JPH0216413Y2 - - Google Patents

Info

Publication number
JPH0216413Y2
JPH0216413Y2 JP17748981U JP17748981U JPH0216413Y2 JP H0216413 Y2 JPH0216413 Y2 JP H0216413Y2 JP 17748981 U JP17748981 U JP 17748981U JP 17748981 U JP17748981 U JP 17748981U JP H0216413 Y2 JPH0216413 Y2 JP H0216413Y2
Authority
JP
Japan
Prior art keywords
magnetic head
interference
reference mirror
mounting
head chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17748981U
Other languages
Japanese (ja)
Other versions
JPS5881727U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17748981U priority Critical patent/JPS5881727U/en
Publication of JPS5881727U publication Critical patent/JPS5881727U/en
Application granted granted Critical
Publication of JPH0216413Y2 publication Critical patent/JPH0216413Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Description

【考案の詳細な説明】 本考案は磁気ヘツド組立体の基準面に対する磁
気ヘツドの取付角度を高精度且つ容易に検査する
ことのできる磁気ヘツド取付角度検査装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic head mounting angle inspection device that can easily and accurately inspect the mounting angle of a magnetic head relative to a reference surface of a magnetic head assembly.

高精度の組立体精度、特に角度精度を要求され
る例として、2ヘツドヘリカルスキヤン型VTR
に用いられるビデオヘツドのシリンダアセンブル
体について述べると、ビデオヘツドの作動ギヤツ
プのアジマス精度はヘツド出力がアジマス損失に
より低下するのを防ぐ目的で家庭用VTRの場合
±10′程度の精度に押えているのが実状である。
この精度は特に機器間で互換再生する場合の画質
の劣下度合と密接に関係しており、この精度が保
証されていないと機器間で画像のダビングを行な
う場合の画質を保証することができなくなる。特
に放送用VTRに用いる画像収録装置の場合には、
高い解像度を要求されることから記録周波数範囲
が広く、より高周波域の信号を記録せねばなら
ず、アジマス損もこれに応じて増大し、機器間の
互換性についてもダビング編集を前程として高品
質の画像を保証せねばならない。従つて磁気ヘツ
ド組立体のアジマス精度はより高精度を要求さ
れ、例えば7.5MHzの高周波信号を相対速度
5.6m/sで記録し、記録トラツク幅を175μmと
した場合、一回の記録再生でアジマス損による再
生出力信号の低下を1dB以下に押えるには約±
1.5′のアジマス精度を要する。
An example of a 2-head helical scan VTR that requires high assembly accuracy, especially angular accuracy.
Regarding the cylinder assembly of the video head used in the video head, the azimuth accuracy of the video head's operating gap is limited to about ±10' for home VCRs in order to prevent the head output from decreasing due to azimuth loss. This is the actual situation.
This accuracy is closely related to the degree of deterioration in image quality when performing compatible playback between devices, and if this accuracy is not guaranteed, the image quality cannot be guaranteed when dubbing images between devices. It disappears. Especially in the case of image recording equipment used for broadcast VCRs,
Because high resolution is required, the recording frequency range is wide, and signals in higher frequency ranges must be recorded.Azimuth loss also increases accordingly, and compatibility between devices requires high quality even before dubbing editing. images must be guaranteed. Therefore, the azimuth accuracy of the magnetic head assembly is required to be even higher. For example, if a 7.5MHz high frequency signal is
When recording at 5.6 m/s and the recording track width is 175 μm, approximately ±
Requires azimuth accuracy of 1.5′.

