JPH02164750A - Special cement composition - Google Patents

Special cement composition

Info

Publication number
JPH02164750A
JPH02164750A JP31859188A JP31859188A JPH02164750A JP H02164750 A JPH02164750 A JP H02164750A JP 31859188 A JP31859188 A JP 31859188A JP 31859188 A JP31859188 A JP 31859188A JP H02164750 A JPH02164750 A JP H02164750A
Authority
JP
Japan
Prior art keywords
weight
melting
cooling
special cement
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31859188A
Other languages
Japanese (ja)
Other versions
JPH0684261B2 (en
Inventor
Yoshihiko Ohama
大濱 嘉彦
Kozo Sonobe
園部 甲三
Kunio Hisamatsu
久松 國男
Takashi Fukuzawa
隆 福澤
Kosuke Takeuchi
宏介 竹内
Tatsushi Tabata
田畑 達志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP31859188A priority Critical patent/JPH0684261B2/en
Publication of JPH02164750A publication Critical patent/JPH02164750A/en
Publication of JPH0684261B2 publication Critical patent/JPH0684261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/345Hydraulic cements not provided for in one of the groups C04B7/02 - C04B7/34

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To improve the thermal stability and thermal shock resistance of a special cement compsn. by specifying the components such as CaO, SiO2, Al2O3 and F and the fineness of powder and incorporating a prescribed hydraulic component and a prescribed stable mineral. CONSTITUTION:This special cement compsn. has a compsn. consisting of, by weight, 28-62% CaO, 14-48% SiO2, 5-23% Al2O3, 1-11% F and <=20% other components and >=2,000cm<2>/g fineness of powder measured by the Blaine method and contains 11CaO.7Al2O3.CaF2 and/or beta-2CaO.SiO2 as a hydraulic component and one or more among 3CaO.2SiO2.CaF2, 2CaO.Al2O3.SiO2 and CaF2 as stable minerals recognized by a powder X-ray diffraction method.

Description

【発明の詳細な説明】 し産業上の利用分野] 本発明は熱的安定性の優れた特殊セメント組成物に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a special cement composition with excellent thermal stability.

[従来の技術] 従来より、鉄鋼スラグが潜在水硬性のあるところからセ
メントへの有効利用が図られていることは周知であり、
代表的なものには高炉スラグを用いたセメントがある。
[Prior art] It is well known that steel slag has been effectively used in cement due to its latent hydraulic properties.
A typical example is cement using blast furnace slag.

他方、製鋼スラグの利用も知られており、特定組成のス
ラグのセメントが提案されている(特公昭57−342
27号公報)。
On the other hand, the use of steelmaking slag is also known, and slag cement with a specific composition has been proposed (Japanese Patent Publication No. 57-342
Publication No. 27).

また、特開昭57−129849号公報には、7 2C
aO・SiO2及び3CaO4SiO□・CaFzの1
種または2種と12CaO・7Al2O3とCaF2の
固溶体との特定な割合の製鋼電気炉還元期スラグと石膏
との配合物よりなるセメントが開示されている。
Furthermore, in Japanese Patent Application Laid-open No. 57-129849,
1 of aO・SiO2 and 3CaO4SiO□・CaFz
A cement is disclosed comprising a blend of steelmaking electric furnace reduction stage slag and gypsum in specific proportions of one or two species and a solid solution of 12CaO.7Al2O3 and CaF2.

また、製鋼スラグに石膏及び消石灰を配合したセメント
の提案もある(特公昭51−44536号公報)。
There is also a proposal for a cement made by blending gypsum and slaked lime with steelmaking slag (Japanese Patent Publication No. 44536/1983).

更に、特開昭63−166739号公報には夕景のアル
カリ及び硼素成分を有する製鋼スラグ粉末をセメントと
することが開示されている。
Furthermore, Japanese Patent Application Laid-open No. 166739/1983 discloses that steelmaking slag powder containing alkali and boron components in a sunset scene can be used as cement.

[発明が解決しようとする課題] 鉄鋼スラグを主剤とするセメントは、高炉スラグのよう
な大量且つ安定したスラグ組成であれば、再現性の点か
らみて実際上問題となることはないが、電気炉製鋼スラ
グにあっては、スラグ組成が常に微妙に変化すると共に
冷却速度や雰囲気も異なってくるので、セメントへの利
用に際し、その再現性を求めることは非常に問題がある
[Problem to be solved by the invention] Cement based on steel slag does not pose a practical problem in terms of reproducibility if the slag composition is large and stable, such as blast furnace slag. In the case of furnace steel slag, the slag composition always changes slightly, as well as the cooling rate and atmosphere, so it is very problematic to seek reproducibility when using it for cement.

前述の特開昭63−166739号公報は、本発明者ら
の開発に係る製鋼゛スラグセメントで、通常のセメント
と異なり、熱安定性のある特異なセメントとして本発明
者らが開発したものであるが、工業的に利用するにはバ
ラツキが大きく、信頼性に欠ける。
The above-mentioned Japanese Patent Application Laid-Open No. 63-166739 describes a steel-making slag cement developed by the present inventors, which was developed by the present inventors as a unique cement that has thermal stability, unlike ordinary cement. However, there are large variations and lack of reliability for industrial use.

これは、スラグの性質上、スラグ組成が不可避的に変化
すると同時に耐熱性のあるセメントとして必要な組成の
解析がなされていないところに問題がある。
This is problematic because the slag composition inevitably changes due to the nature of slag, and at the same time, the composition required for heat-resistant cement has not been analyzed.

他方、これらのスラグセメントはいずれも水硬反応がポ
ルトランドセメントに比較して遅く、強度的に劣るもの
が多く、実用性に至るまでには問題が多い。
On the other hand, all of these slag cements have a slower hydraulic reaction than Portland cement, and are often inferior in strength, so there are many problems before they can be put to practical use.

