JPH02163700A - Radiation light transmission window - Google Patents

Radiation light transmission window

Info

Publication number
JPH02163700A
JPH02163700A JP63317889A JP31788988A JPH02163700A JP H02163700 A JPH02163700 A JP H02163700A JP 63317889 A JP63317889 A JP 63317889A JP 31788988 A JP31788988 A JP 31788988A JP H02163700 A JPH02163700 A JP H02163700A
Authority
JP
Japan
Prior art keywords
synchrotron radiation
thin film
ring
radiation transmitting
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63317889A
Other languages
Japanese (ja)
Inventor
Takahiro Imai
高広 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SORUTETSUKU KK
Original Assignee
SORUTETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SORUTETSUKU KK filed Critical SORUTETSUKU KK
Priority to JP63317889A priority Critical patent/JPH02163700A/en
Publication of JPH02163700A publication Critical patent/JPH02163700A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70841Constructional issues related to vacuum environment, e.g. load-lock chamber

Abstract

PURPOSE:To prevent the generation of a deviation and to prevent the spacing of a vacuum flange mounting part in the peripheral edge of a thin film for transmission of radiation light by providing sealing between the high vacuum area on a radiation light source side and a chamber atmosphere on a transfer device side and forming the above-mentioned mounting part into an immobile peripheral structure. CONSTITUTION:The vacuum sealing on a beam line 102a side and the transfer device chamber 104a side is executed by pinching a thin beryllium film 20 by means of an O-ring 30. Clips 90 are bolted to a vacuum flange 10 and the peripheral edge of the thin film 20 is crimped by an extremely strong force between a stopper flange 40 and an antislip ring 50 and, therefore, even if there is a pressure difference of about the atm. pressure between the beam line 102a side of a high vacuum state and the chamber 104a side, the peripheral edge of the thin film 20 is prevented from deviating toward the radial direction thereof. The sectional shape of the ring 50 is sharpened and since the contact area of the flange 10 and the thin film 20 is small, not only the deviation preventing effect is obtd. but also the vacuum sealing effect is further obtd.

Description

【発明の詳細な説明】 〔産業−1−の利用分野〕 この発明は、シンクロ1ヘロン放射光を用いて、超LS
I等の回路パターンをウェハ等の被露光板状物に転写せ
しめる露光装置の放射光透過窓に関する、 〔従来の技術〕 半導体(■、SI)の高集積化技術の進歩に伴い、マス
ク上のパターンをレジストの付着したウェハ等の上に転
写する半導体リソグラフィ装置でも、軟X線を含むシン
クロトロン放射光の利用が注目されるようになった。
[Detailed Description of the Invention] [Field of Application in Industry-1-] This invention uses synchro-1 Heron synchrotron radiation to
[Conventional technology] With the advancement of high integration technology of semiconductors (■, SI), the radiation transmitting window of an exposure device that transfers a circuit pattern such as I to a plate-like object to be exposed such as a wafer, The use of synchrotron radiation including soft X-rays has also attracted attention in semiconductor lithography apparatuses that transfer patterns onto wafers and the like to which resist is attached.

この放射光は、第8図で示されるように、高真空の電子
蓄積リング(100)内で光速に近い速さの電子を偏向
磁石(1,01)の磁界により曲げた時に電子軌道の接
線方向に放射される電磁波であるが、平行性が良く、且
つ強い軟X線が得られるため、線幅がサブミクロンクラ
スになる超LSIのマスクパターンを上記被露光板状物
に転写するX線露光装置の次期X線源として期待されて
いる。
As shown in Figure 8, when electrons at a speed close to the speed of light are bent by the magnetic field of the deflection magnet (1,01) in the high vacuum electron storage ring (100), the synchrotron radiation is generated by the tangent of the electron trajectory. Although it is an electromagnetic wave emitted in a direction, since it has good parallelism and strong soft X-rays can be obtained, X-rays are used to transfer the VLSI mask pattern with a line width of submicron class onto the plate-like object to be exposed. It is expected to be the next generation X-ray source for exposure equipment.

該シンクロj・ロン放射光を用いる実際の露光装置では
、電子蓄積リング(+00)から発した放射光がビーム
ライン(102)を通って転写装置(103)内に導か
れ、その内部でX線マスク(図示なし)やウェハ廓動ス
テージ(図示なし)等の各種装置を用いてマスクパター
ンを被露光板状物の表面(この場合はウェハの」二に被
覆されたレジスト)に転写する構成となっている。
In an actual exposure apparatus that uses the synchro J.Ron synchrotron radiation, the synchrotron radiation emitted from the electron storage ring (+00) is guided through the beam line (102) into the transfer device (103), where it is converted into X-rays. A configuration in which a mask pattern is transferred onto the surface of a plate-like object to be exposed (in this case, a resist coated on the wafer) using various devices such as a mask (not shown) and a wafer rotation stage (not shown). It has become.

