosilicate heat sinks can be manufactured in large quantities.

〔実施例〕〔Example〕

以下、実施例および比較例をあげて本発明をさらに具体
的に説明する。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1、比較例1 市販のP−BN成形体から直径20龍、厚さL2mmの
円板を作製し、この円板の広い面の一方にダイヤモンー
砥石を用い幅0.1mm、深さ0.6snの溝を11I
11間隔で格子状に掘った後、MgaN2粉末中に埋め
、窒素気流中1200℃で12時間保持し、Mg5BN
s  0.8モル%を拡散含有させた。これを原料とし
て、ベルト型高温高圧装置で、温度1600℃、圧力6
万気圧の条件に60分間保持して焼結体を得た。得られ
た焼結体をX線回折で同定したところcBNであること
が確認され、また格子状の溝がそのまま残ってbた。広
い面を両面とも研磨した後この溝に沿って刃厚0.2s
nのダイヤモンド砥石を用いて焼結体を切断し、0.8
 mx X O−8vIX O,6xmの角板形状の小
片を得た。
Example 1, Comparative Example 1 A disc with a diameter of 20 mm and a thickness of L 2 mm was prepared from a commercially available P-BN molded body, and a diamond grindstone was used on one of the wide sides of the disc to obtain a width of 0.1 mm and a depth of 0. .6sn groove 11I
After digging in a grid pattern at 11 intervals, it was buried in MgaN2 powder and kept at 1200°C in a nitrogen stream for 12 hours.
s 0.8 mol% was diffused and contained. Using this as a raw material, a belt-type high-temperature, high-pressure device is used to process the product at a temperature of 1600°C and a pressure of 6.
A sintered body was obtained by maintaining the pressure under conditions of 60 minutes. When the obtained sintered body was identified by X-ray diffraction, it was confirmed that it was cBN, and the lattice-shaped grooves remained as they were. After polishing both wide surfaces, the blade thickness is 0.2s along this groove.
The sintered body was cut using a diamond grindstone of 0.8
A square plate-shaped piece of mx X O-8vIX O, 6xm was obtained.

このとき、砥石の径方向の摩耗量は角板1個あたり0.
01 龍であり、切断に要する時間は角板1個あたり6
0秒であった。
At this time, the amount of wear in the radial direction of the grindstone is 0.0% per square plate.
01 It is a dragon, and the time required to cut it is 6 per square plate.
It was 0 seconds.

比較のため、P−BN成形体に溝を設けずに実施例と同
一の条件にてcBN焼結体の製造と切断を行った。その
結果、砥石の径方向の摩耗量は角板1個あたり0.1i
nであり、切断に擬する時間は角板1個あたり100秒
であった。
For comparison, a cBN sintered body was manufactured and cut under the same conditions as in the example without providing a groove in the P-BN molded body. As a result, the amount of wear in the radial direction of the grinding wheel was 0.1i per square plate.
n, and the time to simulate cutting was 100 seconds per square plate.

実施例2、比較例2 市販のP−BN成形体から直径12mm、厚さ1龍の円
板を作製し、この円板の広い面の一方にダイヤモンド砥
石を用い、幅0.1m、深さ0.5nの溝全1.2顛間
隔で格子状に掘った。これを原料として、ベルト型高温
高圧装置で、温度2000℃、圧カフ万気圧の条件に6
0分間保持して焼結体を得た。得られた焼結体をX線回
折で同定したところcBNであることが確認され、また
、格子状の溝がそのまま残っていた。広い面を両面とも
研磨した後この溝に滴って刃厚0.2nのダイヤモンド
砥石を用いて焼結体を切断し、1龍X 1 mX O,
6yx*の角板形状の小片を得た。このとき、砥石の径
方向の摩耗量は角板1個あたり0.02冨鳳であり、切
断に要する時間は角板1個あたり40秒であった。
Example 2, Comparative Example 2 A disc with a diameter of 12 mm and a thickness of 1 dragon was produced from a commercially available P-BN molded body, and a diamond grindstone was used on one of the wide sides of the disc, and a width of 0.1 m and a depth of 0.1 m were prepared. Grooves of 0.5n were dug in a grid pattern with a total interval of 1.2 squares. Using this as a raw material, it was heated in a belt-type high-temperature, high-pressure device at a temperature of 2,000℃ and a pressure cuff under the conditions of 60 degrees of pressure.
A sintered body was obtained by holding for 0 minutes. When the obtained sintered body was identified by X-ray diffraction, it was confirmed to be cBN, and the lattice-shaped grooves remained as they were. After polishing both wide surfaces, the sintered body was cut into the groove using a diamond grindstone with a blade thickness of 0.2 nm.
A square plate-shaped piece of 6yx* was obtained. At this time, the amount of wear of the grindstone in the radial direction was 0.02 mm per square plate, and the time required for cutting was 40 seconds per square plate.