第1図はヘリカルスキヤン型VTRに用いるビ
デオヘツドの外観を示しており、磁気テープ摺動
面1に作動ギヤツプ2を有し、ヘツドチツプの側
面3に巻線用窓4〔巻線は図示せず〕を有するビ
デオヘツドコアがベース5に装着されている。第
2図はこのビデオヘツドを回転シリンダに取り付
けたシリンダアセンブル体を示しており、シリン
ダ6のヘツドベース取付面7にビデオヘツドのベ
ース5をビス8で固定しており、ビデオヘツドの
磁気テープ摺動面1に現われている作動ギヤツプ
2はシリンダ6の取付基準面9に対して所定の角
度(アジマス角)に組立てられていなければなら
ない。家庭用VTR等の量産品の場合にはこの精
度は、 1 ビデオヘツドチツプのギヤツプ2とヘツドチ
ツプの側面3の直角度、 2 ビデオヘツドコアのベース5への接着の精
度、 3 シリンダ6のヘツドベース取付面7とシリン
ダ取付基準面9の平行度をそれぞれ管理するこ
とにより±10′程度の公差内に治めることがで
きる。これに対して放送用の画像収録用VTR
の場合には、ヘツドベース5をシリンダ6のベ
ース取付面7に対して取り付ける際に、例えば
この介面にスペーサを挾んで取り付ける等の取
付調整を行なう。
Figure 1 shows the external appearance of a video head used in a helical scan type VTR.It has an operating gap 2 on the magnetic tape sliding surface 1, and a winding window 4 on the side surface 3 of the head chip (the winding is not shown). ] is attached to the base 5. Figure 2 shows a cylinder assembly in which this video head is attached to a rotating cylinder.The base 5 of the video head is fixed to the head base mounting surface 7 of the cylinder 6 with screws 8, and the magnetic tape of the video head slides. The operating gap 2 appearing on the surface 1 must be assembled at a predetermined angle (azimuth angle) with respect to the mounting reference surface 9 of the cylinder 6. In the case of mass-produced products such as home VCRs, this accuracy is determined by: 1. The perpendicularity of the gap 2 of the video head chip and the side surface 3 of the head chip, 2. The accuracy of adhesion of the video head core to the base 5, and 3. The mounting of the cylinder 6 on the head base. By controlling the parallelism of the surface 7 and the cylinder mounting reference surface 9, it is possible to maintain a tolerance of approximately ±10'. On the other hand, VTR for recording images for broadcasting
In this case, when attaching the head base 5 to the base attachment surface 7 of the cylinder 6, attachment adjustments are made, such as attaching a spacer to this intervening surface.

このようなシリンダ組立体のアジマス角の従来
の測定法について述べると、シリンダ6を連動方
向の直角度の保証されたXYテーブルに固定し、
シリンダ6の取付基準面9がXYテーブルの一方
の移動方向と平行となるよう調整し、顕微鏡視野
に磁気ヘツドのギヤツプ2が観察されるよう焦点
を合せ、上記移動方向と直角をなすもう一方の移
動方向にXYテーブルを移動し、このときに顕微
鏡視野目盛線を基準としてギヤツプ線の両端のず
れ量を測定することによりアジマス角測定を行な
うことができる。しかるにこの方法では、例えば
トラツク幅が175μmのとき、そのギヤツプ線の両
端におけるずれ量が0.5μmとすると、アジマス誤
差が約10′であり、このオーダのアジマス誤差測
定が限界である。
Regarding the conventional method of measuring the azimuth angle of such a cylinder assembly, the cylinder 6 is fixed to an XY table whose perpendicularity in the interlocking direction is guaranteed,
Adjust the mounting reference plane 9 of the cylinder 6 so that it is parallel to one direction of movement of the XY table, focus so that the gap 2 of the magnetic head can be observed in the field of view of the microscope, and The azimuth angle can be measured by moving the XY table in the moving direction and measuring the amount of deviation at both ends of the gap line with reference to the microscope visual field scale line. However, in this method, for example, when the track width is 175 μm and the amount of deviation at both ends of the gap line is 0.5 μm, the azimuth error is about 10', and azimuth error measurement of this order is the limit.