このうち、ビームライン(+02)内部は、電子蓄積リ
ング(100)内の高度の真空状態に悪影響を及ぼさな
いようにするため真空に保たれ、他方、転写装置(10
3)は、マスクの温度上昇を抑えるため5その周りをチ
ャンバ(]、04)で囲んで内部を大気や他のガス雰囲
気(放射光減衰作用の小さいヘリウムガス等)で満たし
ている。そこでシンクロトロン放射光を放射する放射光
源側(図では電子蓄積リング(ioo)及びビームライ
ン(1,02) )と転写装置(]、、03 )との間
には、放射光路途中に放射光源側の高真空域と転写装置
(1,03)側の雰囲気とを隔て且つ放射光の一部を透
過OT能なベリリウム薄膜等の放射光透過薄膜(21)
が設けられている。
Among these, the inside of the beam line (+02) is kept in a vacuum to avoid adversely affecting the high vacuum state inside the electron storage ring (100), and on the other hand, the inside of the transfer device (10
In 3), in order to suppress the temperature rise of the mask, 5 is surrounded by a chamber (], 04), and the inside is filled with the atmosphere or other gas atmosphere (such as helium gas, which has a small effect of attenuating radiation light). Therefore, between the synchrotron radiation source side (electron storage ring (ioo) and beam line (1, 02) in the figure) and the transfer device (], 03) that emits synchrotron radiation light, there is a synchrotron radiation source in the middle of the synchrotron radiation path. A radiation-transmitting thin film (21) such as a beryllium thin film that separates the high vacuum area on the side from the atmosphere on the transfer device (1, 03) side and is capable of transmitting a part of the radiation.
is provided.

〔発明が解決しようとする問題点ゴ 第9図は、このような放射光透過薄膜(2))の取付け
られれた放射光透過窓の従来例を示す断面図である。同
図に示すように、ビームラインの真空フランジ(12)
にOリング(31)を介して放射光透過薄膜(21)の
周縁部が取付けられ、更にその上から止めフランジ(4
1)をクランプ(93)によって圧着せしめている。尚
、図中(11,0)は、Oリング(31)内周側に設け
られたインナーリングである。
[Problems to be Solved by the Invention] FIG. 9 is a sectional view showing a conventional example of a radiation transmitting window to which such a radiation transmitting thin film (2) is attached. As shown in the figure, the vacuum flange (12) of the beam line
The peripheral edge of the synchrotron radiation transmitting thin film (21) is attached via an O-ring (31), and a stop flange (4) is attached from above.
1) is crimped with a clamp (93). Note that (11,0) in the figure is an inner ring provided on the inner peripheral side of the O-ring (31).

放射光の照射によってマスクパターンの露光を行なう場
合に、実用的なスループットを得るためには、放射光透
過簿膜(21)の膜厚を蒲<シて放射光の減衰をできる
だけ低くしなければならない。
When exposing a mask pattern by irradiating synchrotron radiation, in order to obtain a practical throughput, the thickness of the synchrotron radiation transmitting film (21) must be increased to reduce the attenuation of the synchrotron radiation as much as possible. It won't happen.

しかし、ビームライン(1,02)内と転写装置のチャ
ンバ(104)内界囲気との間にはかなりの圧力差があ
るため、放射光透過薄膜(21)の膜厚が薄くなると、
上記放射光透過窓の構成では、該薄膜(21)がその半
径方向中心部を中心にビームライン(102)側に膨出
することとなり、それにより第9図に示すように、この
薄膜(2])周縁部はその半径方向に引っ張られ、ずれ
ることになる。この時0リング(31)による弱い締め
付けでは放射光透過薄膜(21)に皺を生じるため、こ
の皺を作る力によって更にOリング(31)が持ち上げ
られ、隙間を生じることになる。このためガス漏れを生
じ、電子蓄積リング(100)内を高真空状態に保って
おことができなくなり、該リングの稼動が不可能になる
However, since there is a considerable pressure difference between the inside of the beam line (1, 02) and the surrounding atmosphere of the transfer device chamber (104), if the thickness of the synchrotron radiation transmitting thin film (21) becomes thin,
In the structure of the synchrotron radiation transmitting window, the thin film (21) bulges toward the beam line (102) around its radial center, and as a result, as shown in FIG. ]) The peripheral edge will be pulled and displaced in its radial direction. At this time, weak tightening by the O-ring (31) causes wrinkles in the radiation-transmitting thin film (21), and the force that creates the wrinkles further lifts the O-ring (31), creating a gap. This causes gas leakage, making it impossible to maintain a high vacuum inside the electron storage ring (100) and making it impossible to operate the ring.

