JPH02164744A - Optical body excellent in durability and heat ray reflecting glass - Google Patents
Optical body excellent in durability and heat ray reflecting glassInfo
- Publication number
- JPH02164744A JPH02164744A JP63319395A JP31939588A JPH02164744A JP H02164744 A JPH02164744 A JP H02164744A JP 63319395 A JP63319395 A JP 63319395A JP 31939588 A JP31939588 A JP 31939588A JP H02164744 A JPH02164744 A JP H02164744A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- film
- optical body
- substrate
- tantalum oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 36
- 239000011521 glass Substances 0.000 title claims abstract description 28
- 239000010408 film Substances 0.000 claims abstract description 87
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910001936 tantalum oxide Inorganic materials 0.000 claims abstract description 31
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 150000004767 nitrides Chemical class 0.000 claims abstract description 21
- 239000010409 thin film Substances 0.000 claims abstract description 9
- 239000000126 substance Substances 0.000 abstract description 12
- 229910052751 metal Inorganic materials 0.000 abstract description 8
- 239000002184 metal Substances 0.000 abstract description 8
- 239000002131 composite material Substances 0.000 abstract description 4
- 229920003023 plastic Polymers 0.000 abstract description 4
- 239000004033 plastic Substances 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 70
- 238000002834 transmittance Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 11
- 238000004544 sputter deposition Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 6
- 229910001887 tin oxide Inorganic materials 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- 235000014692 zinc oxide Nutrition 0.000 description 5
- 229910001928 zirconium oxide Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910003437 indium oxide Inorganic materials 0.000 description 4
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000005344 low-emissivity glass Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- -1 hafnium nitride Chemical class 0.000 description 2
- 239000005340 laminated glass Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012788 optical film Substances 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 229910007541 Zn O Inorganic materials 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- SJKRCWUQJZIWQB-UHFFFAOYSA-N azane;chromium Chemical compound N.[Cr] SJKRCWUQJZIWQB-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- GWPLDXSQJODASE-UHFFFAOYSA-N oxotantalum Chemical compound [Ta]=O GWPLDXSQJODASE-UHFFFAOYSA-N 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- RNWHGQJWIACOKP-UHFFFAOYSA-N zinc;oxygen(2-) Chemical class [O-2].[Zn+2] RNWHGQJWIACOKP-UHFFFAOYSA-N 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
- C03C17/3429—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
- C03C17/3435—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Laminated Bodies (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は各種光学的機能を有する耐久性の優れた光学体
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a highly durable optical body having various optical functions.
[従来の技術]
従来からガラス、プラスチックなどの透明基板に薄膜を
形成して光学的機能を付加したものとして、ミラー、熱
線反射ガラス、低放射ガラス、干渉フィルター、カメラ
レンズやメガネレンズの反射防止コートなどがある。[Conventional technology] Conventionally, optical functions have been added by forming thin films on transparent substrates such as glass or plastic, such as mirrors, heat-reflecting glasses, low-emission glasses, interference filters, and anti-reflection for camera lenses and eyeglass lenses. There are coats etc.
通常のミラーでは、無電解メツキ法でAgが、または真
空蒸着法、スパッタリング法などでA1やCrなどが形
成される。これらの中でCr膜は比較的丈夫なのでコー
ト面が露出した表面鏡としても一部用いられている。In a normal mirror, Ag is formed by an electroless plating method, or A1, Cr, etc. are formed by a vacuum evaporation method, a sputtering method, or the like. Among these, the Cr film is relatively strong, so it is partially used as a surface mirror with an exposed coated surface.
熱線反射ガラスは、酸化チタンや酸化錫などがスプレー
法、CVD法あるいは浸漬法などで形成されてきた。最
近では、金属膜、窒化膜、錫をドープした酸化インジウ
ム(ITO)などがスパッタリング法でガラス板面に形
成されたものが熱線反射ガラスとして使われるようにな
ってきた。スパッタリング法は膜厚コントロールが容易
で且つ複数の膜を連続して形成でき、透明酸化膜と組み
合せて、透過率、反射率、色調などを設計することが可
能である。このため意匠性を重視する建築用などに需要
が伸びている。Heat-reflective glass has been formed using titanium oxide, tin oxide, or the like by a spray method, a CVD method, or a dipping method. Recently, metal films, nitride films, tin-doped indium oxide (ITO), etc., formed on glass plate surfaces by sputtering have come to be used as heat-reflecting glasses. The sputtering method allows for easy film thickness control and the ability to form multiple films in succession, and in combination with a transparent oxide film, it is possible to design transmittance, reflectance, color tone, etc. For this reason, demand is increasing for architectural applications where design is important.
