JPH02163511A - Control circuit for magnetic searing device and magnetic floating carrier - Google Patents

Control circuit for magnetic searing device and magnetic floating carrier

Info

Publication number
JPH02163511A
JPH02163511A JP31818288A JP31818288A JPH02163511A JP H02163511 A JPH02163511 A JP H02163511A JP 31818288 A JP31818288 A JP 31818288A JP 31818288 A JP31818288 A JP 31818288A JP H02163511 A JPH02163511 A JP H02163511A
Authority
JP
Japan
Prior art keywords
circuit
output
pulse width
rectangular wave
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31818288A
Other languages
Japanese (ja)
Inventor
Yoichi Kanemitsu
金光 陽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP31818288A priority Critical patent/JPH02163511A/en
Publication of JPH02163511A publication Critical patent/JPH02163511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Mechanical Conveyors (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To reduce the loss of power by providing a pulse amplifying circuit and a switching circuit having a switching element performing On and Off operation by the output of the pulse amplifying circuit as a power amplifier. CONSTITUTION:Relative displacement between a rotating shaft 1 and the stator of an electromagnet is detected by a displacement sensor 5 and inputted to a phase compensating circuit 11. An output liner detected in a linear detecting circuit 12a is pulse width modulated in a pulse width modulating circuit 16a and control current is supplied to an exciting coil 4a through a PWM waveform amplifying circuit 15a and a switching circuit 16a. The control current supplied to the exciting coil 4b is detected by the voltage of a current feeding back resistor 17b and negative fed back to the pulse width modulating circuit 14b. In such a way, the loss of power is extremely decreased in a power switching element.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はターボ機械や工作機械等の軸受として使用する
磁気軸受装置、磁気浮上搬送装置の制御回路に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic bearing device used as a bearing for a turbo machine, a machine tool, etc., and a control circuit for a magnetically levitated conveyance device.

〔従来技術〕[Prior art]

磁気軸受装置や磁気浮上搬送装置は、回転体と固定子と
の相対位置、磁気浮上移動体と軌道の間の相対変位を変
位センサで検出し、該変位センサの検出信号を補償回路
及び電力増幅回路を通して磁気吸引力或いは磁気浮上刃
を発生させる電磁石コイルに供給し、磁気軸受装置の回
転体と固定子の相対変位、磁気浮上搬送装置の磁気浮上
移動体と軌道の間の相対変位を一定に保持する装置であ
る。
Magnetic bearing devices and magnetic levitation conveyance devices use displacement sensors to detect the relative position between a rotating body and a stator, and the relative displacement between a magnetically levitated moving body and a track, and then send the detection signal of the displacement sensor to a compensation circuit and a power amplification circuit. It is supplied through a circuit to an electromagnetic coil that generates magnetic attraction force or magnetically levitated blades, and the relative displacement between the rotating body and stator of the magnetic bearing device, and the relative displacement between the magnetically levitated moving body of the magnetically levitated transport device and the track are kept constant. It is a device for holding.

第4図は従来の磁気軸受装置の制御装置の回路構成を示
す図である。同図において、31は回転軸、32は該回
転軸31に固定された回転子継鉄、33a、33bは固
定子電磁石、34a、34bは励磁コイル、35は回転
体と固定子の相対位置を検出する変位センサ、36は位
相補償回路、37 a、 、 37 bは直線検波器、
38a、38bは電力増幅器である。
FIG. 4 is a diagram showing a circuit configuration of a conventional control device for a magnetic bearing device. In the figure, 31 is a rotating shaft, 32 is a rotor yoke fixed to the rotating shaft 31, 33a and 33b are stator electromagnets, 34a and 34b are excitation coils, and 35 is a relative position between the rotating body and the stator. 36 is a phase compensation circuit, 37a, 37b are linear detectors,
38a and 38b are power amplifiers.

」二記回路構成の制御装置において、回転体と固定子の
相対位置は変位センサ35により検出され、この検出信
号は位相補償回路36に入力され、その出力により直線
検波器37a、37b及び電力増幅器38a、38bを
介して、励磁コイル34a、34bに供給される電流を
制御して、回転体の軸中心を所定の位置に保持するよう
に制御している。
In the control device having the circuit configuration described above, the relative position of the rotating body and the stator is detected by the displacement sensor 35, this detection signal is input to the phase compensation circuit 36, and its output is used to control the linear detectors 37a, 37b and the power amplifier. The currents supplied to the excitation coils 34a and 34b are controlled via the excitation coils 38a and 38b so as to maintain the axial center of the rotating body at a predetermined position.