比較のため、P−BN成形体に溝を掘らずに実施例と同
一の条件にてcBN焼結体を製造し切断した。その結果
、砥石の径方向の摩耗量は角板1個あたり0.1411
3Nであり、切断に要する時間は角板1個あたり180
秒であった。
For comparison, a cBN sintered body was manufactured and cut under the same conditions as the example without digging a groove in the P-BN molded body. As a result, the amount of wear in the radial direction of the grinding wheel was 0.1411 per square plate.
3N, and the time required for cutting is 180N per square plate.
It was seconds.

実施例3 市販のP−BN成形体から直径25龍、厚さ1.2龍の
円板を作製し、この円板の広い面の一方にダイヤモンー
砥石を用い幅0.2tm、深さ0.6111の溝を0.
9s1111間隔で格子状に掘った後MgsNg粉末中
に埋め、窒素気流中1200℃で12時間保持し、’g
sBNs  O,8モル%を拡散含有させた。一方面径
0.2mmのMO線よりなる0、8 yx* X O,
8trIIの網の目を有する金網を、上記P−BN成形
体の格子状の溝をMO線が埋める様に配置した。1枚の
P−BN円板に付き、金網1r:2枚重ねて用いた。
Example 3 A disk with a diameter of 25 mm and a thickness of 1.2 mm was prepared from a commercially available P-BN molded body, and a diamond grindstone was used on one of the wide sides of the disk to form a disk with a width of 0.2 t and a depth of 0.2 mm. 6111 groove to 0.
After digging in a grid pattern at 9s1111 intervals, it was buried in MgsNg powder and kept at 1200°C for 12 hours in a nitrogen stream.
8 mol % of sBNs O was diffused into the sample. 0,8 yx* X O, consisting of MO wire with one side diameter 0.2 mm
A wire mesh having a mesh size of 8trII was arranged so that the MO wires filled the lattice-shaped grooves of the P-BN molded body. For one P-BN disk, two wire meshes 1r were stacked and used.

これを原料として、ベルト型高温冒圧装置で、温度15
50℃、圧力5万2千気圧の条件に20分間保持して焼
結体を得た。この焼結体はaBNであることをX線回折
により確認した。また、得られた焼結体にはMOで充填
された格子状の溝がそのまま残っていた。このMOは焼
結体を熱王水に浸すことにより容易に除去できた。焼結
体の広い面を両面とも研磨した後この溝に沿って刃厚0
.2朋のダイヤモンド砥石を用いて焼結体を切断し、0
.7 mm X O,7mm X O,6mmの角板形
状の小片を得た。
Using this as a raw material, a belt-type high-temperature pressure device is used to process the product at a temperature of 15%.
A sintered body was obtained by maintaining the temperature at 50° C. and a pressure of 52,000 atmospheres for 20 minutes. This sintered body was confirmed to be aBN by X-ray diffraction. Furthermore, the lattice-shaped grooves filled with MO remained in the obtained sintered body. This MO could be easily removed by soaking the sintered body in hot aqua regia. After polishing both wide surfaces of the sintered body, the blade thickness is 0 along this groove.
.. The sintered body was cut using a two-way diamond grindstone, and
.. Square plate-shaped pieces of 7 mm x O, 7 mm x O, and 6 mm were obtained.

このとき、砥石の径方向の摩耗量は角板1個あたり0.
00511にであり、切断に要する時間は角板1個あた
り10秒であった。
At this time, the amount of wear in the radial direction of the grindstone is 0.0% per square plate.
00511, and the time required for cutting was 10 seconds per square plate.

実施例4、比較例6 三塩化はう素とアンモニアを原料ガスとして用い、圧力
3 Torr %温度1940°C1蒸着速夏100μ
m/hrとして熱分解を行い、1.2sn厚のP−BN
板を析出させた。このP−BN板から直径121R1L
1厚さ0.8mmの円板を作製し、広い面の一方にダイ
ヤモンド砥石を用い@0.1m、深さ0.4朋の溝を1
.1朋間隔で格子状に掘った後、Mg、N2粉末中に埋
め込み、窒素気流中1250°Cで5時間保持し、Mg
aBNs  0.7モル%を拡散含有させた。これを原
料としてベルト型装置で温度1600°C1圧力5万8
千気圧の下に60分間保持して焼結体を得た。この焼結
体はcBNであることをXi回折により確認した。また
、得られた焼結体には格子状の溝がそのまま残っていた
Example 4, Comparative Example 6 Using boron trichloride and ammonia as raw material gases, pressure: 3 Torr%, temperature: 1940°C, vapor deposition speed: 100μ
P-BN of 1.2sn thickness was thermally decomposed as m/hr.
A plate was deposited. Diameter 121R1L from this P-BN plate
1. Fabricate a disk with a thickness of 0.8 mm, and use a diamond grindstone to cut a groove of @0.1 m and a depth of 0.4 mm on one of the wide sides.
.. After digging in a lattice pattern at 1-h intervals, it was embedded in Mg and N2 powder and kept at 1250°C for 5 hours in a nitrogen stream.
0.7 mol % of aBNs was diffusely included. This is used as raw material in a belt-type device at a temperature of 1,600°C and a pressure of 50,000 yen.
A sintered body was obtained by holding it under 1,000 atmospheres for 60 minutes. It was confirmed by Xi diffraction that this sintered body was cBN. In addition, the lattice-shaped grooves remained in the obtained sintered body.