室内の暖房機や壁からの輻射熱を室内側に反射する低放
射ガラス(低放射率ガラス)は、銀を酸化亜鉛で挟んだ
ZnO/Ag/ZnOの3層系またはZnO/Ag/Z
nO/Ag/ZnOの51il系(特願昭61−280
644号参照)などの構成を持ち、複層ガラスか合わせ
ガラスの形で使われる。近年ヨーロッパの寒冷地での普
及が目ざましい。Low-emissivity glass (low-emissivity glass) that reflects radiant heat from indoor heaters and walls indoors is a three-layer system of ZnO/Ag/ZnO, in which silver is sandwiched between zinc oxides, or ZnO/Ag/Z.
nO/Ag/ZnO 51il system (patent application 1986-280)
644) and is used in the form of double-glazed or laminated glass. In recent years, its popularity in cold regions of Europe has been remarkable.
レンズなどの反射防止コートは、酸化チタン、酸化ジル
コニウムなどの高屈折率膜と酸化シリコン、フッ化マグ
ネシウムなどの低屈折率膜を交互に積層している。通常
は真空蒸着法が用いられ、成膜時は基板加熱をして耐擦
傷性の向上を図っている。Antireflection coatings for lenses and the like consist of alternating layers of high refractive index films such as titanium oxide and zirconium oxide and low refractive index films such as silicon oxide and magnesium fluoride. Usually, a vacuum evaporation method is used, and the substrate is heated during film formation to improve scratch resistance.
[発明が解決しようとする課題]
表面鏡や、単板の熱線反射ガラス及びレンズなどの反射
防止コートなどは、コートされた膜が空気中に露出した
状態で使用される。このため、化学的な安定性や耐摩耗
性に優れていなければならない。一方、低放射ガラスで
も複層ガラスまたは合わせガラスになる前の運搬や取り
扱い時の傷などにより不良品が発生する。このため安定
で耐摩耗性に優れた保護膜も兼ねた光学薄膜が望まれて
いる。[Problems to be Solved by the Invention] Antireflection coatings for surface mirrors, single-panel heat-reflecting glasses, lenses, and the like are used with the coated film exposed to the air. Therefore, it must have excellent chemical stability and wear resistance. On the other hand, even low-emissivity glass can be defective due to scratches during transportation or handling before it is made into double-glazed or laminated glass. For this reason, there is a demand for an optical thin film that is stable and has excellent wear resistance and also serves as a protective film.
耐久性向上のためには通常化学的に安定で透明な酸化膜
が空気側に設けられる。これらの酸化膜としては酸化チ
タン、酸化錫、酸化ジルコニウム、酸化珪素などがあり
、必要な性能に応じて選択され、使用されてきた。To improve durability, a chemically stable and transparent oxide film is usually provided on the air side. These oxide films include titanium oxide, tin oxide, zirconium oxide, silicon oxide, etc., and have been selected and used depending on the required performance.
しかし、酸化チタン、酸化ジルコニウムは化学的安定性
に優れているが、結晶質の膜になりやすく表面の凹凸が
大きくなる傾向があり、このため擦ったときの摩擦が大
きくなり耐摩耗性に劣る。However, although titanium oxide and zirconium oxide have excellent chemical stability, they tend to form crystalline films with large irregularities on the surface, which increases friction when rubbed and has poor wear resistance. .
一方、酸化錫、酸化珪素はそれぞれ酸、アルカリに弱く
長期間の浸漬には耐えない。On the other hand, tin oxide and silicon oxide are weak against acids and alkalis, respectively, and cannot withstand long-term immersion.
このように、単板で使用できる程度の高い耐久性を持っ
た薄膜は知られていない。As described above, there is no known thin film that is durable enough to be used as a veneer.
[課題を解決するための手段]
本発明は前述の問題点を解決すべくなされたものであり
、基板上に少なくとも2層からなる光学薄膜が形成され
た光学体において、空気側の最外層が酸化タンタル膜か
らなることを特徴とする耐久性の優れた光学体を提供す
るものである。[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and is directed to an optical body in which an optical thin film consisting of at least two layers is formed on a substrate, in which the outermost layer on the air side is The present invention provides an optical body having excellent durability and characterized by being made of a tantalum oxide film.
第1図は、本発明に係わる光学体の一例の断面図を示し
たものであり、1は透明あるいは着色したガラスやプラ
スチックなどからなる基板、2は金属、窒化物、炭化物
、酸化物あるいはこれらの複合物などからなる第1層、
3は空気側の最外層となる酸化タンタル膜からなる第2
層を示す。FIG. 1 shows a cross-sectional view of an example of an optical body according to the present invention, in which 1 is a substrate made of transparent or colored glass or plastic, and 2 is a substrate made of metal, nitride, carbide, oxide, or any of these materials. The first layer consists of a composite of
3 is a second layer made of tantalum oxide film which is the outermost layer on the air side.
Show layers.