本考案は前述の如く、従来法では測定不可能な
微小な角度誤差を容易に検出し得る磁気ヘツド取
付角度検査装置を提供するものである。一般に切
断加工等の機械加工により、物体の直角度を高精
度に加工することは比較的容易である。これは加
工物を搭載する工作テーブルの運動の直線性を保
証し、2軸の移動方向の直角度を調整した上で加
工物の基準となる稜線又は磁気ヘツドの場合はギ
ヤツプ形成されたバーのギヤツプ線を一方のテー
ブル移動方向と平行となるよう調整した後、これ
と直角の方向にテーブルを移動して切断ホイール
にて切断することにより、高精度の直角度を有す
る加工物の加工が可能であるからである。例えば
テーブルの運動の直線性を1μm/100mm、直角度
を1μm/100mmに調整すれば、工作機械テーブル
の運動方向の直角度は2″程度あり、加工物として
25mmの長さの磁気ヘツドバーを1μm/25mmの平行
調整を行なつて取り付けて切断した場合の角度精
度は10″程度となり、かなりの高精度で加工する
ことができる。従つて第2図に示したシリンダ組
立体における磁気ヘツドのアジマス精度は、ヘツ
ドチツプのギヤツプ2とチツプ側面3の直角度精
度が上記の如く保証されている場合にはシリンダ
の取付基準面9と磁気ヘツドチツプ側面3の平行
度をある許容限度内に治めることにより保証する
ことができる。
As described above, the present invention provides a magnetic head mounting angle inspection device that can easily detect minute angular errors that cannot be measured using conventional methods. Generally, it is relatively easy to process the squareness of an object with high precision by machining such as cutting. This ensures the linearity of the movement of the work table on which the workpiece is mounted, adjusting the perpendicularity of the two axes of movement, and then aligning the workpiece with a ridge line or, in the case of a magnetic head, a gapped bar. After adjusting the gap line so that it is parallel to one table movement direction, the table is moved in a direction perpendicular to this and the cutting wheel is used to cut the workpiece, making it possible to process workpieces with highly accurate squareness. This is because. For example, if the linearity of the table's motion is adjusted to 1 μm/100 mm and the perpendicularity to 1 μm/100 mm, the perpendicularity of the machine tool table's motion direction will be approximately 2″, and the workpiece
If a 25 mm long magnetic head bar is attached and cut with parallel adjustment of 1 μm/25 mm, the angular accuracy will be approximately 10", and processing can be performed with fairly high precision. Therefore, as shown in Figure 2. The azimuth accuracy of the magnetic head in the cylinder assembly is determined by the parallelism between the mounting reference surface 9 of the cylinder and the side surface 3 of the magnetic head chip when the perpendicularity accuracy of the gap 2 of the head chip and the side surface 3 of the chip is guaranteed as described above. This can be guaranteed by keeping it within certain tolerance limits.