第5図は軌道に制御用電磁石を設けた磁気浮上搬送装置
の制御装置の回路構成を示すブロック図である。同図に
おいて、41は移動体、42は移動体に固定した継鉄、
43は固定子電磁石、44は励磁コイル、45は移動体
41と固定子の相対位置を検出する変位センサ、46は
位相補償回路、47は直線検波回路、48は電力増幅器
である。
FIG. 5 is a block diagram showing the circuit configuration of a control device for a magnetically levitated conveyance device in which control electromagnets are provided on the track. In the figure, 41 is a moving body, 42 is a yoke fixed to the moving body,
43 is a stator electromagnet, 44 is an excitation coil, 45 is a displacement sensor that detects the relative position of the moving body 41 and the stator, 46 is a phase compensation circuit, 47 is a linear detection circuit, and 48 is a power amplifier.

上記回路構成の制御装置において、移動体41と固定子
の相対位置は変位センサ45により検出され、この検出
信号は位相補償回路46に入力され、その出力により直
線検波回路47及び電力増幅器48を介して、励磁コイ
ル44に供給される電流を制御して、移動体41と固定
子の間隔が所定の位置に保持されるように制御している
In the control device having the above circuit configuration, the relative position between the movable body 41 and the stator is detected by the displacement sensor 45, and this detection signal is input to the phase compensation circuit 46, and its output is transmitted via the linear detection circuit 47 and the power amplifier 48. The current supplied to the excitation coil 44 is controlled so that the distance between the movable body 41 and the stator is maintained at a predetermined position.

第6図は移動体に制御用電磁石を設けた磁気浮」二搬送
装置の制御装置の回路構成を示すブロック図である。同
図において、51は軌道、52は該軌道に固定した継鉄
、53は移動体であり、該移動体53には電磁石継鉄5
4、励磁コイル55、軌道51と移動体53の相対位置
を検出する変位センサ56、位相補償回路57、直線検
波回路58及び電力増幅器59が搭載されている。
FIG. 6 is a block diagram showing a circuit configuration of a control device for a magnetic float transport device in which a control electromagnet is provided in a moving body. In the figure, 51 is a track, 52 is a yoke fixed to the track, 53 is a moving body, and the moving body 53 includes an electromagnetic yoke 5.
4, an exciting coil 55, a displacement sensor 56 that detects the relative position of the track 51 and the moving body 53, a phase compensation circuit 57, a linear detection circuit 58, and a power amplifier 59 are installed.

上記回路構成の制御装置において、移動体53と軌道5
1の相対位置は変位センサ56により検出され、この検
出信号は位相補償回路57に入力され、その出力により
直線検波器58及び電力増幅器59を介して、励磁コイ
ル55に供給される電流を制御して、移動体53と軌道
51の間隔が所定の位置に位置するように制御している
In the control device having the above circuit configuration, the moving body 53 and the track 5
1 is detected by a displacement sensor 56, this detection signal is input to a phase compensation circuit 57, and its output controls the current supplied to the exciting coil 55 via a linear detector 58 and a power amplifier 59. The distance between the moving body 53 and the track 51 is controlled to be at a predetermined position.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の磁気軸受装置、磁気浮上搬送装置の制御装置
の回路においては、その電力増幅器38a、38b、4
8.59の回路構成は第7図に示すような所謂シリーズ
形電力増幅器であり、静的な磁気吸引力を常に固定子電
磁石に発生される必要があり、パワートランジスタTr
に常に直流の大電流を流すことが必要となる。そのため
パワーI・ランジスタTrのコレター損失が大きくなり
、そのためパワー)・ランジスタTrの素子寿命が短く
なったり、大きい容量のヒートシンク用ファンを必要と
し、ランニングコストとイニシャルコストが高くなると
いう欠点があった。
In the circuit of the control device for the conventional magnetic bearing device and magnetic levitation conveyance device, the power amplifiers 38a, 38b, 4
The circuit configuration of 8.59 is a so-called series type power amplifier as shown in Fig. 7, and a static magnetic attraction force must always be generated in the stator electromagnet, and the power transistor Tr
It is necessary to constantly apply a large DC current to the As a result, the colleter loss of the power I transistor Tr increases, which shortens the element life of the power transistor Tr, and requires a large capacity heat sink fan, which increases running costs and initial costs. .