第2図は、本発明に係わる光学体の別の一例の断面図を
示したものであり、10は上記基板1と同様の各種基板
、11は透明誘電体膜からなる第1層、12は窒化物膜
からなる第2層、13は空気側の最外層となる酸化タン
タル膜からなる第3層を示す。FIG. 2 shows a cross-sectional view of another example of the optical body according to the present invention, in which 10 is various substrates similar to the above substrate 1, 11 is a first layer made of a transparent dielectric film, and 12 is a sectional view of another example of the optical body according to the present invention. The second layer is made of a nitride film, and 13 is the third layer made of a tantalum oxide film, which is the outermost layer on the air side.
本発明は上記したように少なくとも2層構成よりなるが
、場合によっては第1図の基板1と第1層2、第1層2
と第2層3、あるいは、第2図の基板10と第1層11
、第1層11と第2層12、又は第2層12と第3層1
3との間に1層、又は複数の層を形成して付着力向上や
光学特性の調整の機能、又はその他各種能を持たしても
良い。本発明における最も大きな特徴は、空気側の最外
層に酸化タンタル膜を形成することであり、これによっ
て耐摩耗性と化学的安定性に優れた光学体を可能にして
いる。酸化タンタル膜は、耐擦傷性に優れていると同時
に、十分な化学的安定性を有しているので耐久性の優れ
た光学体の最外層として大変好ましい。As described above, the present invention has at least a two-layer structure, but in some cases, the substrate 1 and the first layer 2 shown in FIG.
and the second layer 3, or the substrate 10 and the first layer 11 in FIG.
, the first layer 11 and the second layer 12, or the second layer 12 and the third layer 1
One layer or a plurality of layers may be formed between the layer and the layer 3 to have the function of improving adhesion, adjusting optical properties, or having various other functions. The most significant feature of the present invention is that a tantalum oxide film is formed on the outermost layer on the air side, thereby making possible an optical body with excellent wear resistance and chemical stability. A tantalum oxide film has excellent scratch resistance and sufficient chemical stability, so it is very preferable as the outermost layer of an optical body with excellent durability.
かかる酸化タンタル膜は、タンタル、酸素の2成分だけ
に限定されるものではな(、耐久性向上、光学定数調整
、成膜時の安定性、あるいは成膜速度の向上などのため
に他の成分を含んでいても差し支えない。また本発明の
酸化タンタル膜は必ずしも透明である必要はなく、酸素
欠損の状態の吸収性膜や、一部窒素を含有していても同
様に有効である。Such tantalum oxide films are not limited to the two components tantalum and oxygen (but may also contain other components to improve durability, adjust optical constants, improve stability during film formation, or improve film formation speed). Further, the tantalum oxide film of the present invention does not necessarily have to be transparent, and it is equally effective even if it is an absorbent film in an oxygen-deficient state or partially contains nitrogen.
最外層である酸化タンタル膜(第2層3又は第3層13
)の膜厚は特に限定されるものではない。用途に応じて
透過色や反射色を考慮して決定すればよいが、あまり薄
いと十分な耐久性が得られないため、用途にもよるが、
50Å以上であることが望ましい。The tantalum oxide film that is the outermost layer (second layer 3 or third layer 13)
) is not particularly limited. The color can be determined by considering the transmitted color and reflected color depending on the application, but if it is too thin, sufficient durability cannot be obtained, so depending on the application,
It is desirable that the thickness be 50 Å or more.
一方、酸化タンタル膜は比較的屈折率が高いため、あま
り厚(なると干渉効果が生じてきて反射色も強(なるの
で、外観をニュートラルにしたい場合には、1000人
未満、好ましくは700人、特に500Å以下であるこ
とが好ましい。On the other hand, since the tantalum oxide film has a relatively high refractive index, if it is too thick, interference effects will occur and the reflected color will be strong. In particular, it is preferably 500 Å or less.
特に、自然な色、即ちニュートラル色で低い反射率、か
つ70%以上の可視光線透過率が要求される自動車用ガ
ラスに応用する場合には、酸化タンタル膜3は膜厚は5
0〜200人であることが好ましい。In particular, when applied to automobile glass that requires a natural color, that is, a neutral color, low reflectance, and visible light transmittance of 70% or more, the tantalum oxide film 3 should have a film thickness of 5.
The number of participants is preferably 0 to 200 people.
第2層3又は第3層13の膜形成法も特に限定されない
。真空蒸着法、イオンブレーティング法、スパッタリン
グ法などいずれも可能であるが、熱線反射ガラスなど、
自動車や建築用などの大面積コーティングが必要な場合
は、均一性に優れる反応性スパッタリング法が好ましい
。The method of forming the second layer 3 or the third layer 13 is also not particularly limited. Vacuum deposition method, ion blating method, sputtering method, etc. are all possible, but heat ray reflective glass etc.
When large-area coating is required, such as for automobiles or architecture, reactive sputtering is preferred because of its excellent uniformity.
第1層2の膜材料は特に限定されず、用途によって、あ
るいは要求仕様によって金属、窒化物、炭化物、硼化物
、酸化物、珪化物あるいはこれらの複合物から選択され
る。The film material of the first layer 2 is not particularly limited, and is selected from metals, nitrides, carbides, borides, oxides, silicides, or composites thereof depending on the application or required specifications.