本発明者らは、上記の問題点に鑑み、スラグ組成の解明
と同時にスラグとは別に完全合成により熱安定性のある
セメントを開発すべく、多角的に数多くの実験をもとに
組成の解明を行なった結果、工業的に有利に利用できる
特殊セメントの開発に成功した。
In view of the above problems, the present inventors have elucidated the composition of slag based on numerous experiments from various angles in order to develop a thermally stable cement by complete synthesis separately from slag. As a result, we succeeded in developing a special cement that can be used advantageously industrially.

[課題を解決するための手段] 即ち、本発明の目的として提供しようとする特殊セメン
ト組成物は溶融冷却後の粉砕物を主成分とする粉末であ
って、下記特性: ■化学組成はCaO=28.0〜62.0重量%、S 
1oz= 14.0〜48.0重量%、A 1203 
=5.0〜23.0重量%、F=1.0〜11.0重量
%及びその他の成分が20重量%以下の範囲にある; ■粉末X線回折法により求められる鉱物組成として11
CaO4^e20. ’CaFz及び/またはβ−2C
a(lsiOzの水硬性成分と、 3CaO4Si02
・CaF2.2CaO・^12oz ・SiO□及びC
aF、から選ばれた少なくとも1種または2種以上の安
定鉱物を有する; ■粉末度がブレーン比表面積測定法で少なくとも200
0cm”7g以上の範囲にある;を有することを特徴と
しているものである以下、本発明の特殊セメント組成物
を更に説明する。
[Means for Solving the Problems] That is, the special cement composition to be provided as an object of the present invention is a powder mainly composed of pulverized material after melting and cooling, and has the following properties: ■The chemical composition is CaO= 28.0-62.0% by weight, S
1oz = 14.0-48.0% by weight, A 1203
= 5.0 to 23.0% by weight, F = 1.0 to 11.0% by weight, and other components are in the range of 20% by weight or less; ■ Mineral composition determined by powder X-ray diffraction method: 11
CaO4^e20. 'CaFz and/or β-2C
a(hydraulic component of lsiOz and 3CaO4Si02
・CaF2.2CaO・^12oz ・SiO□ and C
Contains at least one or two or more stable minerals selected from aF; ■ Fineness is at least 200 as measured by Blaine specific surface area measurement.
In the following, the special cement composition of the present invention will be further explained.

本発明に係る特殊セメント組成物は、溶融冷却後の粉砕
物を主成分とする粉末であって、上記3つの物理化学特
性を有するものであるが、その主成分となる溶融冷却後
の粉砕物は、例えば製鋼還元期スラグであっても、ある
いは所望の原料を配合した混合物を溶融冷却して製造す
る合成品であってもよい0品質管理上は後者の方が有利
であるが、所定の品質で得られれば前者の方が経済的に
有利である。
The special cement composition according to the present invention is a powder whose main component is a pulverized product after melting and cooling, and has the above three physicochemical properties. may be, for example, steelmaking reduction stage slag, or a synthetic product produced by melting and cooling a mixture of desired raw materials.The latter is more advantageous in terms of quality control, but The former is economically advantageous if it can be obtained in terms of quality.

従って、本発明に係る特殊セメント組成物の3つの特性
は主成分たる溶融冷却後の粉砕物の特性に主体的に依存
している。
Therefore, the three properties of the special cement composition according to the present invention depend primarily on the properties of the pulverized material after melting and cooling, which is the main component.

即ち、係る溶融冷却後の粉砕物はまず化学組成としては
、CaO=40.0〜65.0重量%、S io 2=
 10〜32.0重量%、A1.0.=7.0〜24.
0重量%、F=1.5〜12重量%及びその他の成分が
15重量%以下の範囲にあるが、特に好ましくはCaO
=42〜60重量%、Sin2=10〜30重量%、A
l1zOp= 10〜22重量%、F=4〜12重量%
及びその他の成分が20重量%以下である。
That is, the chemical composition of the pulverized material after melting and cooling is CaO = 40.0 to 65.0% by weight, S io 2 =
10-32.0% by weight, A1.0. =7.0~24.
0% by weight, F = 1.5 to 12% by weight, and other components are in the range of 15% by weight or less, particularly preferably CaO
=42-60% by weight, Sin2 = 10-30% by weight, A
l1zOp=10-22% by weight, F=4-12% by weight
and other components are 20% by weight or less.

なお、その他の成分としては原料系及び溶融炉耐火物の
浸蝕からの混入あるいは耐火物の浸蝕を保護するために
意図的に混入することがあるMgO成分であり、その他
Fe2O3成分の不可避的成分が挙げられる。
In addition, other components include MgO components that may be mixed into the raw material system and melting furnace refractories due to corrosion, or may be intentionally mixed in to protect refractories from corrosion, and other unavoidable components such as Fe2O3 components. Can be mentioned.

更に、本発明では、その他の成分の中に硼素、リン、バ
ナジウム、ナトリウム、カリウム、バリウムまたはスト
ロンチウム等の1種または2種以上の含有成分を酸化物
として多くとも5重量%まで含むことができる。
Furthermore, in the present invention, one or more components such as boron, phosphorus, vanadium, sodium, potassium, barium, or strontium can be included in the other components in an amount of at most 5% by weight as an oxide. .

これらは水硬性鉱物として2CaO・SiO□が存在す
る場合には、γ型から準安定なβ型に改質させるために
主として必要なものであって、11CaO・7Al2O
3・CaF2のみを水硬性鉱物とするときは必ずしも必
要な成分ではない、尤も、いずれかの場合でも多くの場
合、これらの成分の適量の含有は好ましいことであり、
特に硼素成分は好ましく、B20.として多くとも5重
量%まで、通常0.2〜3重量%の範囲がよい。
When 2CaO・SiO□ exists as a hydraulic mineral, these are mainly necessary to modify the γ type to the metastable β type, and 11CaO・7Al2O
3.When only CaF2 is used as a hydraulic mineral, it is not necessarily a necessary component; however, in most cases, it is preferable to contain appropriate amounts of these components.
Particularly preferred is a boron component, B20. The content is preferably at most 5% by weight, usually in the range of 0.2 to 3% by weight.

