JPH0587140A - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JPH0587140A
JPH0587140A JP15106291A JP15106291A JPH0587140A JP H0587140 A JPH0587140 A JP H0587140A JP 15106291 A JP15106291 A JP 15106291A JP 15106291 A JP15106291 A JP 15106291A JP H0587140 A JPH0587140 A JP H0587140A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
field generating
magnetic
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15106291A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shinozaki
弘行 篠崎
Yuji Shirao
祐司 白尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP15106291A priority Critical patent/JPH0587140A/en
Publication of JPH0587140A publication Critical patent/JPH0587140A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0446Determination of the actual position of the moving member, e.g. details of sensors
    • F16C32/0448Determination of the actual position of the moving member, e.g. details of sensors by using the electromagnet itself as sensor, e.g. sensorless magnetic bearings

Abstract

PURPOSE:To simplify the structure around a control electromagnet while performing the position detection of a floating rotary shaft in a magnetic bearing device at the action point of the control electromagnet. CONSTITUTION:This magnetic bearing device is provided with a magnetic field generating coil 3 for generating the magnetic field for holding a rotary shaft, a power amplifier 22 for supplying a direct current to this magnetic field generating coil 3, a high frequency carrier oscillator 27, a band-pass filter 24, a rectifying circuit 25, a low-pass filter 26, and an offset-gain circuit 33. This magnetic field generating coil 3 is used in common as the coil of a control electromagnet and the coil for detecting the position of the rotary shaft 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気軸受装置に係り、特
に磁力により回転軸が軸受から浮上して非接触状態で回
転する磁気軸受装置であって、回転軸が所定位置で安定
に回転することができる軸受装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic bearing device, and more particularly to a magnetic bearing device in which a rotating shaft floats from a bearing due to magnetic force and rotates in a non-contact state, and the rotating shaft stably rotates at a predetermined position. The present invention relates to a bearing device that can be used.

【0002】[0002]

【従来の技術】一般的に、磁気軸受装置は、軸受の中心
軸上に置かれた回転軸と、この回転軸から所定の間隔を
置いて固定子上に取り付けられた永久磁石あるいは電磁
石とから構成される。この電磁石は磁気材料で出来たヨ
ークとその上に巻かれたコイルから構成される。このコ
イルによる磁界によってヨーク部は回転軸を吸引する。
この吸引を制御し、任意の位置で安定支持するために、
位置センサーを備えている。この様にして、磁気軸受に
おいては、位置センサは回転軸の位置制御に必要不可欠
のものである。
2. Description of the Related Art Generally, a magnetic bearing device is composed of a rotating shaft placed on the center axis of the bearing and a permanent magnet or electromagnet mounted on a stator at a predetermined distance from the rotating shaft. Composed. This electromagnet consists of a yoke made of magnetic material and a coil wound on it. The yoke attracts the rotating shaft by the magnetic field generated by this coil.
To control this suction and to stably support it at any position,
It has a position sensor. Thus, in the magnetic bearing, the position sensor is indispensable for controlling the position of the rotary shaft.

【0003】[0003]

【発明が解決しようとする課題】この回転軸の位置を検
出するために、従来位置検出センサを備えていた。位置
検出センサは、例えば、インダクタンスの変化による電
磁誘導型センサでは、回転軸の近傍に、検出用のコイル
を設けて専用の測定系により測定を行っていた。そのた
めに電磁石の吸引力の作用点である回転軸の部位と、位
置センサの位置検出点である回転軸の部位とを一致させ
ることは構造上困難であった。また位置検出センサの取
付場所を制御用電磁石の周囲に設けねばならず、構成が
複雑となるという問題点があった。
In order to detect the position of this rotary shaft, a position detection sensor has been conventionally provided. As the position detection sensor, for example, in an electromagnetic induction type sensor due to a change in inductance, a coil for detection is provided near the rotation axis and measurement is performed by a dedicated measurement system. Therefore, it is structurally difficult to match the portion of the rotating shaft, which is the point of action of the attraction force of the electromagnet, with the portion of the rotating shaft, which is the position detection point of the position sensor. In addition, there is a problem in that the position detection sensor must be installed around the control electromagnet, which complicates the configuration.