比較のため、原料P−BN板に溝を掘らずに実施例と同
一の条件でcBN焼結体を製造した。これらの焼結体の
広い面を両面とも研磨した後、ビーム径0.1mmのY
A()レーデ−で切断し、1 mmX 1 mmX 0
−3mmの角板形状の小片を得た。
For comparison, a cBN sintered body was manufactured under the same conditions as in the example without digging a groove in the raw material P-BN plate. After polishing both wide surfaces of these sintered bodies, Y
Cut with A() radar, 1 mm x 1 mm x 0
A square plate-shaped piece of -3 mm was obtained.

レーデ−の平均出力、角板1個の切断に要した時間およ
び顕微ラマン分光分析のピーク幅による切断面のcBN
の結晶性を測定した。その結果を表1に記す。
cBN of the cut surface based on the average output of the radar, the time required to cut one square plate, and the peak width of the microscopic Raman spectroscopic analysis
The crystallinity of was measured. The results are shown in Table 1.

実施例5、比較例4 実施例4および比較例6のcBN焼結体角板に、スパッ
タリングにより、先ずNi f 5 [10AN 続い
て金tsooXコーティングしてメタライズを行いヒー
トシンクとして児成した。このヒートシンク上に半纏体
レーf木子をはんた付けし、リー日i接続した。この半
纏体レーデにt流゛を20’OmA流し、素子の表面温
度を測定した。その結果、実施例4の焼結体を用いたヒ
ートシンクのほうが比較例6のfiM体を用いたヒート
シンクよりも素子の表面温度が約10℃低いことがわか
つた。
Example 5, Comparative Example 4 The cBN sintered rectangular plates of Example 4 and Comparative Example 6 were first coated with Ni f 5 [10AN and then gold tsooX by sputtering for metallization to form heat sinks. A semi-integrated fiber was soldered onto this heat sink and connected to the heat sink. A t current of 20'OmA was applied to this semi-integrated radar, and the surface temperature of the element was measured. As a result, it was found that the surface temperature of the element in the heat sink using the sintered body of Example 4 was about 10° C. lower than that in the heat sink using the fiM body of Comparative Example 6.

〔発明の効果〕〔Effect of the invention〕

本発明のcBN焼結体の製造方法によれば、焼結体の切
断加工に要する時間および電力を低減することができる
だけでなく切断加工用工具の寿命を増大することができ
る。さらにレーず−による切断時の切断面周囲のcBN
焼結体の劣化を防止することができるのでヒートシンク
用等のcEN焼結体を安価にかつ大量に製造することが
できる。
According to the method for producing a cBN sintered body of the present invention, it is possible not only to reduce the time and power required for cutting the sintered body, but also to increase the life of the cutting tool. Furthermore, cBN around the cut surface when cutting with a laser
Since deterioration of the sintered body can be prevented, cEN sintered bodies for use in heat sinks and the like can be manufactured at low cost and in large quantities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、表面に対して垂直方向に格子状に溝を設けた
熱分解望化はう素(P−BN)成形体の斜視図である。 1:P−BN成形体、2:溝 第1図 1・・・P−BN成形体 2・・・溝 特許出願人 電気化学工業株式会社 手 続 争甫 正 書 (4)明細書第12頁表1最右列最上段’cBM」をr
cBN」に訂正する。 平成元年 2月 23日 ■、事件の表示 昭和63年特許願第318574号 2、発明の名称 立方晶窒化はう素焼給体の製造方法 3、補正をする者 事件との関係  特許出願人 住所 0100  東京都千代田区有楽町1丁目4番1
号5゜ 明細書の発明の詳細な説明の欄 補正の内容 (1)明細書第4頁第18行の「設けれたJに訂正する
。 (2)明細書第5頁第11行の「設けれた」に訂正する
。 を「設けられたノ を「設けられた」
FIG. 1 is a perspective view of a pyrolyzable borosilicate (P-BN) molded article in which grooves are provided in a lattice pattern in a direction perpendicular to the surface. 1: P-BN molded body, 2: Groove Figure 1 1... P-BN molded body 2... Groove Patent applicant Denki Kagaku Kogyo Co., Ltd. Procedural dispute book (4) Table on page 12 of the specification 1Rightmost row, top row 'cBM'
cBN”. February 23, 1989■, Display of case, 1986 Patent Application No. 318574 2, Name of invention, Method for manufacturing cubic nitrided borage feeder body 3, Person making amendment Relationship with case Address of patent applicant 0100 1-4-1 Yurakucho, Chiyoda-ku, Tokyo
No. 5゜ Contents of amendment in the Detailed Description of the Invention column of the specification (1) Correction to "J provided in page 4, line 18 of the specification. (2) Correction to "J provided in page 5, line 11 of the specification. Corrected to ``It was established.''``established'' means ``established''

