JPH0216356B2 - - Google Patents

Info

Publication number
JPH0216356B2
JPH0216356B2 JP8684781A JP8684781A JPH0216356B2 JP H0216356 B2 JPH0216356 B2 JP H0216356B2 JP 8684781 A JP8684781 A JP 8684781A JP 8684781 A JP8684781 A JP 8684781A JP H0216356 B2 JPH0216356 B2 JP H0216356B2
Authority
JP
Japan
Prior art keywords
oil
solvent
deasphalted
column
distillation column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8684781A
Other languages
Japanese (ja)
Other versions
JPS57202383A (en
Inventor
Mitsuo Fujita
Juji Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Original Assignee
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai filed Critical Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority to JP8684781A priority Critical patent/JPS57202383A/en
Publication of JPS57202383A publication Critical patent/JPS57202383A/en
Publication of JPH0216356B2 publication Critical patent/JPH0216356B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は重質油の水素化処理方法に関し、詳し
くは重質原料油を、水素化分解によつて生成する
軽質油を溶剤として用いて脱瀝し、しかる後に水
素化分解処理することにより、効果的な水素化処
理を達成する方法に関する。 従来、アスフアルテンや金属分を比較的多量に
含む残渣油等の重質油を水素化分解する場合、こ
のような重質油をそのまま水素化分解すると触媒
に金属分や炭素分が析出して短時間で分解活性が
低下してしまうため、プロパン、ブタン、ナフサ
等の軽質炭化水素で脱瀝し、アスフアルテンを除
去した後に水素化分解する方法が行なわれている
(第1図参照)。 しかし、上記方法では、脱瀝油から溶剤を分離
して溶剤を回収するための溶剤回収塔1を設ける
必要があると同時に、他のプロセスから脱瀝溶剤
を供給する必要する必要があり、設備の上でもま
た操作の上でも不利な点が多い上に抽出効率が十
分でなかつた。 本発明は、上記従来法の欠点を解消し、しかも
高い収率で中間留分を得ることのできる方法であ
る。 すなわち本発明は、重質油を脱瀝した後水素化
分解して軽質化する方法において、重質原料油
を、水素化分解により生成する軽質油を溶剤とし
て用いて脱瀝し、次いで該溶剤を含む脱瀝油を蒸
留塔に導入して脱瀝油と溶剤を分離し、続いて得
られた脱瀝油を水素化分解した後、生成物を前記
蒸留塔に導入して各留分に分離し、得られた軽質
分の少なくとも一部分を前記重質原料油の脱瀝溶
剤として利用することを特徴とする重質油の水素
化処理方法を提供するものである。 本発明に用いる重質油は沸点343℃以上の成分
の含量が70vol%以上、好ましくは85vol%以上で
ある重質油でありたとえば常圧蒸留残渣油、減圧
蒸留残渣油等をあげることができる。 本発明の方法を図面に基いてさらに詳しく説明
すれば次のとおりである。 第2図は本発明の方法の一態様を示す流れ図で
ある。第2図において、まず重質原料油は抽出塔
2に導入される。一方、この抽出塔2には後述す
る反応塔3で水素化分解され、さらに、蒸留塔4
で分留されて得られるナフサ等の軽質油が導か
れ、この軽質油が溶剤として用いられて、この抽
出塔2内で前記重質原料油が脱瀝処理される。こ
の軽質油中には多量の芳香族分が含有されている
ため、プロパン等の溶剤を用いた場合に比べ、常
圧蒸留残渣油等に対する抽出効率が高い。 抽出塔の運転条件は、通常、温度110〜270℃、
圧力10〜50Kg/cm2、溶剤比1〜10vol/volの範囲
で選定する。 脱瀝処理後、ピツチ等の瀝青物は抽出塔2の底
部より抜き出され、一方、抽出された脱瀝油は溶
剤としての軽質油を含有したまま蒸留塔4へ導か
れる。この溶剤を含有する脱瀝油は蒸留塔4内で
蒸留されるが、主として溶剤と脱瀝油とが分離さ
れるのみで、脱瀝油がさらに各成分に分留される
ことはあまり期待できず、ほとんどの脱瀝油は蒸
留塔4の底部に集まる。 蒸留塔4において溶剤を分離した脱瀝油は、蒸
留塔4の底部から抜き出され、反応塔3に導入さ
れる。この反応塔3内において前記脱瀝油は水素
化分解される。ここにおける水素化処理の条件は
特に制限はなく、脱瀝油の種類(すなわち重質原
料油の種類)、水素化処理の目的等に応じて適宜
選定すればよい。つまり、触媒としてはアルミ
ナ、アルミナ−ボリア、シリカ−アルミナ、シリ
カ−マグネシアなどの多孔性無機質担体または前
記多孔性無機質担体にY型ゼオライトもしくは超
安定性Y型ゼオライトを配合した担体に周期律表
族(Mo,W),族(CO,Ni)の金属および
その硫化物を単独あるいは混合して担持したもの
などを用いることができる。ここで超安定性Y型
ゼオライトとはSiO2/Al2O3モル比が7〜30、単
位格子寸法が23.00〜24.60ÅのY型ゼオライトを
いう。 好ましい触媒の組合せは、担体として、アルミ
ナ−Y型ゼオライト、アルミナ−超安定性Y型ゼ
オライト、アルミナ−ボリア−Y型ゼオライト又
はアルミナ−ボリア−超安定性Y型ゼオライトを
用い、金属としてNi−W,Ni−Mo又はCo−Mo
を用いる組合せである。ここで、担体中のY型ゼ
オライト又は超安定性Y型ゼオライトの量は担体
の20〜80wt%、好ましくは40〜60wt%である。
20wt%未満ではゼオライトの作用効果が充分発
現されず、80wt%以上では触媒の保形強度が確
保できない。マトリツクスとしてアルミナ−ボリ
アを使用する場合は、ボリアをB2O3としてマト
リツクス中に30wt%以下、好ましくは20〜10wt
%含有するようにすれば、アルミナ−ボリアの固
体酸量が最大となる。 金属の担持量は、族金属については金属酸化
物として触媒中に1〜11wt%、好ましくは2〜
7wt%,族金属については金属酸化物として触
媒中に8〜32wt%、好ましくは10〜21wt%とす
る。水素化分解条件としては、反応温度300〜480
℃、反応圧力70〜350Kg/cm2G、水素ガス供給量
500〜3000Nm3/Kl−油、液時空間速度(L.H.S.
V)0.1〜2の範囲で選定するのが好ましい。 上記反応塔3にて水素化分解を行なつて得られ
た生成物は、前述の抽出塔2からの溶剤含有脱瀝