【0004】本発明は、上述の事情に鑑みなされたもの
で、その目的とするところは、制御用電磁石の作用点で
の回転軸の位置検出を可能ならしめ、且つ位置検出用の
コイルを不要とし、磁気浮上された回転軸の移動量を簡
単な構造で検出できる磁気軸受装置を提供することにあ
る。
The present invention has been made in view of the above circumstances, and an object thereof is to enable position detection of a rotary shaft at an action point of a control electromagnet, and to eliminate a position detection coil. Another object of the present invention is to provide a magnetic bearing device capable of detecting the amount of movement of a magnetically levitated rotating shaft with a simple structure.

【0005】[0005]

【課題を解決するための手段】本発明の磁気軸受装置
は、磁界発生用コイルと磁性材料のヨーク部とからなる
電磁石及び被支持体を備えた磁気軸受装置において、前
記磁界発生用コイルを、前記被支持体の移動量検出のた
めのコイルとして共用することにより回転軸の移動量を
検出し、この検出された信号によって回転軸を所定位置
に固定するように構成される。
A magnetic bearing device of the present invention is a magnetic bearing device comprising an electromagnet comprising a magnetic field generating coil and a yoke portion of a magnetic material, and a supported body, wherein the magnetic field generating coil comprises: The coil is also used as a coil for detecting the amount of movement of the supported body, so that the amount of movement of the rotary shaft is detected, and the rotary shaft is fixed at a predetermined position by the detected signal.

【0006】[0006]

【作用】本発明においては、回転軸が回転軸の中心軸か
ら移動するときに、この移動を磁界発生用コイル3のイ
ンダクタンスの変化としてとらえ、高周波キャリア信
号、ハイパスフィルター24、整流回路25、ローパス
フィルター26等を用いて検出する。この検出された回
転軸の移動量に相当する信号は、制御回路28にフィー
ドバックされる。フィードバックされた信号は制御回路
28によって位相及びゲインが調整され電力増幅器22
で増幅される。その増幅された電流を磁界発生用コイル
3にフィードバックして印加することによって、磁界発
生用コイル3により発生する磁界を調整し、回転軸を常
に軸受の中心で支承するように制御する。
In the present invention, when the rotary shaft moves from the central axis of the rotary shaft, this movement is regarded as a change in the inductance of the magnetic field generating coil 3, and the high frequency carrier signal, the high pass filter 24, the rectifier circuit 25, and the low pass filter. The detection is performed using the filter 26 or the like. A signal corresponding to the detected amount of movement of the rotating shaft is fed back to the control circuit 28. The phase and gain of the fed-back signal are adjusted by the control circuit 28 and the power amplifier 22.
Is amplified by. By feeding back the amplified current to the magnetic field generating coil 3 and applying it, the magnetic field generated by the magnetic field generating coil 3 is adjusted, and the rotating shaft is controlled so as to always be supported at the center of the bearing.

【0007】[0007]

【実施例】以下、本発明に係る磁気軸受装置の実施例を
図面を参照して説明する。
Embodiments of the magnetic bearing device according to the present invention will be described below with reference to the drawings.

【0008】図5は磁気軸受装置の説明図であり、磁気
軸受装置の固定子上に取り付けられたコイル3が巻かれ
たヨーク部1と、その軸受の中心に浮上して回転する回
転軸2との関係を説明する。
FIG. 5 is an explanatory view of a magnetic bearing device. A yoke part 1 around which a coil 3 mounted on a stator of the magnetic bearing device is wound, and a rotating shaft 2 which floats and rotates around the center of the bearing. Explain the relationship with.

【0009】上述した様な構成を有する磁気軸受装置に
おいては、コイル3に通電すると、ヨーク部1が励磁さ
れ回転軸を常に軸受の中心で支承する制御磁界が発生す
る。
In the magnetic bearing device having the above-described structure, when the coil 3 is energized, the yoke portion 1 is excited to generate a control magnetic field that always supports the rotating shaft at the center of the bearing.

【0010】何らかの原因で回転軸2が移動したとする
と、回転軸2とヨーク部1との間隔Lが変化する。本発
明では回転軸2が磁界発生用コイル3の磁界中を移動す
るときに、ヨーク部1が作る磁気回路のインダクタンス
が変化することを利用して回転軸2のヨーク部1に対す
る位置を検出するものである。
If the rotary shaft 2 moves for some reason, the distance L between the rotary shaft 2 and the yoke portion 1 changes. In the present invention, when the rotating shaft 2 moves in the magnetic field of the magnetic field generating coil 3, the inductance of the magnetic circuit formed by the yoke part 1 changes to detect the position of the rotating shaft 2 with respect to the yoke part 1. It is a thing.