熱線反射ガラスの場合は第1層2として熱線吸収膜、例
えば窒化チタン、窒化ジルコニウム、窒化ハフニウム、
窒化クロム、窒化タンクルなどの窒化物、または錫をド
ープした酸化インジウム(ITO) 、Ag%Au、
Pd等の金属等が主に選ばれる。In the case of heat-reflecting glass, the first layer 2 is a heat-absorbing film such as titanium nitride, zirconium nitride, hafnium nitride,
Nitride such as chromium nitride, tanker nitride, or tin-doped indium oxide (ITO), Ag%Au,
Metals such as Pd are mainly selected.
第1層2の窒化物膜の膜厚は、希望する透過率にもよる
が、1000Å以下、好ましくは500Å以下が望まれ
る。1000人を超えると窒化物膜の吸収が大きくなり
過ぎ、又、内部応力のため剥離が生じ易(なる。The thickness of the nitride film of the first layer 2 is preferably 1000 Å or less, preferably 500 Å or less, although it depends on the desired transmittance. If the number exceeds 1,000, the absorption of the nitride film becomes too large, and peeling is likely to occur due to internal stress.
窒化物膜を用いる場合、ガラス界面との付着力を増すた
めに基板と窒化物膜間にもう1層を形成し第2図のよう
な3層構成とするのは有効である。かかる第1層11と
しては、酸化チタン、酸化ジルコニウム、酸化ハフニウ
ム、酸化錫、酸化タンタル、酸化インジウムなどの酸化
物や、硫化亜鉛などからなる透明誘電体膜が好ましい。When using a nitride film, it is effective to form another layer between the substrate and the nitride film to form a three-layer structure as shown in FIG. 2 in order to increase adhesion to the glass interface. The first layer 11 is preferably a transparent dielectric film made of an oxide such as titanium oxide, zirconium oxide, hafnium oxide, tin oxide, tantalum oxide, or indium oxide, or zinc sulfide.
第2層12の窒化物膜との付着力やスパッタリングでの
生産性を考えると、第2層の窒化物膜と同様な元素を含
む誘電体膜が好ましいが、特にこれだけに限定されるも
のではなく、第1層11/第2118112の組み合わ
せは酸化タンタル/窒化チタン、酸化ジルコニウム/窒
化チタン、あるいは酸化錫/窒化ジルコニウムなど種々
となりつる。Considering the adhesion with the nitride film of the second layer 12 and productivity in sputtering, a dielectric film containing the same elements as the nitride film of the second layer is preferable, but it is not limited to this. The combination of the first layer 11/the second layer 2118112 can be various, such as tantalum oxide/titanium nitride, zirconium oxide/titanium nitride, or tin oxide/zirconium nitride.
かかる誘電体膜11の膜厚は特に限定されないが、これ
らの誘電体は屈折率も大きく、適当な膜厚を選択すれば
、干渉効果も利用して反射率や色調の調節も可能である
。特に、干渉効果を利用して可視域での高透過、低反射
を目的とする熱線反射ガラスに用いる場合は、第1層l
lの膜厚は光学的膜厚で1000〜1800人の範囲で
調節されるのが好ましい。第1層11の屈折率は2.0
〜2.5の範囲で選択されるのが望ましいが、この範囲
外でも、光学的膜厚が適正な範囲内であればよい。又、
第2層12の窒化物膜の膜厚は、希望する透過率にもよ
るが、1000Å以下が好ましく、30〜500人の範
囲が最適である。1000人を超えると窒化物膜の吸収
が大きくなり過ぎ、透過率が低下するとともに、内部応
力のため剥離が生じ易くなる。Although the thickness of the dielectric film 11 is not particularly limited, these dielectrics have a large refractive index, and if an appropriate film thickness is selected, it is possible to adjust the reflectance and color tone using interference effects. In particular, when used in heat-reflecting glass that uses interference effects to achieve high transmission and low reflection in the visible range, the first layer l
The film thickness of l is preferably adjusted in the range of 1,000 to 1,800 in terms of optical film thickness. The refractive index of the first layer 11 is 2.0
It is desirable that the thickness be selected within the range of 2.5 to 2.5, but it may be outside this range as long as the optical film thickness is within an appropriate range. or,
The thickness of the nitride film of the second layer 12 depends on the desired transmittance, but is preferably 1000 Å or less, and optimally ranges from 30 to 500 Å. If the number exceeds 1,000, the absorption of the nitride film becomes too large, the transmittance decreases, and peeling tends to occur due to internal stress.