ただし、係る溶融冷却後の粉砕物の化学組成は重量比と
して下記の組成式(A)、(B)及び<C>を満足する
ことを必要条件としている: 組成式(A)及び(B)はいわゆる塩基度式であり、組
成式(C)は一種の適用範囲の基準を規定したものであ
って、いずれも前記化学組成と共に数多くの実験により
設定されたものである。
However, it is a necessary condition that the chemical composition of the pulverized product after melting and cooling satisfies the following compositional formulas (A), (B), and <C> as a weight ratio: Compositional formulas (A) and (B) is a so-called basicity formula, and the compositional formula (C) defines a kind of standard for the applicable range, and both of them were established through numerous experiments together with the chemical composition.

係る範囲外のものを主成分として用いた場合には、水硬
性及び/または熱安定性が不充分で、実用性あろ水硬強
度と1000℃前後までの耐熱性とを同時に具備する特
殊セメント組成物を再現性よく得ることはできない。
If a substance outside this range is used as a main component, the hydraulic properties and/or thermal stability will be insufficient, making it impossible to use a special cement composition that simultaneously has hydraulic strength and heat resistance up to around 1000°C. It is not possible to obtain something with good reproducibility.

次に、溶融冷却後の粉砕物は、粉末X線回折法で求めら
れる鉱物組成が前記組成の水硬性鉱物と安定鉱物を示す
結晶性微粉末を示す結晶性微粉末を特徴としている。
Next, the pulverized product after melting and cooling is characterized by a crystalline fine powder whose mineral composition determined by powder X-ray diffraction shows a hydraulic mineral and a stable mineral having the above composition.

従って、本発明に係る特殊セメント組成物の結晶性の特
徴は専らこの主成分たる前記結晶性微粉末に依存してい
るものである。
Therefore, the crystalline characteristics of the special cement composition according to the present invention depend solely on the crystalline fine powder as the main component.

係る結晶性粉末において、水硬性鉱物成分の含有割合と
しては、許容できる化学組成の範囲内で異なるけれども
10〜90重量%、好ましくは10〜75重量%の範囲
内にある。
In such a crystalline powder, the content of the hydraulic mineral component is in the range of 10 to 90% by weight, preferably 10 to 75% by weight, although it varies within the range of acceptable chemical composition.

この理由は、水硬いずれも鉱物成分が約10重量%未満
では実用性のある水硬強度が得られず、他方、約90重
量%を超える場合にはセメント硬化成形物を加熱した際
に割れ(クラック)や歪み(そり)が生ずると共に収縮
率が大きくなって強度劣化するなどの現象があって熱安
定性がなくなるからである。
The reason for this is that if the mineral content of any hydraulic component is less than about 10% by weight, practical hydraulic strength cannot be obtained; on the other hand, if it exceeds about 90% by weight, the cement-cured molded product will crack when heated. This is because thermal stability is lost due to phenomena such as (cracks) and distortion (warpage) occurring, as well as an increase in shrinkage rate and deterioration of strength.

また、上記結晶性性粉末において、11CaO・7^f
=03・caF2及びβ−2CaO・SiO,の2つの
水硬性鉱物の含有割合は特に限定されるものではない。
In addition, in the above crystalline powder, 11CaO・7^f
The content ratio of the two hydraulic minerals =03.caF2 and β-2CaO.SiO is not particularly limited.

なお、水硬性鉱物が少ない結晶性粉末にあっては、特に
、11CaO4^120 s ・Ca F 2が少ない
場合、石膏をSo、換算で特殊セメント組成物全重量当
たり5重量%を限度として必要に応じ添加配合すること
が望ましい。
In addition, in the case of crystalline powder containing few hydraulic minerals, especially when 11CaO4^120 s ・Ca F 2 is small, gypsum must be converted into So, up to 5% by weight based on the total weight of the special cement composition. It is desirable to add and blend as needed.

この理由は石膏の添加によって、水硬性成分であるエト
リンガイトを生成せしめて、常温におけろ水硬強度が得
られるからである。尤も、石膏の配合量を多くすること
は成形体の加熱時にエトリンガイトの脱水、容積変化や
組織の弱体を招来して熱安定性を損なうから上記のよう
にその配合量は5重量%が限度である。
The reason for this is that the addition of gypsum produces ettringite, a hydraulic component, and provides hydraulic strength at room temperature. However, increasing the amount of gypsum mixed will lead to dehydration of ettringite, change in volume, and weakening of the structure when the molded body is heated, impairing thermal stability, so as mentioned above, the amount added should be limited to 5% by weight. be.

石膏としては、無水、半水及び三水の石膏あるいはこれ
らの中間物や混合物であってもよく、また、その生成履
歴は特に問わないが、好ましくは無水または半水の石膏
が適当である。
The gypsum may be anhydrous, hemihydrous, or trihydric gypsum, or intermediates or mixtures thereof, and its production history is not particularly limited, but anhydrous or semiaqueous gypsum is preferably suitable.

従って、該組成物におけるその他の成分としては石膏の
添加がある場合を考慮すると20重量%が限度である。
Therefore, the limit for other components in the composition is 20% by weight, considering the addition of gypsum.

次に、前記結晶性粉末において、安定鉱物というのは水
硬反応に実質的に無関係の結晶相を示す成分のことであ
って、3CaO・2SiOz ・CaFz、2CaO・
Al2O3・SiO□及びCaF2から選ばれた少なく
とも1種または2種以上の結晶相をいうが、特に、Ca
F 2は必ず含まれている成分である。
Next, in the crystalline powder, stable minerals are components that exhibit a crystalline phase that is substantially unrelated to hydraulic reactions, such as 3CaO.2SiOz.CaFz, 2CaO.
Refers to at least one or two or more crystal phases selected from Al2O3・SiO□ and CaF2, especially Ca
F2 is a component that is always included.