油を合流せしめて、あるいは別途に、前記蒸留塔
4に導入される。この蒸留塔4において水素化分
解生成物はガス分、ナフサ等の軽質油分、ヘビー
ナフサ、灯油および軽油等の中間留分、残渣油等
に分留される。なお、この蒸留塔4内には、既に
述べた如く、水素化分解生成油のみならず、溶剤
を含む脱瀝油も導入されているが、この脱瀝油は
各成分に分留されることはほとんどなく、もつぱ
ら溶剤と分離されて蒸留塔4の底部に集積する。
従つて、本発明の方法では、蒸留塔4は、水素化
分解生成油を分留する役割と同時に、脱瀝油と溶
剤を分離する溶剤回収塔としての役割をも果すこ
ととなる。 この蒸留塔4において、脱瀝油から分離された
溶剤としての軽質油および水素化分解生成物の分
留によつて得られた軽質油は、その少なくとも一
部分は、前述した重質原料油の脱瀝溶剤として、
抽出塔2へ導かれる。一方、蒸留塔4の底部の残
渣油は、必要に応じて再度反応塔3へ導入して水
素化分解処理し、さらにその後蒸留塔4へ導くこ
ともでさる。 叙上の如く、本発明の方法によれば脱瀝溶剤と
して水素化分解により得られる軽質油を用いるた
め、溶剤を自給することができ、他のプロセスか
ら別途溶剤を供給する必要がないのみならず、軽
質油中に多量の芳香族分が含有されていることか
ら抽出処理による収率が高く、その結果中間留分
が増産するという長所を有する。また脱瀝油から
溶剤を分離する溶剤回収塔が不要であるため設備
費の削減が可能である。 それ故、本発明の方法は、石油精製の分野にお
いて有効に利用されるものである。 次に本発明の実施例を示す。 実施例 1〜3 第2図に示すフローを有する装置を用い、下記
表−1に示す性状の中国産原油の常圧蒸留残渣油
を原料油として試験を行なつた。抽出塔2におい
ては表−2に示す条件下にて脱瀝処理を行なつた
ところ、脱瀝油の収率はほぼ95重量パーセントで
あつた。また、反応塔3内においては、表−3に
示す組成の水素化分解触媒を用い、表−4に示す
条件下では水素化分解を行なつた。なお抽出塔2
の塔頂からの溶剤含有脱瀝油と水素化分解油との
混合物の蒸留塔4入口における温度は約300℃に
設定した。 叙上の如き本発明の方法を連続的に運転し、定
常状態になつてからの生成油の収率は表−5のと
おりであつた。また脱瀝溶剤として用いた軽質油
の性状は表−6のとおりであつた。 比較例 1,2 第1図に示すフローを有する装置を用いて、実
施例1〜3と同様の条件でプロパン脱瀝処理、水
素化分解処理を行なつた結果、脱瀝油の収率は90
重量%であつた。また、得られた生成物の収率を
表−5に示す。 実施例 4 実施例1〜3において、HY型ゼオライトの代
りに、SiO2/Al2O3モル比が8.2、単位格子寸法が
24.37Å,Na2Oとして1.5wt%以下のアルカリ金
属を含有する超安定性ゼオライトを用い、他は実
施例1〜3と同じ条件で水素化分解を行なつた。
結果を表−5に示す。 比較例 3 第1図に示すフローを有する装置を用いて、実
施例4と同様の条件でプロパン脱瀝処理、水素化
分解処理を行なつた結果、脱瀝油の収率は90重量
%であつた。また、得られた生成物の収率を表−
5に示す。 表−1 比重 (D15/4℃) 0.8956 343℃+(vol%) 94.0 動粘度(C.P.50℃) 199 流動点(℃) 40.0 残炭 (wt%) 4.4 硫黄分(wt%) 0.15 窒素分(wt%) 0.249 バナジウム分(ppm) 0.1以下 ニツケル分(ppm) 5.0 表−2 塔頂温度(℃) 190 塔底温度(℃) 180 圧力(Kg/cm2G) 30 溶剤比(vol/vol) 5 表−3 HY型ゼオライト(wt%) 44.25 AL2O3(wt%) 31.50 Nio(wt%) 4.25 WO3(wt%) 17.00 表−4 反応温度(℃) 405,395,385 反応圧力(Kg/cm2G) 150 L.H.S.V.(hr-1) 0.3 H2/油比(Nm2/Kl) 2000
The present invention relates to a method for hydrotreating heavy oil, and more specifically, the present invention relates to a method for hydrotreating heavy oil, in particular, by deasphalting heavy feedstock oil using light oil produced by hydrocracking as a solvent, and then subjecting it to hydrocracking treatment. Relating to methods for achieving effective hydroprocessing. Conventionally, when heavy oil such as residual oil containing relatively large amounts of asphaltenes and metals is hydrocracked, if such heavy oil is hydrocracked as is, metals and carbon content will precipitate on the catalyst, resulting in a short period of time. Since the cracking activity decreases over time, a method of deasphalting with light hydrocarbons such as propane, butane, naphtha, etc. to remove asphaltenes and then hydrogenolyzing is used (see Figure 1). However, in the above method, it is necessary to provide a solvent recovery column 1 to separate the solvent from deasphalted oil and recover the solvent, and at the same time, it is necessary to supply deasphalted solvent from another process, which requires additional equipment. There are many disadvantages both in terms of production and operation, and the extraction efficiency is not sufficient. The present invention is a method that eliminates the drawbacks of the above-mentioned conventional methods and can obtain middle distillates in high yields. That is, the present invention provides