第1層2として錫をドープした酸化インジウム(ITO
)を用いる場合、熱線反射性能を上げるためにはキャリ
ア濃度と移動度が大きく、且つ4000Å以上の膜厚の
ITOが望ましい。干渉による反射色を抑えるためには
、ITOを少なくとも7000Å以上形成するのが好ま
しい。その上に保護層として酸化タンタル膜(第2層3
)を形成する。このような低抵抗で透過率が高く、且つ
耐久性のある光学薄膜は熱線反射ガラスとしてばかりで
はなく、単板で電磁波シールド用の窓ガラス、自動車の
フロントガラスの電熱風防、リアガラスの曇り止め、あ
るいは透明アンテナとしても用いることが出来る。更に
、化学的耐久性を利用してエレクトロクロミック表示素
子のITO(給電電極)の保護コートとしても使える。The first layer 2 is made of tin-doped indium oxide (ITO).
), it is desirable to use ITO with a high carrier concentration and mobility and a film thickness of 4000 Å or more in order to improve the heat ray reflection performance. In order to suppress reflected colors due to interference, it is preferable to form ITO with a thickness of at least 7000 Å or more. On top of that is a tantalum oxide film (second layer 3) as a protective layer.
) to form. Such a low-resistance, high-transmittance, and durable optical thin film can be used not only as heat-reflecting glass, but also as a single-pane window glass for shielding electromagnetic waves, electric windshields for automobile windshields, anti-fog for rear windows, Alternatively, it can be used as a transparent antenna. Furthermore, by taking advantage of its chemical durability, it can also be used as a protective coat for ITO (power supply electrode) of electrochromic display elements.
低反射ガラスの場合は、空気側の最外M3(酸化タンタ
ル膜)より高屈折率を有する膜を第1層2として形成す
るか、又は3層、あるいはそれ以上の多層膜構成をとる
。3層膜の場合は、第1図の基板lと第1層2、又は第
1贋2と第2層3の間にもう一層形成して、屈折率と膜
厚を調整することにより、反射率を低減させる。In the case of low-reflection glass, a film having a higher refractive index than the outermost M3 (tantalum oxide film) on the air side is formed as the first layer 2, or a multilayer structure of three or more layers is used. In the case of a three-layer film, an additional layer is formed between the substrate 1 and the first layer 2, or the first layer 2 and the second layer 3 in Fig. 1, and the refractive index and film thickness are adjusted to improve reflection. reduce the rate.
低放射ガラスの場合は、基板/酸化膜/Ag/酸化タン
タル膜の3M構成、又は、基板/酸化膜/Ag/酸化膜
/Ag/酸化タンタル膜の5層構成にすると有効である
。かかる酸化膜としては、特に限定はされないが、Zn
Oが一例として上げられる。又、酸化タンタル膜を用い
ても良い。In the case of low-emission glass, it is effective to use a 3M structure of substrate/oxide film/Ag/tantalum oxide film or a five-layer structure of substrate/oxide film/Ag/oxide film/Ag/tantalum oxide film. Such an oxide film is not particularly limited, but Zn
O is given as an example. Alternatively, a tantalum oxide film may be used.
表面鏡に応用する場合は、基板上に、金属としてガラス
との接着力の良好なりロムなどを第1層2として形成し
、その上に第2H3として本発明の酸化タンタル膜を形
成すれば良い。When applied to a surface mirror, it is sufficient to form a metal such as ROM, which has good adhesion to glass, as the first layer 2 on the substrate, and then form the tantalum oxide film of the present invention as the second layer 3 on top of it. .
基板l又は10は、通常ガラス、プラスチックなどが用
いられる。ミラーとして用いる場合は、これに限定され
ず、平滑であれば金属、セラミックスなどの不透明基板
であっても構わない。The substrate l or 10 is usually made of glass, plastic, or the like. When used as a mirror, the substrate is not limited to this, and an opaque substrate such as metal or ceramic may be used as long as it is smooth.
その他の応用として、光学薄膜ではないが、サーマルヘ
ッドや磁気ディスクなどのメモリーディスクの保護膜と
して用いることもできる。As another application, although it is not an optical thin film, it can also be used as a protective film for memory disks such as thermal heads and magnetic disks.
又、本発明においては、第1図及び第2図に示したよう
に基板の片面だけに光学薄膜を形成してもよいし、基板
の両面に形成してもよい。Further, in the present invention, the optical thin film may be formed on only one side of the substrate as shown in FIGS. 1 and 2, or may be formed on both sides of the substrate.
[作 用]
本発明における光学体の空気側の最外M、即ち、第1図
第2層3又は第2図第3層13は、酸化タンタル膜から
なっており、表面が平滑で、摩擦抵抗が低く、これによ
って高い耐久性を有しているので、本発明の光学体にお
いて、耐摩耗性や耐薬品性を向上させるための保護層の
役割を持つ。更にその屈折率、膜厚などの調整により、
光学的な機能、即ち、透過率、反射率、色調などの調整
機能を有する。[Function] The outermost M on the air side of the optical body in the present invention, that is, the second layer 3 in FIG. 1 or the third layer 13 in FIG. Since it has low resistance and therefore high durability, it plays the role of a protective layer for improving wear resistance and chemical resistance in the optical body of the present invention. Furthermore, by adjusting the refractive index, film thickness, etc.