本発明は従来技術の以上のような問題に鑑み創案された
もので、放射光透過薄膜周縁部を真空フランジに取付け
ている部分の構造に改良を加え、可動同構造であった該
取付部を不動周構造とすることで、ずれの発生を防ぎ、
該取付部に隙間を生じないようにするものである。
The present invention has been devised in view of the above-mentioned problems in the prior art, and has improved the structure of the part where the peripheral edge of the synchrotron radiation transmitting thin film is attached to the vacuum flange. The immovable circumferential structure prevents misalignment,
This is to prevent a gap from forming in the mounting portion.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

そのため本願第1発明は、第1図(a)に示すように、
真空フランジ(1)と放射光透過薄膜(2)の間であっ
て0リング(3)の外周側又は/及び内周側にずれ1)
−めリング(5)を介装せしめると共に、該ずれとめリ
ング(5)及び放射光透過簿膜(2)を挾んで真空フラ
ンジ(1)と止めフランジ(4)の間を締め付ける構造
としまたものである。
Therefore, the first invention of the present application, as shown in FIG. 1(a),
Misalignment between the vacuum flange (1) and the synchrotron radiation transmitting thin film (2) toward the outer circumference and/or inner circumference of the O-ring (3)1)
- In addition to interposing the retaining ring (5), the retaining ring (5) and the synchrotron radiation transmitting film (2) are sandwiched between the vacuum flange (1) and the retaining flange (4). It is.

このずれII:めリング(5)の断面形状は、同図1、
丁示すように、放射光透過薄膜(2)及び真空フランジ
(1,)に向けて鋭くしたり、同fl(1))に示すよ
うに該i#膵(2)に向けて鋭くすると良い。
This deviation II: The cross-sectional shape of the fitting ring (5) is shown in Figure 1.
It is preferable to sharpen it toward the radiation-transmitting thin film (2) and the vacuum flange (1,), as shown in fl(1), or to sharpen it toward the i# pancreas (2), as shown in fl(1)).

以りの構成では、放射光透過薄膜(2)のビームライン
(102)側への膨出によって薄膜(2)周縁部で半径
方向に向かう力が働いた時に、ずれ止めリング(5)に
よってその力を止める力が反対に作用するため、放射光
透過薄膜(2)とOリング(3)及び止めフランジ(4
)間でずれを生しることかない。このずれ止めリング(
5)によってずれを止める力は放射光透過薄膜(2)と
ずれ止めリング(5)の間の摩擦力であり、一般に摩擦
力Fと締め付は力Wの関係は摩擦係数μを用いて、F−
μW と表現されるものである。そこで本発明では、ずれ止め
リング(5)と薄膜(2)間の締め付は方Wを拡大すべ
く、止めフランジ(4)す、真空フランジ(1)に強固
なボルトで締め付ける等の工夫が必要である。又、上述
のように、ずれ止めリング(5)の接触部分の断面形状
を鋭角にして。
In this configuration, when a force in the radial direction is exerted on the peripheral edge of the thin film (2) due to the bulge of the synchrotron radiation transmitting thin film (2) toward the beam line (102), the anti-slip ring (5) prevents the force from acting on the peripheral edge of the thin film (2). Since the force that stops the force acts in the opposite direction, the radiation transmitting thin film (2), the O-ring (3) and the stop flange (4)
) There should be no discrepancy between the two. This anti-slip ring (
The force that prevents displacement according to 5) is the frictional force between the synchrotron radiation transmitting thin film (2) and the anti-slip ring (5), and the relationship between the frictional force F and the tightening force W is generally expressed using the friction coefficient μ. F-
It is expressed as μW. Therefore, in the present invention, in order to expand the tightening method W between the anti-slip ring (5) and the thin film (2), measures such as tightening the stop flange (4) and the vacuum flange (1) with strong bolts are taken. is necessary. Further, as mentioned above, the cross-sectional shape of the contact portion of the anti-slip ring (5) is made to have an acute angle.

放射光透過薄膜(2)や真空フランジ(1)との接触面
積を小さくすること、即ち、接触部分の単位面積当りの
締め付は力を高めることにより真空シールのような役割
を果たすようになるため、よりガス漏れの少ない真空シ
ールが実現できることになる。
By reducing the contact area with the synchrotron radiation transmitting thin film (2) and the vacuum flange (1), that is, by increasing the tightening force per unit area of the contact area, it will function like a vacuum seal. Therefore, a vacuum seal with less gas leakage can be realized.