本考案は斯かる点に鑑み為されたものであつ
て、単色光源からの光線がビームスプリツタによ
り二分され、磁気ヘツドチツプ側面に照射後得ら
れた第1の光線および参照ミラーに照射後得られ
た第2の光線の2光線の干渉により前記磁気ヘツ
ドチツプのヘツドギヤツプと一定角度関係を有す
るチツプ側面像と前記参照ミラーを水準とする干
渉縞とを接眼レンズに結像する干渉光学系を内蔵
する干渉顕微鏡鏡筒と、前記参照ミラーの固定角
度調整を行う参照ミラー調整手段と、前記鏡筒を
基台上に取付られたコラムと前記干渉光学系の焦
点合わせ方向に平行移動可能に離間した複数箇所
で結合する複数個の平行保持手段と、前記鏡筒を
前記焦点合わせ方向に移動させる移動手段と、前
記磁気ヘツドチツプが取付けられたシリンダ組立
体の取付基準面を前記コラム上に一定姿勢で保持
する保持手段とを備えたものである。以下本考案
を実施の一例を示す図面に基づいて説明する。第
3図,第4図は本考案装置の全体を示し、第5図
は本考案に使用する干渉顕微鏡の測定原理を示
す。第5図において先ず磁気ヘツドチツプ10の
取り付けられたシリンダ6を取付基準面9を介し
てシリンダ取付台座26に搭載固定し、チツプ側
面3を光学系で干渉観察する。単色光11はコリ
メータレンズ12を通つてビームスプリツタ13
で2分され、一方は磁気ヘツドチツプ側面3を照
射後再びビームスプリツタ13に戻り対物レンズ
14、接眼レンズ15を通過し、他方には参照ミ
ラー16に照射後戻つて同じく対物レンズ14、
接眼レンズ15を通過する。この2光線の干渉に
より観察視野には磁気ヘツドチツプ10の像とと
もに参照ミラー16を水準とする等高線を表わす
干渉縞が観察される。従つてシリンダ6の取付基
準面9と磁気ヘツドチツプ側面3の平行度の保証
された校正用のシリンダ組立体により上記光学系
を調整した後、被検査シリンダ組立体を上記光学
系で観察し、観察される干渉縞の移動量によりシ
リンダ組立体の取付基準面9と磁気ヘツドチツプ
側面3の平行度を測定することができる。単色光
源としてナトリウムランプを用いた場合、干渉縞
間の高低差は約0.3μmであり、磁気ヘツドチツプ
の幅が3mmのとき、1縞当り約20″の角度判定が
できる。
The present invention has been devised in view of this point, and the light beam from the monochromatic light source is split into two by a beam splitter, and the first beam obtained after irradiating the side surface of the magnetic head chip and the second beam obtained after irradiating the reference mirror are split into two by a beam splitter. an interference optical system that forms an image on an eyepiece of a chip side image having a constant angular relationship with the head gap of the magnetic head chip and interference fringes with the reference mirror as a level by interference of two second light beams; A microscope lens barrel, a reference mirror adjusting means for adjusting a fixed angle of the reference mirror, and a plurality of spaced apart locations where the lens barrel can be moved parallel to a column mounted on a base and a focusing direction of the interference optical system. a plurality of parallel holding means coupled by a plurality of parallel holding means, a moving means for moving the lens barrel in the focusing direction, and a mounting reference surface of a cylinder assembly to which the magnetic head chip is attached, are held in a constant posture on the column. It is equipped with a holding means. The present invention will be explained below based on drawings showing an example of implementation. 3 and 4 show the entire device of the present invention, and FIG. 5 shows the measurement principle of the interference microscope used in the present invention. In FIG. 5, first, the cylinder 6 to which the magnetic head chip 10 is attached is mounted and fixed on the cylinder mounting base 26 via the mounting reference surface 9, and the side surface 3 of the chip is observed by interference using an optical system. Monochromatic light 11 passes through a collimator lens 12 to a beam splitter 13
One side irradiates the side surface 3 of the magnetic head chip, returns to the beam splitter 13, passes through the objective lens 14, and the eyepiece 15, and the other side irradiates the reference mirror 16, returns to the same objective lens 14,
It passes through the eyepiece lens 15. Due to the interference of these two light beams, interference fringes representing contour lines with the reference mirror 16 as a level are observed in the observation field together with the image of the magnetic head chip 10. Therefore, after adjusting the above-mentioned optical system using the cylinder assembly for calibration in which the parallelism between the mounting reference surface 9 of the cylinder 6 and the side surface 3 of the magnetic head chip is guaranteed, the cylinder assembly to be inspected is observed with the above-mentioned optical system, and the observation is performed. The degree of parallelism between the mounting reference surface 9 of the cylinder assembly and the side surface 3 of the magnetic head chip can be measured by the amount of movement of the interference fringes. When a sodium lamp is used as a monochromatic light source, the height difference between interference fringes is about 0.3 μm, and when the width of the magnetic head chip is 3 mm, it is possible to determine an angle of about 20 inches per fringe.

このように高分解能の角度判定ができる干渉縞
を用いる方法も、これを実際の検査装置として精
度保証された検査装置を構成するには顕微鏡焦点
合せの移動機構の運動精度を押える必要がある。
Even with this method of using interference fringes, which enables high-resolution angle determination, it is necessary to suppress the movement accuracy of the movement mechanism for focusing the microscope in order to construct an inspection device with guaranteed accuracy when used as an actual inspection device.