更に、MgO成分が不可避的に含まれている場合にあっ
ては、上記に加えて、更に3CaO・MgO・2SiO
z、5CaO・Mg0・3SiOz、2CaO・MgO
・5i02及びMgO・^l、03等の二成分系または
三成分系のマグネシウム系結晶相の一種または二種以上
が含まれる。
Furthermore, if an MgO component is unavoidably included, in addition to the above, 3CaO・MgO・2SiO
z, 5CaO・Mg0・3SiOz, 2CaO・MgO
- Contains one or more types of binary or ternary magnesium-based crystal phases such as 5i02 and MgO ^l, 03.

これらの安定鉱物成分は本発明に係る特殊セメント組成
物において熱的安定性を付与するものであり、前述のよ
うに結晶性粉末中に10〜90重量%の範囲で含有され
る。
These stable mineral components impart thermal stability to the special cement composition according to the present invention, and are contained in the crystalline powder in an amount of 10 to 90% by weight as described above.

このように、本発明に係る特殊セメント組成物は、その
主成分たる溶融冷却後の結晶性粉末には3CaO・5i
Oaを全く含まない点で、従来のポルトランドセメント
とは全く異なるセメントであり、更に、フリーのCaO
成分が認められないことも特徴の1つとなっている。
As described above, the special cement composition according to the present invention contains 3CaO.5i in the crystalline powder after melting and cooling, which is the main component.
This cement is completely different from conventional Portland cement in that it does not contain any Oa, and it also contains free CaO.
One of its characteristics is that no ingredients are recognized.

なお、本発明において、上記の鉱物組成及びその割合は
いずれも粉末X線回折測定法に基づいて同定されるもの
であり、且つ各組成の割合(R%)は次式 [式中、Hsは同定される各鉱物の第1ピークの高さ(
鵠−)、Hは目的鉱物の第1ピークの高さ(m−)を表
すコで表し、これを重量%で表示したものである。
In addition, in the present invention, the above mineral compositions and their proportions are all identified based on powder X-ray diffraction measurement method, and the proportion of each composition (R%) is determined by the following formula [where Hs is The height of the first peak of each mineral identified (
H represents the height (m) of the first peak of the target mineral, which is expressed in weight%.

従って、例えば水硬性鉱物が10〜90重量%というの
は [式中、Hssは各安定鉱物の第1ピークの高さ(、、
)、H3は11CaO4^12as ・CaFtの第1
ピークの高さ(m−)、H2はβ−2CaO・SiO2
の第1ピークの高さ(am)を表す]で求めた値を意味
する。
Therefore, for example, 10 to 90% by weight of hydraulic minerals means [where Hss is the height of the first peak of each stable mineral (,
), H3 is the first of 11CaO4^12as ・CaFt
Peak height (m-), H2 is β-2CaO・SiO2
represents the height (am) of the first peak of .

更に、溶融冷却後の結晶性微粉末はその粉末度がブレー
ン比表面積が2000〜5000 cm2/ gの範囲
にあり、これを主成分として構成される特殊セメント組
成物にあっては少なくとも2000cI12/g以上の
範囲にある。
Furthermore, the crystalline fine powder after melting and cooling has a Blaine specific surface area in the range of 2000 to 5000 cm2/g, and a special cement composition composed of this as a main component has a Blaine specific surface area of at least 2000 cI12/g. It is within the above range.

この理由は約2000cI12/g未満にあっては、水
硬反応や後述する活性シリカとのポゾラン反応が不充分
で初期強度が得られないために実用性を欠くためであり
、一方、上限は粉砕の便宜及び後記の比表面積が大きい
活性シリカの配合量に左右される。
The reason for this is that if it is less than about 2000cI12/g, the hydraulic reaction and the pozzolanic reaction with activated silica described later are insufficient and initial strength cannot be obtained, making it impractical. It depends on the convenience of , and the blending amount of activated silica having a large specific surface area as described below.

本発明に係る特殊セメント組成物において、主成分たる
結晶性粉末は、例えば製鋼スラグを改質して調製するこ
とも可能であるが、品質安定なものとして大量に生産す
る場合には、所望の原料を配合して合成するのがよい。
In the special cement composition according to the present invention, the crystalline powder that is the main component can be prepared by modifying steelmaking slag, for example, but when producing in large quantities as a product with stable quality, it is necessary to prepare the crystalline powder as the main component. It is best to synthesize by blending raw materials.

即ち、CaO原料、Sin、原料、へ120.原料及び
F原料を溶融物組成が前記の範囲になるように所望の原
料を配合し、電熱、アークまたは抵抗式の電気炉や燃焼
方式の平炉等の加熱炉で溶融する。
That is, CaO raw material, Sin raw material, 120. Desired raw materials and F raw materials are blended so that the melt composition falls within the above range, and melted in a heating furnace such as an electric heating, arc or resistance type electric furnace, or a combustion type open hearth furnace.

この場合、硼素成分は予め混合してもよいし、溶融物に
直接添加配合してもよい。
In this case, the boron component may be mixed in advance or may be added directly to the melt.

溶融は約1300℃以上で行なわれ、完全溶融後、炉か
らタップして徐冷して結晶化させ、次いで粗砕及び微粉
砕する。この微粉砕に際し、必要に応じ石膏を所定量添
加配合することにより製品化する。
Melting is carried out at a temperature of about 1300° C. or higher, and after complete melting, the material is tapped from the furnace and slowly cooled to crystallize, followed by coarse and fine grinding. During this fine pulverization, if necessary, a predetermined amount of gypsum is added and blended to produce a product.