本発明は上述の点に鑑みてなされたもので、上記欠点を
除去し、電力増幅器を構成する素子の寿命が長<、ラン
ニングコスト及びイニシャルコストが安価な磁気軸受装
置、磁気浮上搬送装置の制御回路を提供することにある
The present invention has been made in view of the above-mentioned points, and eliminates the above-mentioned drawbacks, provides a long life of the elements constituting the power amplifier, and provides a magnetic bearing device with low running cost and low initial cost, and control of a magnetically levitated conveyance device. The purpose is to provide circuits.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため本発明は、磁気軸受装置や磁気
浮−1=搬送装置の制御回路において、電力増幅器とし
てパルス増幅回路と該パルス増幅回路の出力でON・O
FF動作するパワースイッチング素子を有するスイッチ
ング回路を設け、該スイッチング回路から電磁石のコイ
ルに電流を供給するよう構成すると共に、所定周期の矩
形波信号を出力する矩形波発生回路と、位相補償回路の
出力を変調入力信号とし矩形波発生回路からの矩形波信
号のパルス幅を変調するパルス幅変調回路を設け、該パ
ルス幅変調回路の出力をパルス増幅回路に入力するよう
に構成し、更に固定子電磁石のコイルに供給きれる電流
を検出する電流検出手段を設け、該電流検出手段の出力
を前記パルス幅変調回路に負帰還させることを特徴とす
る。
In order to solve the above problems, the present invention provides a pulse amplification circuit as a power amplifier in a control circuit of a magnetic bearing device or a magnetic float-1 = conveyance device, and an output of the pulse amplification circuit that can be turned on and off.
A switching circuit having a power switching element that operates as an FF is provided, and the switching circuit is configured to supply current to the coil of the electromagnet, and a rectangular wave generation circuit that outputs a rectangular wave signal with a predetermined period, and an output of a phase compensation circuit. A pulse width modulation circuit is provided which modulates the pulse width of the rectangular wave signal from the rectangular wave generation circuit using the modulation input signal, and the output of the pulse width modulation circuit is configured to be input to the pulse amplification circuit. The present invention is characterized in that a current detection means for detecting the current that can be supplied to the coil is provided, and the output of the current detection means is negatively fed back to the pulse width modulation circuit.

〔作用〕 磁気軸受装置、磁気浮」二搬送装置の制御回路を上記の
如く構成することにより、電力増幅器としてパルス増幅
回路と該パルス増幅回路の出力でON−OFF動作する
パワースイッチング素子を有するスイッチング回路を設
け、該スイッチング回路から電磁石のコイルに電流を供
給するよう構成するから、従来のシリーズ型電力増幅器
に比較し、パワースイッチング素子での電力損失が小さ
くなる。
[Function] By configuring the control circuit of the magnetic bearing device and the magnetic floating device as described above, a switching system having a pulse amplification circuit as a power amplifier and a power switching element that is turned on and off by the output of the pulse amplification circuit can be realized. Since a circuit is provided and the switching circuit is configured to supply current to the coil of the electromagnet, power loss in the power switching element is reduced compared to a conventional series type power amplifier.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基ついて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に係る磁気軸受装置の制御回路を示すブ
ロック図である。同図において、1は回転軸、2は該回
転軸1に固定された回転子継鉄、3a、3bは電磁石固
定子を構成する固定子継鉄、4a、4bは該固定子継鉄
3a、3bにそれぞれ巻線された励磁コイルである。
FIG. 1 is a block diagram showing a control circuit of a magnetic bearing device according to the present invention. In the figure, 1 is a rotating shaft, 2 is a rotor yoke fixed to the rotating shaft 1, 3a and 3b are stator yokes constituting an electromagnetic stator, 4a and 4b are stator yokes 3a, 3b are excitation coils each wound with a wire.

これら固定子継鉄3a、3b、励磁コイル4a、4b及
び回転子継鉄2等で回転軸1を半径方向に支承する磁気
軸受を構成する。
These stator yokes 3a, 3b, excitation coils 4a, 4b, rotor yoke 2, etc. constitute a magnetic bearing that supports the rotating shaft 1 in the radial direction.

5は回転軸1と電磁石固定子の間の相対変位を検出ず変
位センサ、11は位相補償回路、12a、12bはそれ
ぞれ直線検波回路、13は矩形波発生回路、14a、1
4bはそれぞれパルス幅変調回路、15 a 、 1.
5 bはそれぞれ前記パルス幅変調回路14a、14b
でパルス幅変調(PWM)されたPWM波形を増幅する
PWM波形増幅回路、16a、16bは前記励磁コイル
4a、4bに励磁電流を供給するスイッチング回路、1
7a、17bは電流帰還用抵抗器である。
5 is a displacement sensor that does not detect relative displacement between the rotating shaft 1 and the electromagnetic stator; 11 is a phase compensation circuit; 12a and 12b are linear detection circuits; 13 is a rectangular wave generation circuit; 14a and 1
4b are pulse width modulation circuits, 15a, 1.
5b are the pulse width modulation circuits 14a and 14b, respectively.
a PWM waveform amplification circuit that amplifies a PWM waveform subjected to pulse width modulation (PWM); 16a and 16b are switching circuits that supply excitation current to the excitation coils 4a and 4b;
7a and 17b are current feedback resistors.