本考案は特にこの焦点合せ機構に工夫を加えた
ものである。第3図及び第4図に示す本考案の検
査装置においては、第5図に示す干渉光学系のう
ちコリメータレンズ12、ビームスプリツタ1
3、対物レンズ14および参照ミラー16を一組
にまとめてなる干渉対物レンズ装置17及び接眼
レンズ15が鏡筒19に取り付けられており、基
台20及び20上に取り付けられたコラム22と
前記鏡筒19は平行ばねを構成する板ばね23及
び24により互いに鉛直方向に平行に結合されて
いる。焦点合せのための鏡筒19の移動は基台2
1に取り付けた運動ねじ付きホイール25を回転
させ鏡筒19の下端を押し上げることにより行な
う。前記一対の板ばね23及び24の間の距離は
十分離れており、鏡筒19の移動はコラム22に
対して理想的な平行運動となり、前述の干渉縞測
定による高分解能の角度判定に対して顕微鏡焦点
合せによる角度誤差がはいることはない。
The present invention is a particularly improved focusing mechanism. In the inspection apparatus of the present invention shown in FIGS. 3 and 4, a collimator lens 12 and a beam splitter 1 are included in the interference optical system shown in FIG.
3. An interference objective lens device 17 consisting of a set of an objective lens 14 and a reference mirror 16 and an eyepiece lens 15 are attached to a lens barrel 19, and a column 22 attached to bases 20 and 20 and the mirror The cylinders 19 are connected vertically in parallel to each other by leaf springs 23 and 24 forming parallel springs. The movement of the lens barrel 19 for focusing is carried out by the base 2.
This is done by rotating the motor threaded wheel 25 attached to the lens barrel 19 and pushing up the lower end of the lens barrel 19. The distance between the pair of leaf springs 23 and 24 is sufficient, and the movement of the lens barrel 19 is an ideal parallel movement with respect to the column 22, which is suitable for high-resolution angle determination by the above-mentioned interference fringe measurement. Angular errors due to microscope focusing are not introduced.

次に実際の測定作業手順に従つて動作を説明す
ると、先ずシリンダの取付基準面9と磁気ヘツド
チツプ10の側面の平行度の保証された校正用の
シリンダ組立体6′をシリンダ取付台座26に搭
載し、シリンダの取付基準面9を取付台座26の
基準面に密着させる。次に焦点合せ用のホイール
25により鏡筒19を上下させることによつて顕
微鏡視野に磁気ヘツドチツプ10の側面の像が合
うように調節する。この状態で、参照ミラー調整
用つまみ27により参照ミラー16の角度を調整
して顕微鏡視野内の磁気ヘツドチツプ10の側面
に現われる干渉縞が均一に広がるように調整す
る。次に被測定物のシリンダ組立体6′をシリン
ダ取付台座26に搭載し、シリンダの取付基準面
9が取付台座26の基準面に密着するようにす
る。この状態で焦点合せ用のホイール25により
鏡筒19を上下させ、顕微鏡視野内に被測定磁気
ヘツドチツプ10の側面の焦点が合うように調節
し、その側面に現われる干渉縞を観察する。この
状態で観察される干渉縞は前述の校正用シリンダ
組立体の磁気ヘツドチツプの取付姿勢を基準とし
てそれからの取付角度誤差を表わしており、磁気
ヘツド取付角度誤差を干渉縞単位の高精度で検出
することが可能である。
Next, to explain the operation according to the actual measurement work procedure, first, the cylinder assembly 6' for calibration, in which the parallelism of the cylinder mounting reference surface 9 and the side surface of the magnetic head chip 10 is guaranteed, is mounted on the cylinder mounting pedestal 26. Then, the mounting reference surface 9 of the cylinder is brought into close contact with the reference surface of the mounting base 26. Next, by moving the lens barrel 19 up and down using the focusing wheel 25, the image of the side surface of the magnetic head chip 10 is adjusted to fit in the field of view of the microscope. In this state, the angle of the reference mirror 16 is adjusted using the reference mirror adjustment knob 27 so that the interference fringes appearing on the side surface of the magnetic head chip 10 within the field of view of the microscope are uniformly spread. Next, the cylinder assembly 6' of the object to be measured is mounted on the cylinder mounting base 26 so that the mounting reference surface 9 of the cylinder is in close contact with the reference surface of the mounting base 26. In this state, the lens barrel 19 is moved up and down using the focusing wheel 25 to adjust the focus so that the side surface of the magnetic head chip 10 to be measured is focused within the field of view of the microscope, and the interference fringes appearing on the side surface are observed. The interference fringes observed in this state represent the mounting angle error from the above-mentioned mounting orientation of the magnetic head chip of the calibration cylinder assembly as a reference, and the magnetic head mounting angle error can be detected with high precision in the interference fringe unit. Is possible.