なお、係る溶融冷却後の粉末において、結晶相の成分や
割合は主として原料調合物の組成に依存するけれども、
冷却条件によっても左右されるから、使用目的に応じて
適宜調製して所望の鉱物組成の粉末を得ればよい。
In addition, in the powder after melting and cooling, the components and proportions of the crystal phase mainly depend on the composition of the raw material mixture,
Since it also depends on the cooling conditions, powder with the desired mineral composition can be obtained by adjusting the powder appropriately depending on the purpose of use.

本発明に係る特殊セメント組成物は、前記の如き溶融冷
却後の結晶性微粉末を主成分とするものであるが、特に
、活性シリカを配合して塩基度を調製してなるものであ
る。
The special cement composition according to the present invention is mainly composed of the above-mentioned crystalline fine powder after melting and cooling, and in particular, activated silica is blended to adjust the basicity.

ここに活性シリカとは、セメント中のCaOなとの塩基
成分の中和反応を水の存在下及び加熱状態の下で生ぜし
める非晶質微細シリカをいい、例えばフェロシリコンダ
スト、ヒユームドシリカ、シリカゾル及び活性白土等が
挙げられるが、特に、フェロシリコンダストやヒユーム
ドシリカの如き超微粉シリカが好適である。
Activated silica here refers to amorphous fine silica that causes a neutralization reaction of basic components such as CaO in cement in the presence of water and under heating conditions, such as ferrosilicon dust, fumed silica, silica sol, and Examples include activated clay, and ultrafine silica such as ferrosilicon dust and fumed silica are particularly suitable.

活性シリカの配合量は溶融冷却後の結晶性微粉末や活性
シリカの物性、特殊セメント組成物の使用目的等によっ
て異なるけれども、特殊セメント組成物が前記範囲の化
学組成において使用され、多くの場合、組成物全重量当
たりSiO□として5〜35重量部、特に、10〜30
重量部が好ましい。
Although the amount of active silica blended varies depending on the crystalline fine powder after melting and cooling, the physical properties of the activated silica, the purpose of use of the special cement composition, etc., the special cement composition is used with a chemical composition within the above range, and in many cases, 5 to 35 parts by weight, especially 10 to 30 parts by weight of SiO□ based on the total weight of the composition
Parts by weight are preferred.

本発明に係る特殊セメント組成物は、このように特定な
物理化学的特性をもつ溶融冷却後の微粉末を主成分とし
て、これに活性シリカを配合してなるものであるが、そ
の組成物は該微粉末を予め調合されたものであってもよ
いし、また、使用の際に活性シリカを配合しても差し支
えない。
The special cement composition according to the present invention is made by blending activated silica into a fine powder that has been melted and cooled and has such specific physicochemical properties as its main component. The fine powder may be prepared in advance, or activated silica may be added at the time of use.

本発明に係る特殊セメント組成物は一般に用いられてい
るポルトランドセメントとは異なって、W/Cの小さい
水で水硬性を示すと共に1000℃前後までの熱安定性
と耐熱衝撃性を有する特長を有している。
The special cement composition of the present invention differs from commonly used Portland cement in that it exhibits hydraulic properties in water with a low W/C, and has thermal stability and thermal shock resistance up to around 1000°C. are doing.

従って、この特殊セメント組成物を結合剤として所望す
る形状または大きさの無機質成形体を製造するにあたり
、その機能をより発揮させるために使用する骨材は耐火
、耐熱性を有するものがよく、特に熱履歴を受けたもの
、例えばシャモット、耐火レンガ屑、陶磁器層、各種金
属精錬の際の徐冷スラグまたは火成岩等が好ましい。
Therefore, when producing an inorganic molded body of a desired shape or size using this special cement composition as a binder, the aggregate used should be fire-resistant and heat-resistant, especially Those that have undergone a thermal history, such as chamotte, refractory brick scraps, ceramic layers, slowly cooled slags from various metal smelting processes, or igneous rocks are preferred.

[作 用] 本発明に係る特殊セメント組成物は、前記のような特定
な化学組成をもつ溶融冷却後の粉砕物を主成分とするも
のであって、11CaO・7Al2O3・CaF2及び
/またはβ−2CaO・SiO□の水硬性鉱物成分と3
CaO4SiO,・CaF2.2CaO・Al2O3・
SiO,及びCaF、から選ばれた少なくとも1種また
は2種以上の安定鉱物を結晶相として有する9反応機構
の詳細は不明であるが、11CaO・7Al2O3・C
aF 2は常温において水硬反応によりアルミン酸カル
シウム系水和物を生成し、初期強度を付与する。また、
β−2CaO・SiO□の大部分は未水和結晶相として
存在しているが、徐々に水和反応が進行し、長期強度を
増進する。更に、このセメント組成物を結合材として耐
火、耐熱性無機質成形体を得る場合には、その量にも関
係するが、I LCao 4Al2O3、−CaF2は
前記と同様な水和反応により水硬する。活性シリカの存
在下でアルミン酸カルシウム系水和物は加熱により2C
aO・^bO−・5rQ2の如きCaO−^12(:h
  5if2系鉱物に、β−2CaO・SiO,は3C
aO4SiO,・CaF2の如きCaOSiOz  C
aFt系鉱物へ変化し、熱的安定性が付与される。
[Function] The special cement composition according to the present invention is mainly composed of a pulverized product after melting and cooling having the above-mentioned specific chemical composition, and contains 11CaO, 7Al2O3, CaF2 and/or β- 2 Hydraulic mineral components of CaO/SiO □ and 3
CaO4SiO, ・CaF2.2CaO・Al2O3・
The details of the reaction mechanism are unknown, but the details of the reaction mechanism are unknown, 11CaO・7Al2O3・C
aF 2 generates a calcium aluminate hydrate through a hydraulic reaction at room temperature and imparts initial strength. Also,
Most of β-2CaO.SiO□ exists as an unhydrated crystalline phase, but the hydration reaction gradually progresses to improve long-term strength. Furthermore, when obtaining a fire-resistant and heat-resistant inorganic molded body using this cement composition as a binder, ILCao4Al2O3, -CaF2 is hydraulically hardened by the same hydration reaction as described above, although it also depends on the amount. In the presence of activated silica, calcium aluminate hydrate is heated to 2C
CaO-^12 (:h
In 5if2 minerals, β-2CaO・SiO, is 3C
CaOSiOz C such as aO4SiO, ・CaF2
It changes into an aFt-based mineral, imparting thermal stability.