上記構成の制御回路において、回転軸1と電磁石固定子
の間の相対変位を変位センサ5で検出し、その検出信号
を位相補償回路11に入力する。位相補償回路11では
この検出信号に位相進みを与える。さらにこの信号を2
分割し、一方の信号にはそのままバイアス電圧■6を加
え、直線検波回路12aに入力する。他方の信号は反転
してバイアス電圧V、を加え、直線検波回路12bに入
力する。直線検波回路12aで直線検波された出力はパ
ルス幅変調回路14aによりパルス幅変調され、PWM
波形増幅回路15a及びスイッチング回路16aを通し
て励磁コイル4aに制御電流を供給する。励磁コイル4
aに供給される制御電流は電流帰還用抵抗器17aの電
圧により検出され、パルス幅変調回路14aに負帰還さ
れる。一方直線検波回路12bで直線検波された出力は
パルス幅変調回路14bによりパルス幅変調され、PW
M波形増幅回路15b及びスイッチング回路16bを通
して励磁コイル4bに制御電流を供給する。励磁コイル
4bに供給される制御電流は電流帰還用抵抗器17bの
電圧により検出され、パルス幅変調回路14bに負帰還
される。これにより、回転軸1の半径方向の位置制御が
行なわれる。パルス幅変調回路14aはコンデンサC1
、スイッチング素子FET、、抵抗器R,,R,、コン
パレークIC,、R−SフリップフロップFF及びイン
バータIC,で構成される。
In the control circuit configured as described above, the relative displacement between the rotating shaft 1 and the electromagnetic stator is detected by the displacement sensor 5, and the detected signal is input to the phase compensation circuit 11. The phase compensation circuit 11 gives a phase advance to this detection signal. Furthermore, add this signal to 2
The signals are divided, and bias voltage (6) is directly applied to one signal, which is then input to the linear detection circuit 12a. The other signal is inverted, applied with a bias voltage V, and input to the linear detection circuit 12b. The output linearly detected by the linear detection circuit 12a is pulse width modulated by the pulse width modulation circuit 14a, and PWM
A control current is supplied to the excitation coil 4a through the waveform amplification circuit 15a and the switching circuit 16a. Excitation coil 4
The control current supplied to a is detected by the voltage of the current feedback resistor 17a, and is negatively fed back to the pulse width modulation circuit 14a. On the other hand, the output linearly detected by the linear detection circuit 12b is pulse width modulated by the pulse width modulation circuit 14b, and the PW
A control current is supplied to the exciting coil 4b through the M waveform amplification circuit 15b and the switching circuit 16b. The control current supplied to the excitation coil 4b is detected by the voltage of the current feedback resistor 17b, and is negatively fed back to the pulse width modulation circuit 14b. Thereby, the position of the rotating shaft 1 in the radial direction is controlled. The pulse width modulation circuit 14a has a capacitor C1.
, a switching element FET, a resistor R, a comparator IC, an R-S flip-flop FF, and an inverter IC.

PWM波形増幅回路15aはパワートランジスタTr+
及び抵抗器R5で構成される。
The PWM waveform amplification circuit 15a is a power transistor Tr+
and resistor R5.

スイッチング回路16aはパワースイッチング素子FE
T、及びダイオードD、で構成される。
The switching circuit 16a is a power switching element FE.
T, and a diode D.

なお、+y、、+y、は電源電圧である。Note that +y, , +y are power supply voltages.

第2図は直線検波回路1.2 aの出力である変調入力
波形(a)、矩形波発生回路13の出力波形(b)、パ
ルス幅変調回路14aの出力波形(C)、スイッチング
回路16aの入力波形(d)を示す図である。直線検波
回路12aを通過したプラスの信号はパルス幅変調回路
14aにおいて、次のようにパルス変調する。矩形波発
生回路13からの矩形波信号がR−Sフリップフロップ
FFをセットし、該R−SフリップフロップFFのセッ
トによりインバータIC,を介してスイッチング素子F
 E T 、がOFFとなりコンデンサC5が荷電され
る。コンデンサC+の荷電による電圧と直線検波回路1
2aからの変調入力をコンパレータI C1で比較し、
コンデンサC1の電圧が変調入力電圧よりも高くなると
、R−SフリップフロップFFをリセットする。R−S
フリップフロップFFがリセットされるとスイッチング
素子FET、がONとなり、コンデンサC8の電荷は放
電され電圧値が0となる。この動作が繰り返され、パル
ス幅変調回路14aから第2図(C)に示すようなパル
ス幅変調されたパルス信号が出力される。このパルス幅
変調回路14’aの出力がPWM波形増幅回路15aに
より増幅され、第2図(d)に示す波形の出力となり、
スイッチング回路16aに入力される。これにより、ス
イッチング回路16aのパワースイッチング素子FET
Figure 2 shows the modulated input waveform (a) which is the output of the linear detection circuit 1.2a, the output waveform (b) of the rectangular wave generation circuit 13, the output waveform (C) of the pulse width modulation circuit 14a, and the output waveform of the switching circuit 16a. It is a figure which shows an input waveform (d). The positive signal that has passed through the linear detection circuit 12a is pulse-modulated in the pulse width modulation circuit 14a as follows. The rectangular wave signal from the rectangular wave generating circuit 13 sets the R-S flip-flop FF, and the setting of the R-S flip-flop FF causes the signal to be sent to the switching element F via the inverter IC.
E T is turned off and capacitor C5 is charged. Voltage due to charge of capacitor C+ and linear detection circuit 1
Compare the modulation input from 2a with comparator IC1,
When the voltage on capacitor C1 becomes higher than the modulation input voltage, it resets the R-S flip-flop FF. R-S
When the flip-flop FF is reset, the switching element FET is turned on, the charge in the capacitor C8 is discharged, and the voltage value becomes zero. This operation is repeated, and a pulse width modulated pulse signal as shown in FIG. 2(C) is output from the pulse width modulation circuit 14a. The output of this pulse width modulation circuit 14'a is amplified by the PWM waveform amplification circuit 15a, resulting in an output with the waveform shown in FIG. 2(d),
The signal is input to the switching circuit 16a. As a result, the power switching element FET of the switching circuit 16a
.