本考案は以上述べたように実施し得るものであ
つて、上記の一連の操作において、焦点合せのた
めの鏡筒の動きによつて干渉縞の基準となる干渉
光学系の姿勢が傾くようなことがあると高精度、
高信頼性の測定が不可能であるが、本考案によれ
ばこの鏡筒の動きは平行な板ばね機構(平行保持
手段)により高精度の平行運動を行ない、干渉縞
による高分解能の角度判定と合せて高精度、高信
頼性の磁気ヘツド取付角度測定装置を実現してい
る。
The present invention can be implemented as described above, and in the above series of operations, the posture of the interference optical system, which serves as a reference for interference fringes, is tilted due to the movement of the lens barrel for focusing. With high precision,
Although highly reliable measurement is impossible, according to the present invention, the movement of this lens barrel is achieved by a parallel plate spring mechanism (parallel holding means) that allows for highly accurate parallel movement, and high-resolution angle determination using interference fringes. Together with this, we have realized a highly accurate and reliable magnetic head mounting angle measuring device.

本考案の実施例としてビデオヘツドのシリンダ
組立体に適用した場合について述べたが、コラム
に取り付けた基準台座の形状を変更することによ
り各種の被検査磁気ヘツド組立体の角度精度の検
査に用いることができることは勿論である。
As an example of the present invention, we have described the case where it is applied to the cylinder assembly of a video head, but by changing the shape of the reference pedestal attached to the column, it can be used to inspect the angular accuracy of various magnetic head assemblies to be inspected. Of course, this can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はビデオヘツドの斜視図、第2図はビデ
オヘツドシリンダ組立体の正面図、第3図は本考
案の実施の一例における磁気ヘツド取付角度検査
装置の正面図、第4図は同側面図、第5図は本考
案に使用する干渉顕微鏡の測定原理図である。 3……ヘツドチツプ側面、6……シリンダ、
6′……シリンダ組立体、9……取付基準面、1
0……磁気ヘツドチツプ、15……接眼レンズ、
17……干渉対物レンズ装置、19……鏡筒、2
0,21……基台、22……コラム、23,24
……板ばね、25……ホイール、26……シリン
ダ取付台座。
Fig. 1 is a perspective view of the video head, Fig. 2 is a front view of the video head cylinder assembly, Fig. 3 is a front view of a magnetic head installation angle inspection device according to an embodiment of the present invention, and Fig. 4 is a side view of the same. FIG. 5 is a diagram showing the measurement principle of the interference microscope used in the present invention. 3...Head chip side, 6...Cylinder,
6'...Cylinder assembly, 9...Mounting reference surface, 1
0... Magnetic head chip, 15... Eyepiece,
17... Interference objective lens device, 19... Lens barrel, 2
0,21...base, 22...column, 23,24
... Leaf spring, 25 ... Wheel, 26 ... Cylinder mounting pedestal.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 単色光源からの光線がビームスプリツタにより
二分され、磁気ヘツドチツプ側面に照射後得られ
た第1の光線および参照ミラーに照射後得られた
第2の光線の2光線の干渉により前記磁気ヘツド
チツプのヘツドギヤツプと一定角度関係を有する
チツプ側面像と前記参照ミラーを水準とする干渉
縞とを接眼レンズに結像する干渉光学系を内蔵す
る干渉顕微鏡鏡筒と、前記参照ミラーの固定角度
調整を行う参照ミラー調整手段と、前記鏡筒を基
台上に取付られたコラムと前記干渉光学系の焦点
合わせ方向に平行移動可能に離間した複数箇所で
結合する複数個の平行保持手段と、前記鏡筒を前
記焦点合わせ方向に移動させる移動手段と、前記
磁気ヘツドチツプが取付られたシリンダ組立体の
取付基準面を前記コラム上に一定姿勢で保持する
保持手段とを備えたことを特徴とする磁気ヘツド
取付角度検査装置。
A light beam from a monochromatic light source is split into two by a beam splitter, and the head gap of the magnetic head chip is divided by the interference of the first beam obtained after irradiating the side surface of the magnetic head chip and the second beam obtained after irradiating the reference mirror. an interference microscope barrel having a built-in interference optical system that forms an image on an eyepiece of a chip side image having a constant angular relationship with the reference mirror and interference fringes with the reference mirror as a level; and a reference mirror that adjusts the fixed angle of the reference mirror. an adjustment means, a plurality of parallel holding means that connect the lens barrel at a plurality of spaced apart locations such that the lens barrel can be moved in parallel to a column mounted on a base in the focusing direction of the interference optical system; A magnetic head mounting angle inspection comprising: a moving means for moving in the focusing direction; and a holding means for holding the mounting reference surface of the cylinder assembly to which the magnetic head chip is mounted in a constant posture on the column. Device.
JP17748981U 1981-11-27 1981-11-27 Magnetic head mounting angle inspection device Granted JPS5881727U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17748981U JPS5881727U (en) 1981-11-27 1981-11-27 Magnetic head mounting angle inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17748981U JPS5881727U (en) 1981-11-27 1981-11-27 Magnetic head mounting angle inspection device