Claims (2)

【特許請求の範囲】[Claims] 1.熱分解窒化ほう素成形体の表面に溝を設けた後高温
高圧処理を行うことを特徴とする立方晶窒化ほう素焼結
体の製造方法。
1. A method for producing a cubic boron nitride sintered body, which comprises forming grooves on the surface of a pyrolytic boron nitride molded body and then subjecting it to high temperature and high pressure treatment.
2.溝に融点が1500℃以上である金属を充填するこ
と特徴とする請求項1に記載の立方晶窒化ほう素焼結体
の製造方法。
2. 2. The method of manufacturing a cubic boron nitride sintered body according to claim 1, wherein the groove is filled with a metal having a melting point of 1500° C. or higher.
JP63318574A 1988-12-19 1988-12-19 Production of cubic boron nitride sintered body Pending JPH02164775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63318574A JPH02164775A (en) 1988-12-19 1988-12-19 Production of cubic boron nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63318574A JPH02164775A (en) 1988-12-19 1988-12-19 Production of cubic boron nitride sintered body

Publications (1)

Publication Number Publication Date
JPH02164775A true JPH02164775A (en) 1990-06-25

Family

ID=18100655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63318574A Pending JPH02164775A (en) 1988-12-19 1988-12-19 Production of cubic boron nitride sintered body

Country Status (1)

Country Link
JP (1) JPH02164775A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027122A1 (en) * 2021-08-26 2023-03-02 デンカ株式会社 Method for producing ceramic plate, ceramic plate, composite sheet and multilayer substrate
WO2023038150A1 (en) * 2021-09-13 2023-03-16 デンカ株式会社 Boron nitride sintered body and composite body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027122A1 (en) * 2021-08-26 2023-03-02 デンカ株式会社 Method for producing ceramic plate, ceramic plate, composite sheet and multilayer substrate
WO2023038150A1 (en) * 2021-09-13 2023-03-16 デンカ株式会社 Boron nitride sintered body and composite body

Similar Documents

Publication Publication Date Title
KR100212120B1 (en) Cvd diamond workpieces and their fabrication
SE447241B (en) HIGH-TEMPERATURE AND HIGH-PRESSURE PROCESS FOR PREPARING A SINTERED POLYCRYSTALLIN PRESSURE CUBIC BORN NITRID
JPH03232796A (en) Synthetic diamond product and manufacture thereof
JP6279559B2 (en) Metal crucible and method for forming the same
JP2000297370A (en) Surface functionalized diamond crystal and production thereof
KR100231742B1 (en) Wire drawing die blank and die therewith
JPH02164775A (en) Production of cubic boron nitride sintered body
US4626407A (en) Method of making amorphous boron carbon alloy cutting tool bits
JPH01246361A (en) Diamond-coated sintered alloy having excellent release resistance and its production
Ouyang et al. Deposition of diamond-like carbon films via excimer laser ablation of polybutadiene
JPH06183890A (en) Artificial diamond-coated material
US5075095A (en) Method for preparation of diamond ceramics
JPH0788502B2 (en) Hard composite powder abrasive for cutting and grinding
JPS61261480A (en) Diamond coated member
JPH0196073A (en) Method for brazing diamond
US3976444A (en) Production of improved boron abrasives
JPS60121251A (en) Diamond sintered body for tool and its production
KR940000365B1 (en) Making method of diamond cutter
JPH08336705A (en) Cutting tool made of cubic boron nitride sintered body with cutting face of cutter showing excellent wearing resistance
JP2774386B2 (en) Method for producing cubic boron nitride sintered body
JPH0912397A (en) Sintered hard film coated member and its production
JPS58139740A (en) Method of manufacturing hard substance layer
JPH02164774A (en) Cubic boron nitride sintered body and production thereof
RU94036610A (en) Method of manufacturing articles from superhard composite materials
JP2614870B2 (en) Manufacturing method of polycrystalline diamond sintered body