又、本願第2発明は、第2図(、)に示すように、放射
光透過薄膜(2)周縁部の片面又は両面に係合突起(6
a)を設けると共に、これに対応させて真空フランジ(
1)側若しくは止めフランジ(4)側又はその両側に係
止突起(6b)を設け、前記係合突起(6a)にこの係
止突起(6b)が係合して、放射光透過薄膜(2)の周
縁部がその半径方向に向けてずれない構成にするもので
ある。又、真空フランジ(1)や止めフランジ(4)に
設けられる係合突起(6a)の係合構造の代わりに、同
図(b)に示すような嵌合凹部(6c)を設け、そこに
該係合突起(6a)を嵌合せしめるようにしても良い。
Further, the second invention of the present application, as shown in FIG.
a) and a corresponding vacuum flange (
A locking protrusion (6b) is provided on the 1) side or the stop flange (4) side or on both sides thereof, and the locking protrusion (6b) engages with the engaging protrusion (6a), and the radiation transmitting thin film (2) is engaged with the engaging protrusion (6a). ) is configured so that the peripheral edge of the tube does not shift in the radial direction. Moreover, instead of the engagement structure of the engagement protrusion (6a) provided on the vacuum flange (1) and the stop flange (4), a fitting recess (6c) as shown in FIG. The engaging projections (6a) may be fitted together.

このような係合構造又は嵌合構造によって、放射光透過
薄)摸(2)の周縁部がそこに固定されることになり、
ずれの発生がなくなる。
With such an engagement structure or fitting structure, the peripheral edge of the radiation-transmitting thin plate (2) is fixed thereto,
No more misalignment.

更に、本願第3発明は、第3図に示すよう1.二〇リン
グ(3)の内周側又は/及び外周側に膜支持リング(7
)を設けると共に、放射光透過薄膜(2)と膜支持リン
グ(7)及び止めフランジ(4)との接触面間を接着剤
(8)で固定する構成とするものでi)る。
Furthermore, the third invention of the present application has the following features as shown in FIG. 20 Membrane support ring (7) on the inner circumference side and/or outer circumference side of ring (3)
), and the contact surfaces of the radiation-transmitting thin film (2), the membrane support ring (7), and the stopper flange (4) are fixed with an adhesive (8) i).

このよ)な接着剤(8)固定構造によって、放射光透過
薄膜(2)の周縁部が膜支持リング(7)及一 び止めフランジ(4)に固定されることになり。
This adhesive (8) fixing structure allows the peripheral edge of the radiation-transmitting thin film (2) to be fixed to the membrane support ring (7) and the stopper flange (4).

ずれを発生することがない。No deviation occurs.

〔実施例〕〔Example〕

以下添付図面に基づき本発明の具体的実施例を説明する
Hereinafter, specific embodiments of the present invention will be described based on the accompanying drawings.

第4図は、本願第1発明の一実施例を示す断面図である
FIG. 4 is a sectional view showing an embodiment of the first invention of the present application.

図中、(102a)は口径40mmのビームライン、(
20)は厚さ20μmの放射光透過可能なベリリウム薄
膜、 (30)はフッ素ゴム製Oリング、(40)は止
めフランジ、(11,0)はインナーリンク、(]、0
4a)は転写装置側のチャンバである。
In the figure, (102a) is a beam line with a diameter of 40 mm, (
20) is a beryllium thin film with a thickness of 20 μm that can transmit synchrotron radiation, (30) is a fluororubber O-ring, (40) is a stop flange, (11,0) is an inner link, (], 0
4a) is a chamber on the transfer device side.

本実施例では、Oリング(30)外周側の真空フランジ
(10)とベリリウム薄膜(20)との間にアルミニウ
ム製のずれ止めリング(50)を介装せしめている。こ
のずれ止めリング(50)の断面形状は、図面に示すよ
う に、夫々真空フランジ(10)とベリリウム薄膜(
20)に向けて鋭角な三角形を構成するように尖らせて
いる。
In this embodiment, an aluminum anti-slip ring (50) is interposed between the vacuum flange (10) on the outer peripheral side of the O-ring (30) and the beryllium thin film (20). As shown in the drawing, the cross-sectional shapes of this anti-slip ring (50) include a vacuum flange (10) and a beryllium thin film (10), respectively.
20) is pointed to form an acute triangle.