a method for deasphalting heavy oil and then hydrocracking it to make it lighter. The deasphalted oil containing the deasphalted oil is introduced into a distillation column to separate the deasphalted oil and the solvent, and the obtained deasphalted oil is subsequently hydrocracked, and the product is introduced into the distillation column to separate each fraction. The present invention provides a method for hydrotreating heavy oil, characterized in that at least a portion of the light fraction obtained is used as a deasphalting solvent for the heavy feedstock oil. The heavy oil used in the present invention is a heavy oil in which the content of components having a boiling point of 343°C or higher is 70 vol% or more, preferably 85 vol% or more, and examples thereof include atmospheric distillation residue oil, vacuum distillation residue oil, etc. . The method of the present invention will be explained in more detail with reference to the drawings as follows. FIG. 2 is a flow diagram illustrating one embodiment of the method of the present invention. In FIG. 2, heavy feedstock oil is first introduced into an extraction column 2. On the other hand, in this extraction column 2, hydrogenolysis is carried out in a reaction column 3, which will be described later, and further, a distillation column 4 is added.
A light oil such as naphtha obtained by fractional distillation is introduced, and this light oil is used as a solvent to deasphalt the heavy raw material oil in this extraction column 2. Since this light oil contains a large amount of aromatic components, the extraction efficiency for atmospheric distillation residue oil is higher than when using a solvent such as propane. The operating conditions for the extraction tower are usually a temperature of 110 to 270°C;
The pressure is selected within the range of 10 to 50 Kg/cm 2 and the solvent ratio is selected within the range of 1 to 10 vol/vol. After the deasphalting treatment, the bituminous material such as pitch is extracted from the bottom of the extraction column 2, while the extracted deasphalted oil is led to the distillation column 4 while containing light oil as a solvent. The deasphalted oil containing this solvent is distilled in the distillation column 4, but the solvent and the deasphalted oil are mainly separated, and it is not very likely that the deasphalted oil will be further fractionated into each component. First, most of the deasphalted oil collects at the bottom of the distillation column 4. The deasphalted oil from which the solvent has been separated in the distillation column 4 is extracted from the bottom of the distillation column 4 and introduced into the reaction column 3. In this reaction tower 3, the deasphalted oil is hydrocracked. The conditions for the hydrotreating here are not particularly limited and may be appropriately selected depending on the type of deasphalted oil (ie, the type of heavy feedstock oil), the purpose of the hydrotreating, and the like. In other words, the catalyst is a porous inorganic carrier such as alumina, alumina-boria, silica-alumina, silica-magnesia, or a carrier prepared by blending Y-type zeolite or ultra-stable