Publications (2)

Publication Number Publication Date
JPS5881727U JPS5881727U (en) 1983-06-02
JPH0216413Y2 true JPH0216413Y2 (en) 1990-05-07

Family

ID=29971419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17748981U Granted JPS5881727U (en) 1981-11-27 1981-11-27 Magnetic head mounting angle inspection device

Country Status (1)

Country Link
JP (1) JPS5881727U (en)

Also Published As

Publication number Publication date
JPS5881727U (en) 1983-06-02

Similar Documents

Publication Publication Date Title
US5467289A (en) Method of and an apparatus for measuring surface contour
US4724480A (en) Method for optical alignment of one object with respect to another
JPH04254706A (en) Method for measuring surface of object without contact and coordinate-measuring machine performing this method
CN108344383B (en) Non-contact coordinate measuring machine
WO2022222521A1 (en) Calibration system and measuring method by same
DE3136993A1 (en) DEVICE FOR MEASURING THE SURFACE PROFILE OF AN OBJECT
JPH0216413Y2 (en)
US20060207083A1 (en) Adjusting method and device for magnetic head position
JPH0386925A (en) Optical axis aligning method and jig for optical system for optical information recording and reproducing device
JPH02140608A (en) Measuring instrument for surface shape
JP2753545B2 (en) Shape measurement system
JPH0568641B2 (en)
JPH085449Y2 (en) microscope
JP2000055620A (en) Detector for detecting end face of body, measuring device for measuring length of body, and display of machining finish position of body
JPH0733128Y2 (en) Head posture measuring device
SU1171738A1 (en) Method of manufacturing polygonal mirrors
JPH0139045B2 (en)
JP2529688Y2 (en) Position measurement device
JPS63223508A (en) Tile angle measuring method
JPH0641850B2 (en) Measuring method of shaft parts
JPH1068602A (en) Shape measuring apparatus
JPH1123229A (en) Measuring method for film thickness
JPS59203220A (en) Head projection adjusting device
JPH07151848A (en) Matched telescope
JPH01264626A (en) Chip sticking device