このように、本発明に係るセメント組成物は水硬性と耐
熱性とを同時に具備する特異なセメント組成物として各
種の骨材の結合作用を発揮するのである。
In this way, the cement composition according to the present invention exhibits a bonding effect for various aggregates as a unique cement composition that simultaneously has hydraulic properties and heat resistance.

[実 施 例] (B203”31.8重量%、CaO=29.2重量%
、S io 2= 25.7重量%、Na20=8.3
重量%)を溶融物に対し1.5重量%添加した。
[Example] (B203”31.8% by weight, CaO=29.2% by weight
, Sio2=25.7% by weight, Na20=8.3
% by weight) was added to the melt in an amount of 1.5% by weight.

次いで、この溶湯を耐火レンガで内張すし且つ保温蓋を
有するカーボン製のスラグボットに出湯して一昼夜徐冷
した。
Next, this molten metal was poured into a carbon slugbot lined with refractory bricks and equipped with a heat-insulating lid, and slowly cooled overnight.

次いで、これらの徐冷塊をショウクラッシャーで粗砕し
た後、更にボールミルで微粉砕を行なって溶融冷却後の
微粉末を得た。この微粉末について、物性を測定したと
ころ第1表及び第2表の結果が得られた。
Next, these slowly cooled lumps were coarsely crushed using a show crusher, and then further finely crushed using a ball mill to obtain a fine powder after melting and cooling. When the physical properties of this fine powder were measured, the results shown in Tables 1 and 2 were obtained.

生石灰、珪岩、高炉滓、ホタル石、アルミナサンド及び
工業薬品を原料として調合した各種の混合物をそれぞれ
100KVA抵抗式電気炉を用いて溶融した後、砂状の
硼珪酸アルカリガラス次いで、得られた各微粉末85重
量%にシリカフラワー[日本重化学工業(株)社製: 
S + 02 = 90平旦%115重量部を配合して
第3表に示すような特殊セメント組成物を得た。
After melting various mixtures prepared using quicklime, quartzite, blast furnace slag, fluorite, alumina sand, and industrial chemicals as raw materials in a 100 KVA resistance electric furnace, sand-like borosilicate alkali glass was then obtained. 85% by weight of fine powder and silica flower [manufactured by Japan Heavy Chemical Industry Co., Ltd.]
A special cement composition as shown in Table 3 was obtained by blending 115 parts by weight of S + 02 = 90% by weight.

信■評」1 a、成形体(供試体)の調製 各実施例で得られた特殊セメント組成物を結合剤として
、これに第4表に示すような配合割合にて骨材シャモッ
ト粉(以下の第5表に組成及び粒度を示す)、減水剤及
び水からなる調合物をフロー値が約200mmとなるよ
うにASTM規格のボール容量51のモルタル混練機で
混練した。
1 a. Preparation of molded bodies (specimen) Using the special cement composition obtained in each example as a binder, add aggregate chamotte powder (hereinafter referred to as The composition and particle size are shown in Table 5), a water reducing agent and water were kneaded in an ASTM standard mortar mixer with a ball capacity of 51 to give a flow value of about 200 mm.

策−−−先一−j丸 第−5! 次いで、150+*+*X 450mmX 10IIs
の型枠へ流し込み、振動成形し、20℃、80%RHの
恒温、恒湿室内に18時間靜1してから脱型した後、2
0℃、50%RHの恒温恒湿室内に120時間気乾養生
を行なった0次に、気乾養生後の各成形体をカッターで
切断し、160m+@X40+*mX 10m+*(厚
さ)の供試体を1試料につき9個作成し、3個を組とし
た供試体を3組宛作成した。
Strategy --- First - J round - 5th! Then, 150 + * + * X 450 mm X 10IIs
It was poured into a mold, vibration-molded, kept in a constant temperature and humidity chamber at 20°C and 80% RH for 18 hours, and then removed from the mold.
After air-drying for 120 hours in a constant temperature and humidity room at 0°C and 50% RH, each molded body after air-drying was cut with a cutter to give a thickness of 160m+@X40+*mX 10m+* (thickness). Nine specimens were prepared for each sample, and three sets of three specimens were prepared.

b、供試体の養生条件 1試験3組の供試体のうち2組は150℃、5時間乾燥
し、予め850℃に昇温している電気炉に入れ、10分
間加熱する。1組の試料は取り出した後、自然放冷して
物性測定用供試体とする。
b. Curing conditions for specimens 1 Test Two of the three specimens were dried at 150° C. for 5 hours, placed in an electric furnace that had been heated to 850° C., and heated for 10 minutes. After taking out one set of samples, they are allowed to cool naturally and used as specimens for measuring physical properties.

他の1組の試料は取り出した後、直ちに20℃の水中へ
投入し、1時間浸漬後、取り出して7日間気乾養生して
測定用供試体とする。
After the other set of samples was taken out, they were immediately put into water at 20°C, immersed for 1 hour, taken out, and air-dried for 7 days to be used as measurement specimens.

残りの1組は加熱処理することなく6日間気乾養生して
測定用供試体とする。
The remaining set was air-dried for 6 days without heat treatment and used as a measurement specimen.

C6供試体の評価方法 (1)「曲げ強度」はスパン1001、中央載荷、定変
位荷重−0,5+ua/分にて測定する。数値は1試料
1組3個の供試体の平均値である。
Evaluation method for C6 specimen (1) "Bending strength" is measured with a span of 1001, center load, and constant displacement load -0.5+ua/min. The numerical value is the average value of one set of three specimens.