Y-type zeolite with the porous inorganic carrier. (Mo, W), group (CO, Ni) metals and their sulfides supported singly or in combination can be used. Here, the ultrastable Y-type zeolite refers to a Y-type zeolite with a SiO 2 /Al 2 O 3 molar ratio of 7 to 30 and a unit cell size of 23.00 to 24.60 Å. Preferred catalyst combinations use alumina-Y zeolite, alumina-ultrastable Y zeolite, alumina-boria-Y zeolite or alumina-boria-ultrastable Y zeolite as the support, and Ni-W as the metal. , Ni-Mo or Co-Mo
This is a combination using Here, the amount of Y-type zeolite or ultrastable Y-type zeolite in the carrier is 20 to 80 wt%, preferably 40 to 60 wt% of the carrier.
If it is less than 20wt%, the effects of zeolite will not be fully expressed, and if it is more than 80wt%, the shape-retaining strength of the catalyst cannot be ensured. When using alumina-boria as a matrix, the boria as B 2 O 3 in the matrix is 30wt% or less, preferably 20 to 10wt%.
%, the amount of solid acid in alumina-boria becomes maximum. The amount of metal supported is 1 to 11 wt%, preferably 2 to 11 wt% in the catalyst as a metal oxide for group metals.
7 wt%, and group metals as metal oxides in the catalyst in an amount of 8 to 32 wt%, preferably 10 to 21 wt%. The hydrogenolysis conditions include a reaction temperature of 300-480℃.
℃, reaction pressure 70-350Kg/ cm2G , hydrogen gas supply amount
500~ 3000Nm3 /Kl-oil, liquid time space velocity (LHS
V) It is preferable to select in the range of 0.1 to 2. The product obtained by hydrogenolysis in the reaction column 3 is introduced into the distillation column 4 either by combining the solvent-containing deasphalted oil from the extraction column 2 or separately. In this distillation column 4, the hydrocracked product is fractionated into gas, light oil such as naphtha, middle distillate such as heavy naphtha, kerosene and light oil, residual oil, and the like. As mentioned above, not only the hydrocracked oil but also deasphalted oil containing a solvent is introduced into the distillation column 4, but this deasphalted oil is fractionated into each component. There is very little of it, and it is mostly separated from the solvent and accumulated at the bottom of the distillation column 4.
Therefore, in the method of the present invention, the distillation column 4 plays the role of fractionating the hydrocracked oil and at the same time serves as a solvent recovery column that separates the deasphalted oil and the solvent. In this distillation column 4, at least a part of the light oil obtained by fractional distillation of the light oil as a solvent and the hydrocracking product separated from the deasphalted oil is As a binder,
It is guided to extraction tower 2. On the other hand, the residual oil at the bottom of the distillation column 4 may be introduced into the reaction column 3 again for hydrocracking treatment, if necessary, and then further introduced into the distillation column 4. As mentioned above, since the method of the present invention uses light oil obtained by hydrocracking as the deasphalting solvent, the solvent can be self-sufficient, and there is no need to separately supply the solvent from other processes. First, since light oil contains a large amount of aromatic components, it has the advantage of high yield through extraction treatment, resulting in increased production of middle distillates. Furthermore, since a solvent recovery column for separating the solvent from the deasphalted oil is not required, equipment costs can be reduced. Therefore, the method of the present invention can be effectively utilized in the field of petroleum refining. Next, examples of the present invention will be shown. Examples 1 to 3 Using an apparatus having the flow shown in FIG. 2, tests were conducted using the atmospheric distillation residue of Chinese crude oil having the properties shown in Table 1 below as a raw material. In extraction column 2, deasphalting treatment was carried out under the conditions shown in Table 2, and the yield of deasphalted oil was approximately 95% by weight. Further, in the reaction tower 3, hydrogenolysis was carried out under the conditions shown in Table 4 using a hydrogenolysis catalyst having the composition shown in Table 3. In addition, extraction tower 2
The temperature at the inlet of distillation column 4 of the mixture of solvent-containing deasphalted oil and hydrocracked oil from the top of the column was set at about 300°C. The method of the present invention as described above was operated continuously, and the yield of produced oil after reaching a steady state was as shown in Table 5. The properties of the light oil used as a deasphalting solvent are shown in Table 6. Comparative Examples 1 and 2 Propane deasphalting treatment and hydrocracking treatment were carried out under the same conditions as Examples 1 to 3 using an apparatus having the flow shown in Figure 1. As a result, the yield of deasphalted oil was as follows. 90
It was in weight%. Moreover, the yield of the obtained product is shown in Table-5. Example 4 In Examples 1 to 3, instead of the HY type zeolite, the SiO 2 /Al 2 O 3 molar ratio was 8.2 and the unit cell size was
Hydrogenolysis was carried out under the same conditions as in Examples 1 to 3, except that an ultrastable zeolite having an alkali metal content of 24.37 Å and 1.5 wt% or less as Na 2 O was used.
The results are shown in Table-5. Comparative Example 3 Propane deasphalting treatment and hydrocracking treatment were carried out under the same conditions as in Example 4 using an apparatus having the flow shown in Figure 1. As a result, the yield of deasphalted oil was 90% by weight. It was hot. In addition, the yield of the obtained product is shown in the table.
5. Table-1 Specific gravity (D15/4℃) 0.8956 343℃ + (vol%) 94.0 Kinematic viscosity (CP50℃) 199 Pour point (℃) 40.0 Remaining coal (wt%) 4.4 Sulfur content (wt%) 0.15 Nitrogen content (wt %) 0.249 Vanadium content (ppm) 0.1 or less Nickel content (ppm) 5.0 Table 2 Tower top temperature (℃) 190 Tower bottom temperature (℃) 180 Pressure (Kg/cm 2 G) 30 Solvent ratio (vol/vol) 5 Table-3 HY type zeolite (wt%) 44.25 AL 2 O 3 (wt%) 31.50 Nio (wt%) 4.25 WO 3 (wt%) 17.00 Table-4 Reaction temperature (℃) 405, 395, 385 Reaction pressure (Kg /cm 2 G) 150 LHSV (hr -1 ) 0.3 H 2 /oil ratio (Nm 2 /Kl) 2000

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の水素化処理の方法の流れ図を示
し、第2図は本発明の方法の一態様の流れ図を示
す。 1……溶剤回収塔、2……抽出塔、3……反応
塔、4……蒸留塔。
FIG. 1 shows a flowchart of a conventional hydroprocessing method, and FIG. 2 shows a flowchart of one embodiment of the method of the present invention. 1... Solvent recovery column, 2... Extraction column, 3... Reaction column, 4... Distillation column.

Claims (1)

【特許請求の範囲】[Claims] 1 重質油を脱瀝した後水素化分解して軽質化す
る方法において、重質原料油を、水素化分解によ
り生成する軽質油を溶剤として用いて脱瀝し、次
いで該溶剤を含む脱瀝油を蒸留塔に導入して脱瀝
油と溶剤を分離し、続いて得られた脱瀝油を水素
化分解した後、生成物を前記蒸留塔に導入して各
留分に分離し、得られた軽質分の少なくとも一部
分を前記重質原料油の脱瀝溶剤として利用するこ
とを特徴とする重質油の水素化処理方法。
1 In a method of deasphalting heavy oil and then hydrocracking it to make it lighter, heavy feedstock oil is deasphalted using light oil produced by hydrocracking as a solvent, and then deasphalting containing the solvent is used. The oil is introduced into a distillation column to separate the deasphalted oil and the solvent, and then the obtained deasphalted oil is hydrocracked, and then the product is introduced into the distillation column to be separated into each fraction. A method for hydrotreating heavy oil, characterized in that at least a part of the light components obtained is used as a deasphalting solvent for the heavy feedstock oil.
JP8684781A 1981-06-08 1981-06-08 Hydrogenating method of heavy oil Granted JPS57202383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8684781A JPS57202383A (en) 1981-06-08 1981-06-08 Hydrogenating method of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8684781A JPS57202383A (en) 1981-06-08 1981-06-08 Hydrogenating method of heavy oil

Publications (2)

Publication Number Publication Date
JPS57202383A JPS57202383A (en) 1982-12-11
JPH0216356B2 true JPH0216356B2 (en) 1990-04-16

Family

ID=13898199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8684781A Granted JPS57202383A (en) 1981-06-08 1981-06-08 Hydrogenating method of heavy oil

Country Status (1)

Country Link
JP (1) JPS57202383A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653345U (en) * 1992-12-28 1994-07-19 日信工業株式会社 Braking hydraulic pressure control device
WO2010090013A1 (en) * 2009-02-03 2010-08-12 新日本石油株式会社 Process for producing binder for coke production and process for producing coke

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6715709B2 (en) * 2016-07-11 2020-07-01 株式会社神戸製鋼所 Method for producing hydrocracked oil and apparatus for producing hydrocracked oil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653345U (en) * 1992-12-28 1994-07-19 日信工業株式会社 Braking hydraulic pressure control device
WO2010090013A1 (en) * 2009-02-03 2010-08-12 新日本石油株式会社 Process for producing binder for coke production and process for producing coke
JP2010180287A (en) * 2009-02-03 2010-08-19 Nippon Oil Corp Method of preparing caking additive for producing coke and method for producing coke
JP4576463B2 (en) * 2009-02-03 2010-11-10 Jx日鉱日石エネルギー株式会社 Method for producing caking material for coke production and method for producing coke

Also Published As

Publication number Publication date
JPS57202383A (en) 1982-12-11

Similar Documents

Publication Publication Date Title
US3287254A (en) Residual oil conversion process
US6623623B2 (en) Simultaneous hydroprocessing of two feedstocks
AU748725B2 (en) Integrated hydrotreating and hydrocracking process
EP0434799B1 (en) Resid hydrotreating with solvent-extracted and desasphalted resins
US10752848B2 (en) Process integrating two-stage hydrocracking and a hydrotreatment process
US5358627A (en) Hydroprocessing for producing lubricating oil base stocks
US7547386B1 (en) Integrated process by hydroprocessing multiple feeds
EP1103592B1 (en) Improved hydrocracking process
US9284499B2 (en) Process and apparatus for integrating slurry hydrocracking and deasphalting
JPS63161072A (en) Production of high octane value gasoline
US7094332B1 (en) Integrated process for the production of ultra low sulfur diesel and low sulfur fuel oil
US20100329936A1 (en) Apparatus for integrating slurry hydrocracking and deasphalting
CA2351196C (en) Simultaneous hydroprocessing of two feedstocks
JP3098030B2 (en) How to improve the quality of residual oil
US3281350A (en) Hf deasphalting for hydrocracking feed preparation
EP1731588A1 (en) A process for upgrading a crude oil product
EP1326948A1 (en) Hydrocracking process
JPH0216356B2 (en)
EP1752511A1 (en) A hydrocracking process for the production of ultra low sulfur diesel
CA2491012C (en) An improved hydrocracking process
US9243195B2 (en) Process and apparatus for fluid catalytic cracking and hydrocracking hydrocarbons
US9422487B2 (en) Process for fluid catalytic cracking and hydrocracking hydrocarbons
SU1681735A3 (en) Process for preparing kerosene and/or gas oil
EP0125709B1 (en) A process for the production of low-asphaltenes hydrocarbon mixtures
JP2863326B2 (en) Crude oil refining method