又、(90)はクリップであり、該クリップ本体り の8箇所に穿設されたボルト孔(91)に夫々ボルト(
92)を貫通せしめて、第5図に示すように8本のボル
ト(92)を真空フランジ(10)のボルト螺入孔(1
1)に螺着せしめている。これにより、止めフランジ(
40)を真空フランジ(10)に締め付はトルク100
乃至120kg−(至)で圧着せしめることができる。
Further, (90) is a clip, and each bolt (90) is inserted into each bolt hole (91) drilled at eight locations on the clip body.
92), and insert eight bolts (92) into the bolt holes (1) of the vacuum flange (10) as shown in FIG.
1) is screwed on. This allows the stop flange (
40) to the vacuum flange (10) with a torque of 100
It can be crimped with a weight of 120 kg to 120 kg.

この止めフランジ(40)の圧着によって、ベリリウム
薄膜(20)の周縁部は、その片面側がインナーリング
(110)、Oリング(30)及びずれ止めリング(5
0)を介して真空フランジ(10)側に接触し、他面側
が止めフランジ(40)に直接接触した状態となって、
止めフランジ(40)及び真空フランジ(10)間で締
め付けられることになる。
By crimping the stop flange (40), the peripheral edge of the beryllium thin film (20) has one side facing the inner ring (110), O-ring (30), and non-slip ring (5).
0) to the vacuum flange (10) side, and the other side is in direct contact with the stop flange (40),
It will be tightened between the stop flange (40) and the vacuum flange (10).

このように、本実施例では、Oリング(30)によりベ
リリウム薄膜(20)を挾んでビームライン(102a
)側と転写装置チャンバ(104a)側の間の真空シー
ルがなされると共に、クリップ(90)を真空フランジ
(10)にボルト締めして、止めフランジ(40)とず
れ止めリング(50)の間でベリリウム薄膜(20)の
周縁部を極めて強い力で挾持しているため、高真空状態
のビームライン(+02a)側と転写装置のチャンバ(
104a)側との間に大気圧程度の圧力差があっても、
該薄膜(20)の周縁部がその半径方向に向かってずれ
てしまうことがない。又ずれ止めリング(50)断面形
状が」二連のように鋭角になっており、真空フランジ(
10)及びベリリウム薄膜(20)との接触面積が小さ
くなっているため、ずれ止め効果を得るだけでなく、真
空シール効果もこれにより更に得ている。
In this example, the beryllium thin film (20) is sandwiched between the O-ring (30) and the beam line (102a
) side and the transfer device chamber (104a) side, and the clip (90) is bolted to the vacuum flange (10) to seal between the stop flange (40) and the anti-slip ring (50). Since the peripheral edge of the beryllium thin film (20) is held with extremely strong force by the
Even if there is a pressure difference of about atmospheric pressure between the 104a) side,
The peripheral edge of the thin film (20) will not shift in the radial direction. In addition, the cross-sectional shape of the anti-slip ring (50) has an acute angle like a double series, and the vacuum flange (
10) and the beryllium thin film (20), the contact area with the beryllium thin film (20) is small, so that not only a slip-preventing effect is obtained, but also a vacuum sealing effect is obtained.

このような状態で10時間以上の連続使用を実施してい
るが、現在までにガス漏れ事故の発生は報告されていな
い。
Although it has been used continuously for more than 10 hours under these conditions, no gas leak accidents have been reported to date.

第6図は本願第2発明の構成の一実施例を示す説明図で
ある。図中前記実施例と同一の構成については同一番号
が付されている。
FIG. 6 is an explanatory diagram showing an embodiment of the configuration of the second invention of the present application. In the figure, the same components as those in the previous embodiment are designated by the same numbers.

本実施例では、ベリリウム薄膜(20)周縁部の止めフ
ランジ(40)対向面にリング状に形成された係合突起
(60)を設け、且つ、該止めフランジ(40)側の対
向面には、この係合突起(60)が嵌合できる嵌合凹部
(61)を形成している。
In this embodiment, a ring-shaped engagement protrusion (60) is provided on the surface facing the stop flange (40) at the peripheral edge of the beryllium thin film (20), and on the surface opposite the stop flange (40). , forming a fitting recess (61) into which the engaging protrusion (60) can fit.