がON−0FFL、、励磁コイル4aに励磁電流を供給
する。ここでPWM波形増幅回路15aとスイッチング
回路16aは励磁コイル4aに励磁電流を供給する電力
増幅器に相当するから、大きい電流の流れるパワースイ
ッチング素子FET、は高周波スイッチング動作を行な
い、大きな直流電流が流れない。このため素子には殆ど
損失が発生しないことになる。
is ON-0FFL, and supplies an excitation current to the excitation coil 4a. Here, the PWM waveform amplification circuit 15a and the switching circuit 16a correspond to a power amplifier that supplies excitation current to the excitation coil 4a, so the power switching element FET, through which a large current flows, performs a high frequency switching operation, and a large DC current does not flow. . Therefore, almost no loss occurs in the element.

直線検波回路12b、パルス幅変調回路14b、PWM
波形増幅回路15b及びスイッチング回路16bの動作
も同様であるからその説明は省略する。
Linear detection circuit 12b, pulse width modulation circuit 14b, PWM
The operations of the waveform amplification circuit 15b and the switching circuit 16b are also similar, so the explanation thereof will be omitted.

第3図は本発明に係る磁気浮上装置の制御回路を示すブ
ロック図である。同図において、第1図と同一符号を付
した部分は同一または相当部分を示す。21は移動体、
22は前記移動体に固定した継鉄、23は電磁石固定子
を構成する固定子継鉄、24は前記固定子継鉄23に巻
線された励磁コイル、25は移動体21と固定子の相対
位置を検出する変位センサ。
FIG. 3 is a block diagram showing a control circuit of the magnetic levitation device according to the present invention. In this figure, parts given the same reference numerals as those in FIG. 1 indicate the same or equivalent parts. 21 is a mobile object,
22 is a yoke fixed to the movable body, 23 is a stator yoke constituting an electromagnetic stator, 24 is an excitation coil wound around the stator yoke 23, and 25 is a relative between the movable body 21 and the stator. Displacement sensor that detects position.

上記構成の制御回路において、移動体21と電磁石固定
子の間の相対変位を変位センサ25で検出し、その検出
信号を位相補償回路11に入力する。位相補償回路11
ではこの検出信号に位相進みを与えて変調入力として出
力する。この変調入力にバイアス電圧VBを加え、直線
検波回路12に入力する。該直線検波回路12で直線検
波された出力はパルス幅変調回路14によりパルス幅変
調され、PWM波形増幅回路15及びスイッチング回路
16を通して励磁コイル24に制御電流を供給する。励
磁コイル24に供給される制御電流は電流帰還用抵抗器
17の電圧により検出され、パルス幅変調回路14に負
帰還される。
In the control circuit configured as described above, the displacement sensor 25 detects the relative displacement between the moving body 21 and the electromagnetic stator, and the detected signal is input to the phase compensation circuit 11. Phase compensation circuit 11
Then, this detection signal is given a phase lead and output as a modulation input. A bias voltage VB is added to this modulation input and input to the linear detection circuit 12. The output linearly detected by the linear detection circuit 12 is pulse width modulated by the pulse width modulation circuit 14, and a control current is supplied to the excitation coil 24 through the PWM waveform amplification circuit 15 and the switching circuit 16. The control current supplied to the excitation coil 24 is detected by the voltage of the current feedback resistor 17 and is negatively fed back to the pulse width modulation circuit 14.