It has optical functions, that is, functions for adjusting transmittance, reflectance, color tone, etc.
本発明において最外層以外の層は主に光学的な面での作
用を有し、透過や反射性能などを担っている。In the present invention, the layers other than the outermost layer mainly have an optical function, and are responsible for transmission and reflection performance.
又、熱線反射性能を有する光学体において、窒化物膜は
熱線反射機能を受は持つものである。又、干渉効果を利
用して可視域での高透過、低反射を目的とした熱線反射
ガラスにおいては、第2図の第2層12は熱線反射機能
を受は持ち、第1N11及び第3層13は、窒化物膜の
可視域での反射を防止する機能を有する。In addition, in an optical body having heat ray reflecting performance, the nitride film also has a heat ray reflecting function. In addition, in heat-reflecting glass that aims to achieve high transmission and low reflection in the visible range by utilizing interference effects, the second layer 12 in Fig. 2 has a heat-reflecting function, and the first layer 11 and the third layer 13 has a function of preventing reflection of the nitride film in the visible range.
[実施例]
(実施例1)
ガラス基板をスパッタリング装置の真空槽にセットしI
X 10−’ Torrまで排気した。アルゴンと窒
素の混合ガスを導入して圧力を2×lO°3Torrと
した後、チタンを反応性スパッタリングして窒化チタン
(第1層)を約40人形成した。[Example] (Example 1) A glass substrate was set in a vacuum chamber of a sputtering device.
It was evacuated to X 10-' Torr. After introducing a mixed gas of argon and nitrogen to set the pressure to 2×10°3 Torr, titanium was reactively sputtered to form about 40 titanium nitrides (first layer).
次にアルゴンと酸素の混合ガスに切り替え圧力を2 X
10−” Torrにして、タンタルを反応性スパッ
タリングして酸化タンタル(第2層)を約100人形成
した。Next, switch to a mixed gas of argon and oxygen and increase the pressure to 2
Approximately 100 tantalum oxides (second layer) were formed by reactive sputtering of tantalum at 10-'' Torr.
こうして得られた熱線反射ガラスの可視光透過率TV、
太陽光線透過率TE、コート面可面光視光反射率F、ガ
ラス面可視光反射率RVGは、それぞれ?1.1.61
.6.11.4.9.1 (%)であった。膜の外観
は干渉色が見られずニュートラルな色調であった。膜の
耐久性を調べるために0.1規定の硫酸、水酸化ナトリ
ウム中に120時間、あるいは沸騰水中に2時間浸漬し
たが、いずれも透過率、反射率の変化は1%以内であっ
た。Visible light transmittance TV of the heat ray reflective glass obtained in this way,
What are the sunlight transmittance TE, coated surface visible light reflectance F, and glass surface visible light reflectance RVG? 1.1.61
.. It was 6.11.4.9.1 (%). The appearance of the film was neutral in color with no interference color observed. To examine the durability of the membrane, it was immersed in 0.1N sulfuric acid or sodium hydroxide for 120 hours, or in boiling water for 2 hours, but in both cases the change in transmittance and reflectance was within 1%.
砂消しゴムによる擦り試験でも、傷は殆どつかず極めて
すぐれた耐摩耗性を示した。Even in a rubbing test with a sand eraser, there were almost no scratches and it showed extremely excellent abrasion resistance.
(実施例2)
実施例1と同様にして、窒化チタン膜を約40人形成し
た後、酸素タンタルを約1000人形成した。(Example 2) In the same manner as in Example 1, about 40 people formed a titanium nitride film, and then about 1000 people formed an oxygen tantalum film.
こうして得られた試料は、実施例1と同様の耐薬品性、
耐水性、耐摩耗性を示したが、外観は強い干渉色が見ら
れた。The sample thus obtained had the same chemical resistance as Example 1,
Although it exhibited water resistance and abrasion resistance, strong interference colors were observed in its appearance.
(比較例)
実施例の耐久性の効果を見るために、実施例1と同様に
して窒化チタン膜を約40人形成し、次にアルゴンと酸
素の混合ガスに切り替え、圧力を2 X 10−”To
rrにして錫を反応性スパッタリングして酸化錫を約2
00人形成した。(Comparative Example) In order to see the durability effect of the example, about 40 people formed a titanium nitride film in the same manner as in Example 1, then switched to a mixed gas of argon and oxygen, and the pressure was increased to 2 x 10- “To
rr and reactively sputtering tin to form tin oxide of approx.
00 people formed.
こうして得られた試料を、硫酸に浸漬したところ、透過
率、反応率ともに大きく変化した。When the sample thus obtained was immersed in sulfuric acid, both the transmittance and reaction rate changed significantly.