従って、クリップ(90)が真空フランジ(10)側に
ボルト(92)締めされた際、薄膜(20)の前記係合
突起(60)は止めフランジ(40)側の嵌合凹部(6
1)に嵌合され、ずれ止めされるため、ベリリウム薄膜
(20)が隔てているビームライン(102a)側の高
真空域と転写装置のチャンバ(104a)内界囲気との
間に同じく大気圧程度の圧力差があっても、該薄膜(2
0)周縁部がその半径方向に向かってずれてしまうこと
がない。
Therefore, when the clip (90) is tightened with the bolt (92) on the vacuum flange (10) side, the engagement protrusion (60) of the thin film (20) is inserted into the engagement recess (60) on the stop flange (40) side.
1) and is prevented from slipping, so that there is also atmospheric pressure between the high vacuum area on the beam line (102a) side, which is separated by the beryllium thin film (20), and the surrounding air inside the transfer device chamber (104a). Even if there is a slight pressure difference, the thin film (2
0) The peripheral edge will not shift in the radial direction.

尚、図中(1,11,)はOリング(30)外周側でベ
リリウム薄膜(20)の周縁部を支持するアウターリン
グである。
Note that (1, 11,) in the figure is an outer ring that supports the peripheral edge of the beryllium thin film (20) on the outer peripheral side of the O-ring (30).

第7図は、本願第3発明の実施例を示す説明図であり、
図中第1実施例と同一の構成については同一番号が付さ
れている。
FIG. 7 is an explanatory diagram showing an embodiment of the third invention of the present application,
In the figure, the same components as in the first embodiment are designated by the same numbers.

本実施例では、Oリング(30)内周側に膜支持用イン
ナーリング(70)、又その外周側に同じく膜支持用ア
ウターリング(71)が設けられておりベリリウム薄膜
(20)が真空フランジ(10)側に圧着された時に、
インナーリング(70)及びOリング(30)の側周面
並びにアウターリング(71)側周部の凹部(7111
)嵌着面に、ベリリウム薄膜(20)周縁部の片面が接
触することになる。
In this embodiment, an inner ring for membrane support (70) is provided on the inner circumference side of the O-ring (30), and an outer ring for membrane support (71) is provided on the outer circumference side, and the beryllium thin film (20) is attached to the vacuum flange. (10) When crimped on the side,
Recesses (7111) on the side circumferential surfaces of the inner ring (70) and O-ring (30) and on the side circumference of the outer ring (71)
) One side of the peripheral edge of the beryllium thin film (20) comes into contact with the fitting surface.

そして、このベリリウム薄膜(20)とインナーリング
(70)側周面及び該薄膜(20)とアウターリング(
71)嵌着面並びにこの薄膜(20)と止めフランジ(
40)接触面間にエポキシ系接着剤(80)を充填し、
これらの間を強固に接着せしめている。
Then, this beryllium thin film (20) and the inner ring (70) side peripheral surface, and this thin film (20) and the outer ring (
71) The fitting surface and this thin film (20) and the stop flange (
40) Fill epoxy adhesive (80) between the contact surfaces,
These are strongly bonded together.

この実施例では、真空シールを行なうOリング(30)
との接触部分を除き、ベリリウム薄膜(20)周縁部の
挾持構造接触部分は、すべてこのエポキシ系接着剤(8
0)で固定されているため、高真空状態のビームライン
(1,02a)側と転写装置のチャンバ(104a)内
界囲気との間に大気圧程度の圧力差があっても、ベリリ
ウム薄膜(20)周縁部がその半径方向にずれてしまう
ことがない。
In this example, an O-ring (30) provides a vacuum seal.
This epoxy adhesive (8
0), the beryllium thin film ( 20) The peripheral edge will not shift in its radial direction.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明の構成を有する放射光透過
窓によれば、放射光源側の高真空域と転写装置側のチャ
ンバ雰囲気との間をシールし、且つ放射光を透過せしめ
る放射光透過薄膜の周縁部の真空フランジ取付部を不動
同構造と(7たため、該取付部に隙間を生しることがな
い。
As detailed above, according to the synchrotron radiation transmitting window having the structure of the present invention, the synchrotron radiation transmitting window seals between the high vacuum area on the synchrotron radiation source side and the chamber atmosphere on the transfer device side, and transmits the synchrotron radiation. Since the vacuum flange attachment part on the peripheral edge of the transparent thin film has an immovable structure (7), there is no gap in the attachment part.

そのため、放射光源側の高真空状態に影響を与えること
がなく、放射光を用いて半導体マスクパターンを露光す
る場合に、常に安定した操業が可能になるという優れた
効果を有している。
Therefore, it does not affect the high vacuum state on the side of the radiation source, and has the excellent effect that stable operation is always possible when exposing a semiconductor mask pattern using radiation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) (b)は本願第1発明の構成を示す説明
図、第2図(a)(b)は第2発明の構成を示す説明図
、第3図は同しく第3発明の構成を示す説明図、第4図
は本願第1発明の一実施例の構成を示す断面図、第5図
は該実施例の窓部分の右側面図、第6図は第2発明の実
施例の構成を説明するために、各構成物品毎に分解して
示した組立図、第7図は第3発明の実施例構成を各構成
物品毎に分解して示した組立図、第8図はシンクロトロ
ン放射光を利用したX線露光装置の構成の概略図、第9
図は放射光透過窓の従来構成を示す断面図である。 図中、(1,)(10) (12)は真空フランジ、(
2)(2]、)は放射光透過薄膜、(2o)はベリリウ
ム薄膜、(3)(30)(31)l;1. OU ン’
J、(4)(40)(41)Lt、止メ7 リング、(
5)(50)はずれ止めリング、(6a)(60)は係
合突起、 (6b)は係止突起、(6c)(61,)は
嵌合四部、(7)は膜支持リング、(7o)はインナー
リング、(71)はアウターリング、(8)(80)は
接着剤、(102) (102a)はビームライン、(
104)(] 04a)はチャンバを各示す。 =15= −】6
Figures 1 (a) and (b) are explanatory diagrams showing the configuration of the first invention of the present application, Figures 2 (a) and (b) are explanatory diagrams showing the configuration of the second invention, and Figure 3 is the same as the third invention. FIG. 4 is a sectional view showing the configuration of an embodiment of the first invention of the present application, FIG. 5 is a right side view of the window portion of the embodiment, and FIG. 6 is a diagram showing the implementation of the second invention. In order to explain the configuration of the example, FIG. 7 is an assembly diagram showing the configuration of the embodiment of the third invention disassembled for each component, and FIG. 9 is a schematic diagram of the configuration of an X-ray exposure device that uses synchrotron radiation.
The figure is a sectional view showing a conventional structure of a radiation transmitting window. In the figure, (1,) (10) (12) are vacuum flanges, (
2) (2], ) is a synchrotron radiation transmitting thin film, (2o) is a beryllium thin film, (3) (30) (31) l;1. OU N'
J, (4) (40) (41) Lt, stopper 7 ring, (
5) (50) Anti-slip ring, (6a) (60) is the engagement protrusion, (6b) is the locking protrusion, (6c) (61,) is the four fitting parts, (7) is the membrane support ring, (7o) ) is the inner ring, (71) is the outer ring, (8) (80) is the adhesive, (102) (102a) is the beam line, (
104) (] 04a) each indicates a chamber. =15=-]6

Claims (4)

【特許請求の範囲】[Claims] (1)ビームラインの真空フランジにOリングを介して
放射光透過薄膜の周縁部を取付け、更にその上から止め
フランジを圧着せしめてビームラインの高真空域と転写
装置側のチャンバ雰囲気とを隔て且つ放射光を透過せし
める放射光透過窓において、前記真空フランジと放射光
透過薄膜の間であつてOリングの外周側又は/及び内周
側にずれ止めリングを介装せしめると共に、該ずれ止め
リング及び放射光透過薄膜を挾んで真空フランジと止め
フランジ間を締め付ける構造としたことを特徴とする放
射光透過窓。
(1) Attach the peripheral edge of the synchrotron radiation transmitting thin film to the vacuum flange of the beam line via an O-ring, and then press the stop flange over it to separate the high vacuum area of the beam line from the chamber atmosphere on the transfer device side. In the synchrotron radiation transmitting window that transmits synchrotron radiation, a non-slip ring is interposed between the vacuum flange and the synchrotron radiation-transmissive thin film on the outer circumferential side and/or the inner circumferential side of the O-ring, and the anti-slip ring and a synchrotron radiation transmitting window characterized by having a structure that clamps a vacuum flange and a stop flange by sandwiching a synchrotron radiation transmitting thin film.
(2)前項記載の放射光透過窓において、前記ずれ止め
リングの断面形状を、放射光透過薄膜に向けて又は該放
射光透過薄膜及び真空フランジに向けて鋭くしたことを
特徴とする特許請求の範囲第1項記載の放射光透過窓。
(2) In the synchrotron radiation transmitting window described in the preceding paragraph, the cross-sectional shape of the anti-slip ring is sharpened toward the synchrotron radiation transmitting thin film or toward the synchrotron radiation transmitting thin film and the vacuum flange. A radiation transmitting window according to Range 1.
(3)ビームラインの真空フランジにOリングを介して
放射光透過薄膜の周縁部を取付け、更にその上から止め
フランジを圧着せしめてビームラインの高真空域と転写
装置側のチャンバ雰囲気とを隔て且つ放射光を透過せし
める放射光透過窓において、該放射光透過薄膜周縁部の
片面又は両面に係合突起を設けると共に、これに対応さ
せて真空フランジ側若しくは止めフランジ側又はその両
側にこの係合突起が係合又は嵌合して放射光透過薄膜周
縁部がその半径方向に向けてずれないようにする係止突
起又は嵌合凹部を設けたことを特徴とする放射光透過窓
(3) Attach the peripheral edge of the synchrotron radiation transmitting thin film to the vacuum flange of the beam line via an O-ring, and then press the stop flange over it to separate the high vacuum area of the beam line from the chamber atmosphere on the transfer device side. In addition, in the synchrotron radiation transmitting window that transmits synchrotron radiation, an engaging protrusion is provided on one or both sides of the peripheral edge of the synchrotron radiation transmitting thin film, and correspondingly, an engaging protrusion is provided on the vacuum flange side, the stop flange side, or both sides thereof. A synchrotron radiation transmitting window characterized in that a locking protrusion or a fitting recess is provided with which the protrusion engages or fits to prevent the peripheral edge of the synchrotron radiation transmitting thin film from shifting in the radial direction.
(4)ビームラインの真空フランジにOリングを介して
放射光透過薄膜の周縁部を取付け、更にその上から止め
フランジを圧着せしめてビームラインの高真空域と転写
装置側のチャンバ雰囲気とを隔て且つ放射光を透過せし
める放射光透過窓において、Oリングの内周側又は/及
び外周側に膜支持リングを設けると共に、放射光透過薄
膜と膜支持リング及び止めフランジとの接触面間を接着
剤で固定したことを特徴とする放射光透過窓。
(4) Attach the peripheral edge of the synchrotron radiation transmitting thin film to the vacuum flange of the beam line via an O-ring, and then press the stop flange over it to separate the high vacuum area of the beam line from the chamber atmosphere on the transfer device side. In addition, in the synchrotron radiation transmitting window that transmits synchrotron radiation, a membrane support ring is provided on the inner circumferential side and/or outer circumferential side of the O-ring, and adhesive is applied between the contact surfaces of the synchrotron radiation transmitting thin film, the membrane support ring, and the stop flange. A synchrotron radiation transmitting window characterized by being fixed with.
JP63317889A 1988-12-16 1988-12-16 Radiation light transmission window Pending JPH02163700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63317889A JPH02163700A (en) 1988-12-16 1988-12-16 Radiation light transmission window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63317889A JPH02163700A (en) 1988-12-16 1988-12-16 Radiation light transmission window

Publications (1)

Publication Number Publication Date
JPH02163700A true JPH02163700A (en) 1990-06-22

Family

ID=18093185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63317889A Pending JPH02163700A (en) 1988-12-16 1988-12-16 Radiation light transmission window

Country Status (1)

Country Link
JP (1) JPH02163700A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3599631A1 (en) * 2018-07-27 2020-01-29 Moxtek, Inc. Mounted x-ray window

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3599631A1 (en) * 2018-07-27 2020-01-29 Moxtek, Inc. Mounted x-ray window

Similar Documents

Publication Publication Date Title
EP0469895B1 (en) X-ray transmitting window and method of mounting the same
US7035379B2 (en) Radiation window and method of manufacture
JPS60239039A (en) Device and method for holding semiconductor wafer
JP3854680B2 (en) Pressure partition and exposure apparatus using the same
JPH02163700A (en) Radiation light transmission window
US3951698A (en) Dual use of epitaxy seed crystal as tube input window and cathode structure base
JPS59101833A (en) X-ray exposure device
US20190214217A1 (en) Boron X-Ray Window
JPH0335774B2 (en)
JPH0830760B2 (en) Method for manufacturing radiant light transmitting thin film and radiant light transmitting window having radiant light transmitting thin film manufactured by the method
JPH04136943A (en) X-ray exposing device
JPH0353200A (en) Production of x-ray exposing device
JP6198305B2 (en) Charged particle beam equipment
US6009144A (en) X-ray system and X-ray exposure apparatus
JPH0834132B2 (en) Radiation transmitting window and method of attaching radiation transmitting thin film in radiation transmitting window
US4899355A (en) X-ray lithography system
RU2785012C1 (en) X-ray mask
RU2222072C2 (en) Electron beam amplifier
JP2023180057A (en) X-ray tube device
JPS6167917A (en) X-ray lead-out cylinder
JPS62291028A (en) X-ray exposure device
JPH0587013B2 (en)
JPS5913336A (en) X-ray exposure device
JPH03223589A (en) Airtight seal piping connecting device
Lefevre et al. Thin Si sub 3 N sub 4 windows for MeV ions