【0011】図1に本発明の第1の実施例の磁界発生用
コイル3の位置検出のブロック図を示す。図1において
22は電力増幅器、3は磁界発生用コイル、24はバン
ドパスフィルタ(BPF)、25は全波整流回路、26
はローパスフィルタ(LPF)、33はオフセット・ゲ
イン調整回路である。ここで図1における磁界発生用コ
イル3は、図5における磁界発生用コイル3と同じもの
であり、回転軸2を所定の位置で保持し回転させるため
のものである。コイル3への励磁用電流は電力増幅器2
2が供給する。一方、キャリア発振器27は、1〜100k
Hz 程度の高周波信号を発生し、この電圧は電力増幅器
22によって高周波電流に変換され、磁界発生用コイル
3に供給される。磁界発生用コイル3の下端の電圧、す
なわち検出用抵抗35(0.1〜0.3オーム程度の電流検出
用抵抗)の電圧はバンドパスフィルタを経由して全波整
流回路25で整流される。バンドパスフィルタ24はキ
ャリア周波数付近の周波数帯域のみを通すフィルタであ
る。整流回路25で整流された電圧波形はローパスフィ
ルタ26によって回転軸2の移動量に対応した低周波成
分のみが取り出される。オフセット・ゲイン調整回路3
3によりDC成分の調整とゲインの調整を行う。 尚、
図2は上記実施例において、コイル3に流れる高周波電
流を、検出用抵抗35の両端より、差動回路37(差動
増幅器)を介して取りだしたものである。
FIG. 1 shows a block diagram of the position detection of the magnetic field generating coil 3 according to the first embodiment of the present invention. In FIG. 1, 22 is a power amplifier, 3 is a magnetic field generating coil, 24 is a bandpass filter (BPF), 25 is a full-wave rectifier circuit, and 26
Is a low pass filter (LPF), and 33 is an offset / gain adjustment circuit. The magnetic field generating coil 3 in FIG. 1 is the same as the magnetic field generating coil 3 in FIG. 5, and is for holding and rotating the rotating shaft 2 at a predetermined position. The current for exciting the coil 3 is the power amplifier 2
2 supplies. On the other hand, the carrier oscillator 27 is 1 to 100k.
A high frequency signal of about Hz is generated, and this voltage is converted into a high frequency current by the power amplifier 22 and supplied to the magnetic field generating coil 3. The voltage at the lower end of the magnetic field generating coil 3, that is, the voltage of the detection resistor 35 (current detection resistor of about 0.1 to 0.3 ohm) is rectified by the full-wave rectification circuit 25 via a bandpass filter. The bandpass filter 24 is a filter that passes only a frequency band near the carrier frequency. The low-pass filter 26 extracts only the low-frequency component corresponding to the moving amount of the rotating shaft 2 from the voltage waveform rectified by the rectifying circuit 25. Offset / gain adjustment circuit 3
In step 3, the DC component and the gain are adjusted. still,
FIG. 2 shows the high-frequency current flowing through the coil 3 in the above-described embodiment taken from both ends of the detection resistor 35 through the differential circuit 37 (differential amplifier).

【0012】図6において回転軸2がヨーク部1に近づ
いた時はヨーク部1と回転軸2で構成される磁気回路の
磁気抵抗が小さくなり、この磁気回路のインダクタンス
は大きくなる。そのために、コイル3に流れる高周波電
流は減少し、検出用抵抗35の両端の電圧は小さくな
り、したがって、オフセット・ゲイン調整回路33から
出力される整流電圧は小さくなる。即ち、オフセット・
ゲイン調整回路33の電圧が小さくなったことによっ
て、回転軸2が図6のヨーク部1に近づいたことが検出
される。この場合、バンドパスフィルタ24を通過する
電圧波形は回転軸2が磁界発生用コイル3と回転軸2と
の間の磁気回路が変動することによって形成される包絡
線を有するキャリア周波数の波形である。このようにし
て、回転軸2の移動量に相当する信号が検出される。
In FIG. 6, when the rotary shaft 2 approaches the yoke portion 1, the magnetic resistance of the magnetic circuit formed by the yoke portion 1 and the rotary shaft 2 becomes small, and the inductance of this magnetic circuit becomes large. Therefore, the high-frequency current flowing through the coil 3 decreases, the voltage across the detection resistor 35 decreases, and the rectified voltage output from the offset / gain adjusting circuit 33 decreases accordingly. That is, the offset
Since the voltage of the gain adjusting circuit 33 has decreased, it is detected that the rotating shaft 2 has approached the yoke portion 1 in FIG. In this case, the voltage waveform passing through the bandpass filter 24 is a carrier frequency waveform having an envelope formed by the magnetic circuit between the rotating shaft 2 and the magnetic field generating coil 3 and the rotating shaft 2. .. In this way, a signal corresponding to the amount of movement of the rotary shaft 2 is detected.

【0013】オフセット・ゲイン調整回路33で検出さ
れた回転軸2の移動量を制御回路28にフィードバック
して、位相が調整されたフィードバック信号を増幅し
て、磁界発生用コイル3を流れる直流電流に重畳印加す
ることによって、回転軸2を所定の位置で保持するため
の発生磁界をフィードバックにより調整することにより
回転軸2の移動をすみやかに復元することができる。
The amount of movement of the rotary shaft 2 detected by the offset / gain adjusting circuit 33 is fed back to the control circuit 28 to amplify the phase adjusted feedback signal to generate a direct current flowing through the magnetic field generating coil 3. By superimposing and applying, the generated magnetic field for holding the rotary shaft 2 at a predetermined position is adjusted by feedback, so that the movement of the rotary shaft 2 can be quickly restored.

【0014】オフセット・ゲイン調整回路33で検出さ
れた回転軸2の移動量の信号を制御回路28にフィード
バックして、その位相を進め、又は遅らせゲイン・オフ
セットを調整する補償回路により適性なフイード・バッ
クにより、微妙な制御が可能であり、これにより最適に
回転軸2の移動を復元することができる。
A signal of the amount of movement of the rotary shaft 2 detected by the offset / gain adjusting circuit 33 is fed back to the control circuit 28 to advance or delay the phase thereof to adjust the gain / offset so that a more appropriate feed. With the back, delicate control is possible, and thereby the movement of the rotary shaft 2 can be optimally restored.

【0015】図3は本発明の第2の実施例の磁界発生用
コイルの位置検出のブロック図を示す。この実施例にお
いては、制御回路28の出力を電力増幅器22aによっ
て増幅した信号と、キャリア発振器27の出力を電力増
幅器22bで増幅した信号とを重畳して磁界発生用コイ
ル3に印加している。この構成では、キャリア発振器は
専用の電力増幅器を持つことから大電流を扱う電力増幅
器22aの周波数特性の制限を受けない等の利点を生じ
る。
FIG. 3 is a block diagram of the position detection of the magnetic field generating coil according to the second embodiment of the present invention. In this embodiment, a signal obtained by amplifying the output of the control circuit 28 by the power amplifier 22a and a signal obtained by amplifying the output of the carrier oscillator 27 by the power amplifier 22b are superimposed and applied to the magnetic field generating coil 3. With this configuration, since the carrier oscillator has a dedicated power amplifier, there is an advantage that the frequency characteristic of the power amplifier 22a that handles a large current is not limited.

【0016】図4は本発明の第3の実施例のラジアル軸
受の位置制御のブロック図である。この実施例において
は、回転軸2の上下に2つののヨーク部1を備え、各ヨ
ーク部1にそれぞれの電力増幅器22c、22dから電
流を供給し、回転軸2の移動量を回転軸2の両側で検出
し、このヨーク部1と回転軸2との間隔を制御する磁気
軸受装置である。このような構成によって、より正確な
回転軸2の位置制御ができる。
FIG. 4 is a block diagram of position control of the radial bearing according to the third embodiment of the present invention. In this embodiment, two yoke parts 1 are provided above and below the rotary shaft 2, and current is supplied to each yoke part 1 from the respective power amplifiers 22c and 22d, so that the moving amount of the rotary shaft 2 is changed. This is a magnetic bearing device that detects the distance on both sides and controls the distance between the yoke portion 1 and the rotary shaft 2. With such a configuration, more accurate position control of the rotary shaft 2 can be performed.

【0017】図5は本発明の上記実施例において、磁界
発生用コイル3の一部を、電流検出用の抵抗35の代わ
りに、磁界発生用コイルの一部が用いられる構成を示
す。このような構成によれば電流検出用の抵抗35を省
略することが出来、回路構成が簡単になる。
FIG. 5 shows a structure in which a part of the magnetic field generating coil 3 is used in place of the current detecting resistor 35 in the above embodiment of the present invention. With such a configuration, the resistor 35 for current detection can be omitted, and the circuit configuration is simplified.

【0018】[0018]

【発明の効果】以上に説明したように、本発明によれ
ば、回転軸が所定の位置で回転している際に、何等かの
原因で回転軸が移動するときに、吸引力を制御する磁界
発生用コイル3を検出器として共用することによって、
回転軸の移動量を制御用電磁石の吸引力の作用点で検出
することができる。又、位置検出用のコイルを不要と
し、磁気軸受の構造を簡素化することができる。従っ
て、磁気受装置全体の制御精度の向上、小型化、コンパ
クト化に寄与するものである。
As described above, according to the present invention, when the rotary shaft is rotating at a predetermined position, the suction force is controlled when the rotary shaft moves for some reason. By sharing the magnetic field generating coil 3 as a detector,
The amount of movement of the rotating shaft can be detected at the point of action of the attractive force of the control electromagnet. Further, the coil for position detection is not required, and the structure of the magnetic bearing can be simplified. Therefore, it contributes to improvement of control accuracy, downsizing, and downsizing of the entire magnetic receiving device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の磁界発生用コイルの位
置検出のブロック図である。
FIG. 1 is a block diagram of position detection of a magnetic field generating coil according to a first embodiment of the present invention.

【図2】上記実施例において、高周波電流を検出用抵抗
の両端より差動増幅回路を介して取りだした磁界発生用
コイルの位置検出のブロック図である。
FIG. 2 is a block diagram of position detection of a magnetic field generation coil in which a high frequency current is taken out from both ends of a detection resistor through a differential amplifier circuit in the above embodiment.

【図3】本発明の第2の実施例の磁界発生用コイルの位
置検出のブロック図である。
FIG. 3 is a block diagram of position detection of a magnetic field generating coil according to a second embodiment of the present invention.

【図4】本発明の第3の実施例のラジアル軸受の位置制
御のブロック図である。
FIG. 4 is a block diagram of position control of a radial bearing according to a third embodiment of the present invention.

【図5】本発明の実施例における磁界発生用コイルの一
部を、位置検出の電流検出に使用する回路の説明図であ
る。
FIG. 5 is an explanatory diagram of a circuit in which a part of the magnetic field generating coil in the embodiment of the present invention is used for current detection of position detection.

【図6】磁気軸受装置におけるヨーク部と回転軸との位
置関係を示す説明図である。
FIG. 6 is an explanatory diagram showing a positional relationship between a yoke portion and a rotating shaft in the magnetic bearing device.

【符号の説明】[Explanation of symbols]

1 ヨーク部 2 回転軸 3 磁界発生用コイル 22 電力増幅器 24 バンドパスフィルタ 25 全波整流回路 26 ローパスフィルタ 27 高周波キャリア発振器 28 制御回路 33 オフセット・ゲイン調整回路 35 検出用抵抗 1 yoke part 2 rotating shaft 3 magnetic field generating coil 22 power amplifier 24 band pass filter 25 full wave rectifier circuit 26 low pass filter 27 high frequency carrier oscillator 28 control circuit 33 offset / gain adjusting circuit 35 detection resistor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁界発生用コイルと磁性材料のヨーク部
とからなる電磁石及び被支持体を備えた磁気軸受装置に
おいて、前記磁界発生用コイルを、前記被支持体の移動
量検出のためのコイルとして共用することを特徴とする
磁気軸受装置。
1. A magnetic bearing device comprising an electromagnet comprising a magnetic field generating coil and a yoke portion of a magnetic material and a supported body, wherein the magnetic field generating coil is a coil for detecting the amount of movement of the supported body. A magnetic bearing device that is commonly used as.
【請求項2】 前記磁界発生用コイルに重畳する高周波
キャリヤ信号を発生するキャリヤ発生手段と、磁界発生
用コイルに流れる電流のキャリア信号周波数付近成分の
みを検出する検出手段と、その検出されたキャリア信号
周波数付近成分の信号を整流する整流手段と、この整流
された信号の低周波成分を検出する検出手段とを備える
ことにより、被支持体の移動量を検出することを特徴と
する請求項1記載の磁気軸受装置。
2. A carrier generating means for generating a high frequency carrier signal to be superimposed on the magnetic field generating coil, a detecting means for detecting only a component near a carrier signal frequency of a current flowing through the magnetic field generating coil, and the detected carrier. The moving amount of the supported body is detected by including rectifying means for rectifying a signal having a component near the signal frequency and detecting means for detecting a low frequency component of the rectified signal. The magnetic bearing device described.
JP15106291A 1991-05-27 1991-05-27 Magnetic bearing device Pending JPH0587140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15106291A JPH0587140A (en) 1991-05-27 1991-05-27 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15106291A JPH0587140A (en) 1991-05-27 1991-05-27 Magnetic bearing device

Publications (1)

Publication Number Publication Date
JPH0587140A true JPH0587140A (en) 1993-04-06

Family

ID=15510472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15106291A Pending JPH0587140A (en) 1991-05-27 1991-05-27 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JPH0587140A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004656A1 (en) * 2005-07-05 2007-01-11 Ebara Corporation Magnetic bearing device and magnetic bearing method
JP2013139870A (en) * 2011-12-08 2013-07-18 Shimadzu Corp Magnetic levitation type vacuum pump and magnetic levitation device
US9222299B2 (en) 2007-12-18 2015-12-29 3M Innovative Properties Company Window film attachment article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153014A (en) * 1984-12-26 1986-07-11 Hitachi Ltd Electromagnetic bearing device
JPS61248916A (en) * 1985-04-26 1986-11-06 Hitachi Ltd Solenoid bearing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153014A (en) * 1984-12-26 1986-07-11 Hitachi Ltd Electromagnetic bearing device
JPS61248916A (en) * 1985-04-26 1986-11-06 Hitachi Ltd Solenoid bearing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004656A1 (en) * 2005-07-05 2007-01-11 Ebara Corporation Magnetic bearing device and magnetic bearing method
US7830056B2 (en) 2005-07-05 2010-11-09 Ebara Corporation Magnetic bearing device and method
US7977839B2 (en) 2005-07-05 2011-07-12 Ebara Corporation Magnetic bearing device and method
JP4746619B2 (en) * 2005-07-05 2011-08-10 株式会社荏原製作所 Magnetic bearing device and magnetic bearing method
US9222299B2 (en) 2007-12-18 2015-12-29 3M Innovative Properties Company Window film attachment article
JP2013139870A (en) * 2011-12-08 2013-07-18 Shimadzu Corp Magnetic levitation type vacuum pump and magnetic levitation device

Similar Documents

Publication Publication Date Title
EP0121007B1 (en) A combined position sensor and magnetic actuator
JP5025505B2 (en) Magnetic bearing device
JP4746619B2 (en) Magnetic bearing device and magnetic bearing method
JPH09510280A (en) Active magnetic bearing with automatic position detection function
KR20010060177A (en) Magnetic levitation control apparatus
US5572079A (en) Magnetic bearing utilizing brushless generator
JPH07506655A (en) magnetic bearing regulator
JPH05273271A (en) Inductance monitor
JPS6137643B2 (en)
JP4768712B2 (en) Active magnetic bearing for automatic position detection
JPH0587140A (en) Magnetic bearing device
JP3649595B2 (en) Magnetic levitation controller
JP3205623B2 (en) Magnetic levitation transfer device
JP2004132537A (en) Magnetic bearing control device
JP3220281B2 (en) Magnetic bearing device
JPH05118329A (en) Magnetic bearing device
JPS61193074A (en) Method and device for generating angular velocity signal by magnetic recording regeneration
JP2519141B2 (en) Magnetic bearing device
JP3187982B2 (en) Magnetic levitation device
JP3218118B2 (en) Magnetic bearing device
JPH05231809A (en) Electromotive force type eddy current displacement gauge
JPH02201101A (en) Displacement sensor for magnetic bearing
JPH1187136A (en) Magnetic levitation system
JPH0753040A (en) Carrying device
JPH05121228A (en) Electromagnetic device