(2)「収縮率」は同一供試体(160論−×40論鴎
×1011m厚さ)の長手方向寸法を気乾養生後と、8
50℃急熱放冷後について、ノギスを用いて測定し、寸
法変化を気乾養生後の寸法を100として百分率で表す
、数値は前記(1)項と同様に1組3個の平均値である
(2) "Shrinkage rate" is the longitudinal dimension of the same specimen (160 mm - x 40 mm x 1011 m thickness) after air-drying and 8
After being rapidly heated to 50°C and left to cool, it was measured using a caliper, and the dimensional change was expressed as a percentage, with the dimension after air-drying being 100.The numerical value is the average value of 3 pieces per set, as in item (1) above. be.

(3)「反り」は加熱供試体について、型枠に接触した
平面を測定面とし、JIS 八−5209r陶磁器質タ
イル」に準じ、加熱による「でこ反り」「へこ反り」を
測定した。
(3) "Warpage" was determined by measuring "bumpy warpage" and "dented warpage" of the heated specimen according to JIS 8-5209r Ceramic Tile, using the plane in contact with the mold as the measuring surface.

なお、「でこ反り」については測定値に(+)の符号を
、「へこ反り」についてはく−)の符号を付した。
It should be noted that the measured values are marked with a (+) sign for "bumpy warpage", and the sign (-) is given for "dented warp".

数値は前記(1)及び(2)項と同様に1組3個の平均
値である。
The numerical values are the average values of one set of three, similar to items (1) and (2) above.

(4)「割れ」は倍率16倍のルーペにより目視判定す
る。
(4) "Cracks" are determined visually using a loupe with a magnification of 16 times.

(5)虐待試験はオートクレーブにて180℃、3時間
加圧養生した後、供試体の変化を目視観察する。
(5) In the abuse test, changes in the specimen are visually observed after curing under pressure in an autoclave at 180°C for 3 hours.

d、評価の結果 前記で得られた各供試体の物性を測定したところ第6表
及び第7表の結果が得られた。
d. Results of evaluation When the physical properties of each specimen obtained above were measured, the results shown in Tables 6 and 7 were obtained.

以上の結果から判るように、気乾養生供試体は曲げ強度
が実施例7を除き、いずれも約100kg/c−2以上
を有し、850℃の加熱急冷後の供試体については、全
て気乾養生品を上回っている。
As can be seen from the above results, all of the air-dried cured specimens, except for Example 7, had a bending strength of approximately 100 kg/c-2 or more, and all of the specimens after heating and quenching at 850°C had a bending strength of approximately 100 kg/c-2 or more. It exceeds dry curing products.

しかも、常温から850℃という厳しい熱変化、二対し
ても割れは実質的に認められず、且つ収縮率も0.2%
以内で反りも極めて小さい。
What's more, even with severe thermal changes from room temperature to 850℃, virtually no cracking is observed, and the shrinkage rate is 0.2%.
The warpage is also extremely small.

更に、850℃という赤熱された供試体を急冷してもヘ
アークラックすら発生せず、曲げ強度は変化しないが、
若干増加する傾向すらあって、これを7日間気乾養生す
ると強度は再び加熱孔のそれを上回わっている。
Furthermore, even if the test specimen heated to red-hot temperature of 850°C was rapidly cooled, no hair cracks occurred and the bending strength did not change.
There was even a slight tendency for the strength to increase, and when this was air-dried for 7 days, the strength again exceeded that of the heating hole.

火鵠」1トヱ1」」2を剪」1し 実施例1で調製した溶融冷却後の微粉末にシリコンフラ
ワーを第9表に示す量配合して特殊セメント組成物を得
た。その組成を第8表に示す。
A special cement composition was obtained by blending silicon flour in the amount shown in Table 9 to the melted and cooled fine powder prepared in Example 1. Its composition is shown in Table 8.

この組成物に第9表に示す配合割合で調合した物を用い
て供試体を作成し、その評価を行なったところ、第10
表の結果が得られた。なお、供試体の作成及び評価法の
各操作条件は実施例1と全く同じである。
Test specimens were prepared using this composition in the proportions shown in Table 9 and evaluated.
The results in the table were obtained. Note that the operating conditions for preparing the specimen and the evaluation method were exactly the same as in Example 1.

大ffiλ2」二( 実施例7で調製した溶融冷却後の微粉末に半水石膏を定
量配合した。
A fixed amount of gypsum hemihydrate was added to the melted and cooled fine powder prepared in Example 7.

この微粉末に第11表に示す配合割合で配合した調合物
を用いて供試体を作成し、その評価を行なったところ、
第12表の結果が得られた。なお、供試体の作成及び評
価法の各操作条件は実施例1と全く同じである。また、
特殊セメント組成物の組成は第13表に示す通りである
A test specimen was prepared using a mixture of this fine powder in the proportions shown in Table 11, and the test specimen was evaluated.
The results shown in Table 12 were obtained. Note that the operating conditions for preparing the specimen and the evaluation method were exactly the same as in Example 1. Also,
The composition of the special cement composition is shown in Table 13.

[発明の効果コ 本発明に係る特殊セメント組成物は、従来のポルトラン
ドセメントとは異なり著しい熱安定性と耐熱衝撃性を有
している。
[Effects of the Invention] The special cement composition according to the present invention has remarkable thermal stability and thermal shock resistance, unlike conventional Portland cement.

従って、これを結合剤として用いる無機質成形体は熱に
よる結合性の劣化がないので、耐熱、耐火性を必要とす
る分野への利用が拡大する。
Therefore, an inorganic molded article using this as a binder will not have its bonding properties deteriorated by heat, so its use will expand to fields that require heat resistance and fire resistance.