[発明の効果]
本発明は、基板からみて一番外側、即ち、空気側の最外
層に酸化タンタル膜を用いることにより、実施例1及び
2に示すように、化学的安定性と耐摩耗性に優れた光学
体を得ることを可能にするものである。これにより従来
は使用できなかった苛酷な用途にも本発明の光学体を使
用することができる。[Effects of the Invention] By using a tantalum oxide film as the outermost layer when viewed from the substrate, that is, the outermost layer on the air side, the present invention improves chemical stability and wear resistance as shown in Examples 1 and 2. This makes it possible to obtain an optical body with excellent properties. This allows the optical body of the present invention to be used in severe applications that could not be used conventionally.
又、最外層の酸化タンタル膜の膜厚を50〜200人と
することにより、上述した優れた化学安定性及び耐摩耗
性に加えて、外観がニュートラルで、高透過率、低反射
率の、自動車用に最適な熱線反射ガラスを提供できる。In addition, by setting the thickness of the outermost tantalum oxide film to 50 to 200 mm, in addition to the excellent chemical stability and abrasion resistance mentioned above, it has a neutral appearance, high transmittance, and low reflectance. We can provide heat-reflecting glass that is ideal for automobiles.
第1図は、本発明に係わる光学体の一例の一部断面図を
示したものであり、第2図は本発明に係わる熱線反射性
能を有する光学体の一例の一部断面図を示す。
1.10:基板
2:金属、窒化物、炭化物、硼化物、酸化膜、珪化物、
あるいはこれらの複合物からなる膜(第1層)
3 :
11:
12:
13:
酸化タンタル膜(第2層)
透明誘電体膜(第1層)
窒化膜(第2M)
酸化タンタル膜(第3N)
第2図FIG. 1 shows a partial cross-sectional view of an example of an optical body according to the present invention, and FIG. 2 shows a partial cross-sectional view of an example of an optical body having heat ray reflecting performance according to the present invention. 1.10: Substrate 2: Metal, nitride, carbide, boride, oxide film, silicide,
Or a film made of a composite of these (first layer) 3: 11: 12: 13: tantalum oxide film (second layer) transparent dielectric film (first layer) nitride film (second M) tantalum oxide film (third N ) Figure 2
Claims (4)
された光学体において、空気側の最外層が酸化タンタル
膜からなることを特徴とする耐久性の優れた光学体。(1) An optical body having excellent durability, in which an optical thin film consisting of at least two layers is formed on a substrate, and the outermost layer on the air side is made of a tantalum oxide film.
されていることを特徴とする耐久性の優れた熱線反射ガ
ラス。(2) A highly durable heat-reflecting glass characterized by having a heat-absorbing film and a tantalum oxide film sequentially formed on a substrate.
れていることを特徴とする請求項2記載の耐久性の優れ
た熱線反射ガラス。(3) The heat ray reflective glass with excellent durability according to claim 2, wherein a nitride film and a tantalum oxide film are sequentially formed on the substrate.
とを特徴とする請求項1〜3いずれか1項記載の耐久性
の優れた光学体又は熱線反射 ガラス。(4) The optical body or heat-reflecting glass with excellent durability according to any one of claims 1 to 3, wherein the tantalum oxide film has a thickness of 50 to 200 Å.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63319395A JPH0764599B2 (en) | 1988-12-20 | 1988-12-20 | An optical body with excellent durability and heat ray reflectivity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63319395A JPH0764599B2 (en) | 1988-12-20 | 1988-12-20 | An optical body with excellent durability and heat ray reflectivity |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02164744A true JPH02164744A (en) | 1990-06-25 |
JPH0764599B2 JPH0764599B2 (en) | 1995-07-12 |
Family
ID=18109697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63319395A Expired - Lifetime JPH0764599B2 (en) | 1988-12-20 | 1988-12-20 | An optical body with excellent durability and heat ray reflectivity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0764599B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0530676A2 (en) * | 1991-08-29 | 1993-03-10 | Nippon Sheet Glass Co., Ltd. | Heat-screening glass |
US5543229A (en) * | 1991-10-30 | 1996-08-06 | Asahi Glass Company Ltd. | Method of making a heat treated coated glass |
US5731053A (en) * | 1992-03-11 | 1998-03-24 | Ds-Chemie Gmbh | Potable liquid container |
JP2013535403A (en) * | 2010-08-10 | 2013-09-12 | サン−ゴバン グラス フランス | Glass panel with solar shading properties |
CN107382090A (en) * | 2016-12-30 | 2017-11-24 | 深圳市晟砡科技有限公司 | Transparent panel |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57174240A (en) * | 1981-04-22 | 1982-10-26 | Teijin Ltd | Selective beam transmitting laminate |
JPS6036355A (en) * | 1983-03-31 | 1985-02-25 | ライボルト・アクチェンゲゼルシャフト | Manufacture of plate with permeability of 5-40 percents in visible spectrum zone and reflectivity against heat ray |
JPS62216943A (en) * | 1986-03-10 | 1987-09-24 | ロイ ジエラルド ゴ−ドン | Protective coating for solar shielding film |
JPS62216944A (en) * | 1985-12-06 | 1987-09-24 | ライボルト−ヘレ−ウス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Manufacture of window glass with high permeability characteristics within visible spectrum scope and high reflective characteristics against heat ray |
JPS63100043A (en) * | 1986-10-15 | 1988-05-02 | Nippon Sheet Glass Co Ltd | Heat ray reflection glass |
JPS6455022U (en) * | 1987-10-02 | 1989-04-05 | ||
JPH0244046A (en) * | 1988-08-03 | 1990-02-14 | Nippon Sheet Glass Co Ltd | Transparent plate having blue-green reflected color and its preparation |
JPH02149448A (en) * | 1988-12-01 | 1990-06-08 | Nippon Sheet Glass Co Ltd | Heat-ray shielding glass with substrate color unchanged |
-
1988
- 1988-12-20 JP JP63319395A patent/JPH0764599B2/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57174240A (en) * | 1981-04-22 | 1982-10-26 | Teijin Ltd | Selective beam transmitting laminate |
JPS6036355A (en) * | 1983-03-31 | 1985-02-25 | ライボルト・アクチェンゲゼルシャフト | Manufacture of plate with permeability of 5-40 percents in visible spectrum zone and reflectivity against heat ray |
JPS62216944A (en) * | 1985-12-06 | 1987-09-24 | ライボルト−ヘレ−ウス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Manufacture of window glass with high permeability characteristics within visible spectrum scope and high reflective characteristics against heat ray |
JPS62216943A (en) * | 1986-03-10 | 1987-09-24 | ロイ ジエラルド ゴ−ドン | Protective coating for solar shielding film |
JPS63100043A (en) * | 1986-10-15 | 1988-05-02 | Nippon Sheet Glass Co Ltd | Heat ray reflection glass |
JPS6455022U (en) * | 1987-10-02 | 1989-04-05 | ||
JPH0244046A (en) * | 1988-08-03 | 1990-02-14 | Nippon Sheet Glass Co Ltd | Transparent plate having blue-green reflected color and its preparation |
JPH02149448A (en) * | 1988-12-01 | 1990-06-08 | Nippon Sheet Glass Co Ltd | Heat-ray shielding glass with substrate color unchanged |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0530676A2 (en) * | 1991-08-29 | 1993-03-10 | Nippon Sheet Glass Co., Ltd. | Heat-screening glass |
US5543229A (en) * | 1991-10-30 | 1996-08-06 | Asahi Glass Company Ltd. | Method of making a heat treated coated glass |
US5731053A (en) * | 1992-03-11 | 1998-03-24 | Ds-Chemie Gmbh | Potable liquid container |
JP2013535403A (en) * | 2010-08-10 | 2013-09-12 | サン−ゴバン グラス フランス | Glass panel with solar shading properties |
CN107382090A (en) * | 2016-12-30 | 2017-11-24 | 深圳市晟砡科技有限公司 | Transparent panel |
Also Published As
Publication number | Publication date |
---|---|
JPH0764599B2 (en) | 1995-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5110637A (en) | Amorphous oxide film and article having such film thereon | |
US5399435A (en) | Amorphous oxide film and article having such film thereon | |
US4902580A (en) | Neutral reflecting coated articles with sputtered multilayer films of metal oxides | |
DK169758B1 (en) | Article with high transmission and low emissivity as well as process for its manufacture | |
CA1335887C (en) | Neutral sputtered films of metal alloy oxides | |
CA2041038C (en) | Durable low-emissivity thin film interference filter | |
EP2043960B1 (en) | Coated article with oxynitrides of antimony and/or zinc and corresponding method of manufacture | |
JPS62196366A (en) | High permeability and low emissivity article | |
CA2482528A1 (en) | Coatings having low emissivity and low solar reflectance | |
JPH05254969A (en) | Functional article | |
JPS63206333A (en) | Heat ray reflecting glass of single plate | |
JP3392000B2 (en) | Insulated glass | |
JPH02164744A (en) | Optical body excellent in durability and heat ray reflecting glass | |
JPH02901A (en) | Optical body having excellent durability | |
JP2518116B2 (en) | Method for manufacturing an optical body with excellent durability | |
CN208667498U (en) | A kind of high transparency can the energy-saving glass that uses of monolithic | |
JPH01145351A (en) | Infrared shielding glass | |
JP2687614B2 (en) | Method for manufacturing an optical body with excellent durability | |
JPH01314163A (en) | Heat ray shielded glass | |
JP2576662B2 (en) | Heat blocking glass | |
JPH03187737A (en) | Solar control product | |
JPS63315541A (en) | Heat ray reflecting glass of half mirror | |
CA1341514C (en) | Silicon-containing sputtering target | |
JPS6236979B2 (en) | ||
JPH0365531A (en) | Single plate heat insulating glass |