上記パルス幅変調回路14の動作は第1図のパルス幅変
調回路14aと同しであり、その作用効果も略同じであ
るのでその説明の詳細は省略する。
The operation of the pulse width modulation circuit 14 is the same as that of the pulse width modulation circuit 14a in FIG. 1, and its effects are also substantially the same, so detailed explanation thereof will be omitted.

なお、移動体に制御用電磁石を設けた磁気浮上搬送装置
の制御回路は、第3図の継鉄23、励磁コイル24及び
変位センサ25を移動体に搭載し、継鉄22を軌道に設
けであるだけで、他は第3図と同様であるのでその説明
は省略する。
In addition, the control circuit of the magnetic levitation conveyance device in which a control electromagnet is provided in a moving body can be implemented by mounting the yoke 23, excitation coil 24, and displacement sensor 25 shown in Fig. 3 on the moving body, and installing the yoke 22 on the track. Since the other parts are the same as those in FIG. 3, the explanation thereof will be omitted.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、従来のシフーズ形
電力増幅器に比較しパワースイッチング素子での電力損
失が極端に小さくなるため、パワースイッチング素子の
信頼性が向上し、またパワースイッチング素子のヒート
シンク容量も小さくでき、そのため冷却ファンを必要と
しから、磁気軸受装置や磁気浮上搬送装置の寿命と信頼
性を向上さぜることができるという優れた効果が得ら第
1図は本発明に係る磁気軸受装置の制御回路を示すブロ
ック図、第2図は変調入力と矩形波発生回路の出力とパ
ルス幅変調回路の出力とスイッチング回路入力の各波形
を示す波形図、第3図は本発明に係る磁気浮上装置の制
御回路を示すブロック図、第4図は従来の磁気軸受装置
の制御装置の回路構成を示すブロック図、第5図は従来
の軌道に制御用電磁石を設けた磁気浮上搬送装置の制御
装置の回路構成を示すブロック図、第6図は従来の移動
体に制御用電磁石を設けた磁気浮上搬1・・・・回転軸
、2・・・・回転子継鉄、3・・・固定子継鉄、4a、
4b・・ 励磁コ変位センサ、11・・・・位相補償回 12b、12・・・・直線検波回路、1.13 ・・・
矩形波発生回路、14 14・・・・パルス幅変調回路、15 15・・・PWM波形増幅回路、16 16・・・・スイッチング回路、17 17・・・・電流帰還用抵抗器、21 22・・ 継鉄、23・・・・固定子電磁・励磁コイル
As explained above, according to the present invention, the power loss in the power switching element is extremely reduced compared to the conventional Schiffuse type power amplifier, so the reliability of the power switching element is improved, and the heat sink of the power switching element is improved. The capacity can be reduced, and therefore a cooling fan is not required, and the life and reliability of magnetic bearing devices and magnetic levitation conveyance devices can be improved. A block diagram showing the control circuit of the bearing device, FIG. 2 is a waveform diagram showing the waveforms of the modulation input, the output of the rectangular wave generation circuit, the output of the pulse width modulation circuit, and the input of the switching circuit, and FIG. A block diagram showing a control circuit of a magnetic levitation device, FIG. 4 is a block diagram showing a circuit configuration of a conventional magnetic bearing device control device, and FIG. FIG. 6 is a block diagram showing the circuit configuration of a control device, and FIG. 6 shows a conventional magnetic levitation transport system in which a control electromagnet is provided on a moving body 1...rotating shaft, 2...rotor yoke, 3... Stator yoke, 4a,
4b... Excitation displacement sensor, 11... Phase compensation circuit 12b, 12... Linear detection circuit, 1.13...
Rectangular wave generation circuit, 14 14... Pulse width modulation circuit, 15 15... PWM waveform amplification circuit, 16 16... Switching circuit, 17 17... Current feedback resistor, 21 22.・Yoke, 23...Stator electromagnetic/excitation coil.

図中、 a、3b イル、5 路、12a。In the figure, a, 3b Ile, 5 Road, 12a.

3a、13h a、14b。3a, 13h a, 14b.

a、15b。a, 15b.

a、16b。a, 16b.

a r 17 b + ・・移動体、 石、24・・ 出願人 株式会社荏原総合研究所(外1名)代理人 弁
理士 熊谷 隆(外1名)
a r 17 b +...mobile object, stone, 24... Applicant: Ebara Research Institute, Inc. (one other person) Agent: Patent attorney Takashi Kumagai (one other person)

Claims (3)

【特許請求の範囲】[Claims] (1)回転軸に固着した磁性材料製の回転子継鉄と、該
回転子から微小隙間を設けてケーシングに固定され且つ
起磁力を発生するコイルを備えた固定子電磁石と、前記
回転軸とケーシング間の相対変位を測定する変位センサ
と、該変位センサからの出力信号をもとに前記回転子継
鉄と前記固定子電磁石との間に作用する磁気吸引力を制
御する位相補償回路と電力増幅器を具備する磁気軸受装
置において、前記電力増幅器としてパルス増幅回路と該
パルス増幅回路の出力でON・OFF動作するパワース
イッチング素子を有するスイッチング回路を設け、該ス
イッチング回路から前記固定子電磁石のコイルに電流を
供給するよう構成すると共に、所定周期の矩形波信号を
出力する矩形波発生回路と、前記位相補償回路の出力を
変調入力信号とし該矩形波発生回路からの矩形波信号の
パルス幅を変調するパルス幅変調回路を設け、該パルス
幅変調回路の出力を前記パルス増幅回路に入力するよう
に構成し、更に前記固定子電磁石のコイルに供給される
電流を検出する電流検出手段を設け、該電流検出手段の
出力を前記パルス幅変調回路に負帰還させることを特徴
とする磁気軸受装置の制御回路。
(1) A rotor yoke made of a magnetic material that is fixed to the rotating shaft, a stator electromagnet that is fixed to the casing with a small gap from the rotor and equipped with a coil that generates a magnetomotive force, and the rotor yoke that is fixed to the rotating shaft. A displacement sensor that measures the relative displacement between the casings, a phase compensation circuit that controls the magnetic attraction force acting between the rotor yoke and the stator electromagnet based on the output signal from the displacement sensor, and electric power. In a magnetic bearing device equipped with an amplifier, a switching circuit having a pulse amplification circuit and a power switching element that is turned on and off by the output of the pulse amplification circuit is provided as the power amplifier, and the switching circuit is connected to the coil of the stator electromagnet. A rectangular wave generating circuit configured to supply current and outputting a rectangular wave signal of a predetermined period, and using the output of the phase compensation circuit as a modulation input signal to modulate the pulse width of the rectangular wave signal from the rectangular wave generating circuit. a pulse width modulation circuit configured to input the output of the pulse width modulation circuit to the pulse amplification circuit; further provided with current detection means for detecting the current supplied to the coil of the stator electromagnet; A control circuit for a magnetic bearing device, characterized in that the output of the current detection means is negatively fed back to the pulse width modulation circuit.
(2)移動体に固着した磁性材料製の移動体継鉄と、該
移動体継鉄から微小隙間を設けた軌道に固定され且つ起
磁力を発生するコイルを備えた固定子電磁石と、前記移
動体と軌道間の相対変位を測定する変位センサと、該変
位センサからの出力信号をもとに前記移動体継鉄と前記
固定子電磁石との間に作用する磁気吸引力を制御する位
相補償回路と電力増幅器を具備する磁気浮上搬送装置に
おいて、前記電力増幅器としてパルス増幅回路と該パル
ス増幅回路の出力でON・OFF動作するパワースイッ
チング素子を有するスイッチング回路を設け、該スイッ
チング回路から前記固定子電磁石のコイルに電流を供給
するよう構成すると共に、所定周期の矩形波信号を出力
する矩形波発生回路と、前記位相補償回路の出力を変調
入力信号とし該矩形波発生回路からの矩形波信号のパル
ス幅を変調するパルス幅変調回路を設け、該パルス幅変
調回路の出力を前記パルス増幅回路に入力するように構
成し、更に前記固定子電磁石のコイルに供給される電流
を検出する電流検出手段を設け、該電流検出手段の出力
を前記パルス幅変調回路に負帰還させることを特徴とす
る磁気浮上搬送装置の制御回路。
(2) A movable body yoke made of a magnetic material fixed to the movable body, a stator electromagnet equipped with a coil that is fixed to a track with a minute gap from the movable body yoke and generates a magnetomotive force, and a displacement sensor that measures the relative displacement between the body and the track, and a phase compensation circuit that controls the magnetic attraction force that acts between the movable body yoke and the stator electromagnet based on the output signal from the displacement sensor. and a power amplifier, a switching circuit having a pulse amplification circuit and a power switching element that is turned on and off by the output of the pulse amplification circuit is provided as the power amplifier, and the stator electromagnet is connected to the stator electromagnet from the switching circuit. a rectangular wave generating circuit configured to supply current to the coil and outputting a rectangular wave signal of a predetermined period, and a pulse of the rectangular wave signal from the rectangular wave generating circuit using the output of the phase compensation circuit as a modulation input signal. A pulse width modulation circuit for modulating the width is provided, the output of the pulse width modulation circuit is input to the pulse amplification circuit, and further current detection means is provided for detecting the current supplied to the coil of the stator electromagnet. A control circuit for a magnetic levitation conveyance device, characterized in that the output of the current detection means is negatively fed back to the pulse width modulation circuit.
(3)軌道に固着した磁性材料製の固定子継鉄と、該固
定子継鉄から微小隙間を設けた移動体に固定され且つ起
磁力を発生するコイルを備えた移動体電磁石と、前記軌
道と移動体間の相対変位を測定する変位センサと、該変
位センサからの出力信号をもとに前記固定子継鉄と前記
移動体電磁石との間に作用する磁気吸引力を制御する位
相補償回路と電力増幅器を具備する磁気浮上搬送装置に
おいて、前記電力増幅器としてパルス増幅回路と該パル
ス増幅回路の出力でON・OFF動作するパワースイッ
チング素子を有するスイッチング回路を設け、該スイッ
チング回路から前記移動体電磁石のコイルに電流を供給
するよう構成すると共に、所定周期の矩形波信号を出力
する矩形波発生回路と、前記位相補償回路の出力を変調
入力信号とし前記矩形波発生回路からの矩形波信号のパ
ルス幅を変調するパルス幅変調回路を設け、該パルス幅
変調回路の出力を前記パルス増幅回路に入力するように
構成し、更に前記移動体電磁石のコイルに供給される電
流を検出する電流検出手段を設け、該電流検出手段の出
力を前記パルス幅変調回路に負帰還させることを特徴と
する磁気浮上搬送装置の制御回路。
(3) A stator yoke made of a magnetic material fixed to a track, a moving body electromagnet fixed to a moving body with a minute gap from the stator yoke and equipped with a coil that generates a magnetomotive force, and the track. and a displacement sensor that measures the relative displacement between the moving body and the moving body, and a phase compensation circuit that controls the magnetic attraction force acting between the stator yoke and the moving body electromagnet based on the output signal from the displacement sensor. and a power amplifier, a switching circuit having a pulse amplification circuit and a power switching element that is turned on and off by the output of the pulse amplification circuit is provided as the power amplifier, and the mobile electromagnet is connected to the mobile electromagnet from the switching circuit. a rectangular wave generating circuit configured to supply current to the coil and outputting a rectangular wave signal of a predetermined period, and a pulse of the rectangular wave signal from the rectangular wave generating circuit using the output of the phase compensation circuit as a modulation input signal. A pulse width modulation circuit for modulating the width is provided, the output of the pulse width modulation circuit is input to the pulse amplification circuit, and further current detection means is provided for detecting the current supplied to the coil of the moving body electromagnet. A control circuit for a magnetic levitation conveyance device, characterized in that the output of the current detection means is negatively fed back to the pulse width modulation circuit.
JP31818288A 1988-12-15 1988-12-15 Control circuit for magnetic searing device and magnetic floating carrier Pending JPH02163511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31818288A JPH02163511A (en) 1988-12-15 1988-12-15 Control circuit for magnetic searing device and magnetic floating carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31818288A JPH02163511A (en) 1988-12-15 1988-12-15 Control circuit for magnetic searing device and magnetic floating carrier

Publications (1)

Publication Number Publication Date
JPH02163511A true JPH02163511A (en) 1990-06-22

Family

ID=18096374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31818288A Pending JPH02163511A (en) 1988-12-15 1988-12-15 Control circuit for magnetic searing device and magnetic floating carrier

Country Status (1)

Country Link
JP (1) JPH02163511A (en)

Similar Documents

Publication Publication Date Title
US6538402B2 (en) Self-oscillation system for driving a linear oscillatory actuator around its resonant frequency
JP4746619B2 (en) Magnetic bearing device and magnetic bearing method
US4879500A (en) Controller for magnetic bearing system
US20180216665A1 (en) Magnetic bearing control device and vacuum pump
JP2000145773A (en) Magnetic bearing device
US6316939B1 (en) Magnetic sensor measuring apparatus and current sensor non-contact measuring apparatus
US4417772A (en) Method and apparatus for controlling the energization of the electrical coils which control a magnetic bearing
JPH02163511A (en) Control circuit for magnetic searing device and magnetic floating carrier
JP3603376B2 (en) Self-excited vibration type vibration device with electromagnet excitation method
JP2000097972A (en) Current sensor
JP3187982B2 (en) Magnetic levitation device
JPH05118329A (en) Magnetic bearing device
JP3185938B2 (en) Magnetic bearing control device
US2915689A (en) Oscillator transducer motor control
JP2519141B2 (en) Magnetic bearing device
JP2005061580A (en) Magnetic bearing
JP3218118B2 (en) Magnetic bearing device
JP3065098B2 (en) Brushless DC motor drive circuit
JP2002039178A (en) Magnetic bearing device
JP3536926B2 (en) Magnetic bearing
JPS6137873B2 (en)
JPH0587140A (en) Magnetic bearing device
JP2001107961A (en) Electromagnetic driving device
JPH07120907B2 (en) Impedance load drive circuit
JPS59103019A (en) Control circuit for magnetic bearing