特許出願人 日本化学工業株式会社Patent applicant Nihon Kagaku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 1、溶融冷却後の粉砕物を主成分とする粉末であって、
該粉末が下記の特性: [1」化学組成はCaO=28.0〜62.0重量%、
SiO_2=14.0〜48.0重量%、Al_2O_
3=5.0〜23.0重量%、F=1.0〜11.0重
量%及びその他の成分が20重量%以下の範囲にある; [2]粉末X線回折法により求められる鉱物組成として
11CaO・7Al_2O_3・CaF_2及び/また
はβ−2CaO・SiO_2の水硬性成分と、3CaO
・2SiO_2・CaF_2、CaO・Al_2O_3
・SiO_2及びCaF_2から選ばれた少なくとも1
種または2種以上の安定鉱物を有する; [3」粉末度がブレーン比表面積測定法で少なくとも2
000cm^2/g以上の範囲にある; を有することを特徴とする特殊セメント組成物。 2、溶融冷却後の粉砕物を主成分とする粉末は、溶融冷
却後の粉砕物と活性シリカとの混合物である請求項1記
載の特殊セメント組成物。 3、溶融冷却後の粉砕物を主成分とする粉末は、溶融冷
却後の粉砕物、石膏及び活性シリカとの混合物である請
求項1記載の特殊セメント組成物。 4、溶融冷却後の粉砕物を主成分とする粉末は、全重量
当たり、該粉砕物が65〜95重量%、活性シリカがS
iO_2換算で5〜35重量%及び石膏がSO_3換算
で0〜5重量%の範囲である請求項2または3記載の特
殊セメント組成物。 5、溶融冷却後の粉砕物は硼素成分をB_2O_3とし
て0.1〜5重量%含有する請求項1から4までのいず
れか1項記載の特殊セメント組成物。
[Claims] 1. A powder whose main component is a pulverized product after melting and cooling,
The powder has the following properties: [1] Chemical composition is CaO = 28.0 to 62.0% by weight,
SiO_2=14.0-48.0% by weight, Al_2O_
3 = 5.0 to 23.0% by weight, F = 1.0 to 11.0% by weight, and other components are in the range of 20% by weight or less; [2] Mineral composition determined by powder X-ray diffraction method As a hydraulic component of 11CaO・7Al_2O_3・CaF_2 and/or β-2CaO・SiO_2 and 3CaO
・2SiO_2・CaF_2, CaO・Al_2O_3
・At least one selected from SiO_2 and CaF_2
Contains a species or two or more stable minerals; [3] Fineness is at least 2 by Blaine specific surface area measurement
000 cm^2/g or more; A special cement composition characterized by having: 2. The special cement composition according to claim 1, wherein the powder whose main component is the pulverized product after melting and cooling is a mixture of the pulverized product after melting and cooling and activated silica. 3. The special cement composition according to claim 1, wherein the powder whose main component is the pulverized product after melting and cooling is a mixture of the pulverized product after melting and cooling, gypsum, and activated silica. 4. Powder whose main component is the pulverized material after melting and cooling is such that the pulverized material is 65 to 95% by weight and the activated silica is S, based on the total weight.
The special cement composition according to claim 2 or 3, wherein the content of iO_2 is 5 to 35% by weight and the gypsum content is 0 to 5% by weight as SO_3. 5. The special cement composition according to any one of claims 1 to 4, wherein the pulverized product after melting and cooling contains a boron component of 0.1 to 5% by weight as B_2O_3.
JP31859188A 1988-12-19 1988-12-19 Special cement composition Expired - Fee Related JPH0684261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31859188A JPH0684261B2 (en) 1988-12-19 1988-12-19 Special cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31859188A JPH0684261B2 (en) 1988-12-19 1988-12-19 Special cement composition

Publications (2)

Publication Number Publication Date
JPH02164750A true JPH02164750A (en) 1990-06-25
JPH0684261B2 JPH0684261B2 (en) 1994-10-26

Family

ID=18100848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31859188A Expired - Fee Related JPH0684261B2 (en) 1988-12-19 1988-12-19 Special cement composition

Country Status (1)

Country Link
JP (1) JPH0684261B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063460A (en) * 2009-09-15 2011-03-31 Taiheiyo Cement Corp Cement additive and cement composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063460A (en) * 2009-09-15 2011-03-31 Taiheiyo Cement Corp Cement additive and cement composition

Also Published As

Publication number Publication date
JPH0684261B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
EP0364640B1 (en) Hard setting refractory composition
WO2020083408A1 (en) Preparation method for titanium composite anti-erosion wear-resistant refractory castable
KR970001242B1 (en) Low heat building cement composition
Aziz et al. Physico-chemical and mechanical characteristics of pozzolanic cement pastes and mortars hydrated at different curing temperatures
JPS597660B2 (en) Method for manufacturing cement composition
CA2403111A1 (en) Cupola slag cement mixture and methods of making and using the same
CA1037503A (en) Carbon composition and shaped article made therefrom
JPH02164750A (en) Special cement composition
JP3027593B2 (en) Manufacturing method of special cement
US4222786A (en) Ferrochromium slag for uses requiring refractoriness and mechanical strength
JPH11292578A (en) Belite slag
JPH02164749A (en) Special cement
JPH02133359A (en) Production of high strength cement composition and high strength cement hardened body
KR100481883B1 (en) PHOSPHATE COMBINED MONOLITHIC REFRACTORIES UTILIZED SPENT Mg-Cr BRICK
JP5008296B2 (en) Hydraulic composition and hydrated solidified body
RU2769164C1 (en) Expansion admixture for cement containing steel slag
US3125454A (en) Insulating compositions
JP2548085B2 (en) Irregular refractory composition
JP2592887B2 (en) Inorganic cured product and method for producing the same
JPS5927731B2 (en) Method for producing calcia clinker
SU1636372A1 (en) Refractory concrete filler
JP2000327436A (en) Monolithic refractory and waste melting furnace using the same
JP2817953B2 (en) Inorganic molded article and method for producing the same
KR100468448B1 (en) Mg-Cr castable composition with residual expansion
JPS5913457B2 (en) Production method of calcia clinker

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees