JPH021633B2 - - Google Patents

Info

Publication number
JPH021633B2
JPH021633B2 JP54152388A JP15238879A JPH021633B2 JP H021633 B2 JPH021633 B2 JP H021633B2 JP 54152388 A JP54152388 A JP 54152388A JP 15238879 A JP15238879 A JP 15238879A JP H021633 B2 JPH021633 B2 JP H021633B2
Authority
JP
Japan
Prior art keywords
axis
test
bending
center
curved surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54152388A
Other languages
Japanese (ja)
Other versions
JPS5676045A (en
Inventor
Tetsuo Kakiuchi
Masatoshi Miki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15238879A priority Critical patent/JPS5676045A/en
Publication of JPS5676045A publication Critical patent/JPS5676045A/en
Publication of JPH021633B2 publication Critical patent/JPH021633B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は5自由度を有するマニピユレータを用
いて円筒とこの円筒に取付けた他の円筒との取付
部を内側からならわせる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method of aligning the attachment portion of a cylinder and another cylinder attached to the cylinder from the inside using a manipulator having five degrees of freedom.

<従来の技術> 円筒の表面から突出するように他の円筒を取付
けたものの一例として、円筒形ドラムとノズルと
の取付部がある。この取付部内側は断面が急変し
ているため応力集中が発生することがある。高い
応力集中のある材料が繰返し荷重を受けると、そ
こには疲れによる割れ目が生じて破断しやすくな
る。したがつて、取付部内部又は内側表面に存在
する不健全部分を検出することは製品の保守上き
わめて重要な問題である。
<Prior Art> An example of a cylinder in which another cylinder is attached so as to protrude from the surface thereof is an attachment part between a cylindrical drum and a nozzle. Since the cross section inside this attachment part changes suddenly, stress concentration may occur. When materials with high stress concentrations are subjected to repeated loads, fatigue cracks develop and they are prone to fracture. Therefore, detecting unsound parts inside or on the inner surface of the mounting part is an extremely important problem in product maintenance.

従来、円筒形ドラムのノズル取付部内側の探傷
には超音波探傷装置を用いることが多く、超音波
探傷は検査員が被検部の近くまで行つて手動で行
なうという方法がとられていた。
Conventionally, ultrasonic flaw detection equipment has often been used to detect flaws inside the nozzle attachment part of a cylindrical drum, and the ultrasonic flaw detection has been carried out manually by an inspector who goes close to the area to be inspected.

しかしながら、この従来方法では、作業に非常
に手間がかかり、探傷速度もおそく、探傷もれを
生じる恐れがあるなど、経済性、信頼性に問題点
があつた。また、特に原子炉圧力容器等の原子炉
冷却材圧力バウンダリ内の機器の検査について
は、放射線のため検査員が検査対象箇所に近づく
ことができず、検査することができなかつた。
However, this conventional method has problems in terms of economy and reliability, such as being extremely time-consuming, slow in flaw detection, and potentially causing flaw detection failure. Furthermore, in particular, inspections of equipment within the reactor coolant pressure boundary, such as the reactor pressure vessel, were not possible because inspectors were unable to get close to the areas to be inspected due to radiation.

<発明が解決しようとする課題> そこで、遠隔操作でしかも自動的に探傷が行な
えるノズル取付部内側表面下の水浸法による超音
波探傷装置が検討されてきたが、(1)被検部が複雑
な曲揚形状であるため、探触子板と被検部表面と
の平行度や水距離が正確でなかつたり、(2)探触子
板及びマニピユレータが被検部表面に接触して破
損してしまうなどの事故を生じる恐れもあり、(3)
さらに同一装置によつて種々の原子炉圧力容器の
探傷を行なうための互換性を考慮する必要もある
など解決しなければならない多くの問題を有して
おり、その装置の完成が妨げられていた。
<Problems to be Solved by the Invention> Therefore, an ultrasonic flaw detection device using a water immersion method under the inner surface of the nozzle attachment part that can perform flaw detection remotely and automatically has been considered; (2) The probe plate and manipulator may come into contact with the surface of the test piece due to its complicated curved shape, so the parallelism and water distance between the probe plate and the surface of the test piece may not be accurate. There is a risk of accidents such as damage, (3)
Furthermore, there were many problems that needed to be resolved, such as the need to consider compatibility in testing various reactor pressure vessels with the same device, which hindered the completion of the device. .

本発明は上述のような技術的状況にかんがみて
なされたもので、遠隔操作でしかも自動的に探傷
が行なえるノズル取付部内側表面下の水浸法によ
る超音波探傷装置の完成の妨げとなつている上記
問題点(1)(2)(3)を解決し得るならい方法を提供する
ことを目的とする。
The present invention has been made in view of the above-mentioned technical situation, which is an obstacle to the completion of an ultrasonic flaw detection device using the water immersion method under the inner surface of the nozzle mounting part that can be remotely and automatically detected. The purpose of this study is to provide a tracing method that can solve the above problems (1), (2), and (3).

<課題を解決するための手段> 上記目的を達成するため、本発明では、一の円
筒とその側面に接続された他の円筒との取付部の
内側の曲面部を被検部とし、前記他の円筒の中心
線上に当該中心線方向に移動可能に取付けられた
中心線上移動軸と、この中心線上移動軸先端に取
付けられ、中心線上移動軸の中心軸を軸として回
転する回転軸と、この回転軸に連続して取付けら
れた傾動可能な3本の屈曲軸とでなり先端側の屈
曲軸に検査具が取付けられるマニピユレータの前
記検査具を前記被検部にならわせるに際し、前記
被検部の曲率中心に向けた前記マニピユレータ先
端の屈曲軸の軸心を仮想する軸として当該仮想す
る軸の前記曲率中心を通りかつ前記他の円筒の中
心線に平行な軸に対する傾斜角と、前記回転軸の
回転角度とで前記他の4軸の移動量を制御して前
記被検部に対する前記検査具の位置及び向きを適
正に保つようにしたのである。
<Means for Solving the Problems> In order to achieve the above object, in the present invention, the curved surface part inside the attachment part of one cylinder and another cylinder connected to the side surface thereof is used as the test part, and the other cylinder is a centerline moving shaft mounted on the centerline of the cylinder so as to be movable in the direction of the centerline; a rotating shaft that is attached to the tip of the centerline moving shaft and rotates about the center axis of the centerline moving shaft; When aligning the inspection tool of the manipulator, which has three tiltable bending shafts attached in succession to a rotating shaft and an inspection tool is attached to the bending shaft on the distal end side, to the test subject, An inclination angle of the imaginary axis with respect to an axis passing through the center of curvature and parallel to the center line of the other cylinder as an axis imagining the axis of the bending axis of the tip of the manipulator directed toward the center of curvature of the cylinder, and the rotation. The amount of movement of the other four axes is controlled by the rotation angle of the axes, so that the position and orientation of the test tool with respect to the test subject can be maintained appropriately.

<作用> 上記曲面のならい方法においては、仮想する軸
の傾斜角及び回転軸の角度とに基づき、仮想する
軸の傾斜角が一定に保たれるように屈曲軸の角度
及び中心線上移動軸の位置が制御される。したが
つて、仮想する軸をステツプ軸としてその傾斜角
を一定量ずつ増加して行き、回転軸をスキヤン軸
として各傾斜角ごとに回転させることにより、円
筒同士の取付部曲面全域に亘つての倣いがなし得
る。
<Operation> In the curved surface tracing method described above, based on the inclination angle of the imaginary axis and the angle of the rotation axis, the angle of the bending axis and the axis of movement on the centerline are adjusted so that the inclination angle of the imaginary axis is kept constant. Position is controlled. Therefore, by using the imaginary axis as the step axis and increasing its inclination angle by a certain amount, and rotating the rotation axis for each inclination angle as the scan axis, it is possible to increase the angle of inclination over the entire curved surface of the attachment part between the cylinders. It can be imitated.

<実施例> 以下、本発明の一実施例を図面を参照しながら
詳細に説明する。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明のならい方法を適用するマニピ
ユレータを第2図に示すような一の円筒である円
筒形ドラム101と他の円筒であるノズル102
との取付部内側の探傷に用いる場合を示す断面図
である。
FIG. 1 shows a manipulator to which the profiling method of the present invention is applied, as shown in FIG.
FIG. 3 is a cross-sectional view showing a case where the device is used for flaw detection inside the attachment portion.

本発明の対象となるマニピユレータは、水平に
移動できる中心線上移動軸としての水平移動軸1
と、この水平移動軸1の先端部に設けられ±200゜
回転できる回転軸2と、この回転軸2の先端に連
続して設けられた±100゜屈曲できる三つの屈曲軸
3,4,5とで構成される5自由度をもつもので
ある。探触子板6は屈曲軸5先端に設置され、こ
の探触子板6に検査具等を取付け、この検査具を
被検部に対し、平行(被検部の接線に平行)かつ
一定水距離はなしてならわせるものである。この
ように構成されたマニピユレータはキヤリツジ8
によつて水平移動軸1の基端部が支持され、さら
に、このキヤリツジ8が360゜旋回できる主柱9に
設けられたレールに沿つて上下できるように取付
けられている。
The manipulator that is the object of the present invention has a horizontal movement axis 1 as a movement axis on the center line that can move horizontally.
, a rotating shaft 2 provided at the tip of the horizontal movement shaft 1 that can rotate ±200°, and three bending shafts 3, 4, 5 that are continuously provided at the tip of the rotating shaft 2 and capable of bending ±100°. It has 5 degrees of freedom consisting of . The probe plate 6 is installed at the tip of the bending shaft 5, and an inspection tool, etc. is attached to the probe plate 6, and the inspection tool is held parallel to the test area (parallel to the tangent line of the test area) and at a constant level. Distance is something that can be smoothed out. The manipulator configured in this way has a carriage 8.
The base end of the horizontally moving shaft 1 is supported by the shaft 1, and the carriage 8 is mounted so as to be able to move up and down along a rail provided on a main column 9 which can rotate 360 degrees.

次に、このマニピユレータを用いてのならい方
法について具体的に説明する。
Next, a tracing method using this manipulator will be specifically explained.

まず、水平移動可能な水平移動軸1の中心線を
他の円筒であるノズル102の中心線Nに一致さ
せる。
First, the center line of the horizontally movable shaft 1 is made to coincide with the center line N of the nozzle 102, which is another cylinder.

ステツプ軸となる軸7を仮想する。この仮想す
る軸7は、第1図、第5図に示すように、探触子
板6の軸心線(屈曲軸5の軸心線)がノズル曲面
部の曲率中心10を通る軸をいい、その角度θ7
は、前記曲率中心10を通り、かつノズル中心線
Nは平行な軸(基準軸Cと呼ぶ)に対する角度
(時計回りを正)として決められる。
An axis 7 is assumed to be a step axis. As shown in FIGS. 1 and 5, this imaginary axis 7 is an axis along which the axial center line of the probe plate 6 (the axial center line of the bending shaft 5) passes through the center of curvature 10 of the nozzle curved surface. , its angle θ 7
passes through the center of curvature 10, and the nozzle center line N is determined as an angle (clockwise is positive) with respect to a parallel axis (referred to as reference axis C).

基準軸Cに対する仮想軸7の角度θ7をある一定
のきざみ量(例えば5゜)ごとに0゜から約90゜の範囲
で増加させて行き、そのきざみ量ごとに回転軸2
をスキヤン軸として360゜回転させる。こうして、
探触子板6に取付けられる検査具により、被検面
であるノズル取付部全域の探傷を行うのである。
そして、この際、回転軸2及び仮想軸7の角度信
号が他の4軸1,3,4,5の入力信号となり、
各軸の移動量が制御されるのである。
The angle θ 7 of the virtual axis 7 with respect to the reference axis C is increased in the range of 0° to approximately 90° in certain increments (for example, 5°), and the rotation axis 2 is
Rotate 360° using as the scan axis. thus,
The inspection tool attached to the probe plate 6 performs flaw detection over the entire area of the nozzle attachment part, which is the surface to be inspected.
At this time, the angle signals of the rotation axis 2 and the virtual axis 7 become input signals of the other four axes 1, 3, 4, and 5,
The amount of movement of each axis is controlled.

次に、屈曲軸3,4,5および水平移動軸1の
移動量について述べる。
Next, the amount of movement of the bending axes 3, 4, and 5 and the horizontal movement axis 1 will be described.

今、第2図に示したような半径Rのドラム10
1の胴部とノズル102との取付部の断面形状を
考える。
Now, a drum 10 with radius R as shown in FIG.
Consider the cross-sectional shape of the attachment portion between the body of Nozzle 1 and the nozzle 102.

第2,6図に示すように、ドラム101の長手
方向をθ2=0゜として角度θ2をとると、角度θ2にお
けるその部分の断面形状は、第3図、第8図に示
すように短軸=2R、長軸=2R/sinθ2なる楕円1
01aとノズル102の曲面102aとの交わつ
たものとなる。したがつて、仮想軸7を固定して
(角度θ7を一定にして)回転軸2を0゜から90゜まで
回転させると、第3図に示すように、ノズル曲面
102aの曲率中心10が移動し、θ7が小さいと
きには、第8図に示すように被検部P(仮想軸7
と曲面102aまたは101aとの交点)は、ノ
ズル曲面102a上からドラム胴部の楕円曲面1
01a上に移る。第8図においては、P1はノズ
ル曲面102a上にあり、P2はドラム胴部の楕
円曲面101a上に移つていることを示してい
る。
As shown in FIGS. 2 and 6, if we take the angle θ 2 with the longitudinal direction of the drum 101 as θ 2 =0°, the cross-sectional shape of that part at the angle θ 2 will be as shown in FIGS. 3 and 8. Ellipse 1 with minor axis = 2R and major axis = 2R/sinθ 2
01a intersects with the curved surface 102a of the nozzle 102. Therefore, when the rotation axis 2 is rotated from 0° to 90° with the virtual axis 7 fixed (keeping the angle θ 7 constant), the center of curvature 10 of the nozzle curved surface 102a is When the object moves and θ 7 is small, the test part P (virtual axis 7
and the curved surface 102a or 101a) is the elliptical curved surface 1 of the drum body from above the nozzle curved surface 102a.
Move to 01a. FIG. 8 shows that P 1 is located on the nozzle curved surface 102a, and P 2 is moved onto the elliptical curved surface 101a of the drum body.

したがつて、被検部Pの位置に応じて屈曲軸
3,4,5の移動量を制御するにあたつては、被
検部Pがノズル曲面102a上にあるか、ドラム
胴部の楕円曲面101aにあるかによつて、屈曲
軸3,4,5の移動量の求め方を変える必要があ
る。
Therefore, when controlling the movement amount of the bending shafts 3, 4, and 5 according to the position of the test part P, it is necessary to check whether the test part P is on the nozzle curved surface 102a or the ellipse of the drum body. It is necessary to change the method of determining the amount of movement of the bending shafts 3, 4, and 5 depending on whether the bending shafts 3, 4, and 5 are on the curved surface 101a.

先ず、被検部Pがノズル曲面102a上にある
場合の屈曲軸3,4,5の移動量(移動角度)の
求め方について述べる。
First, a method of determining the amount of movement (movement angle) of the bending shafts 3, 4, and 5 when the test portion P is on the nozzle curved surface 102a will be described.

前提として、第1図に示すように、屈曲軸3と
ノズル中心線Nとのなす角度をθ3(反時計回りを
正)、屈曲軸4と屈曲軸3とのなす角度をθ4(反時
計回りを正)、探触子板6を取付ける軸である屈
曲軸5と屈曲軸4とのなす角度をθ5(反時計回り
を正)とし、屈曲軸3,4,5のそれぞれの長さ
をl3、l4、l5とし、仮想軸7が基準軸Cに対する
角度を前述の如くθ7とし、ノズル取付部内側曲面
(曲率中心10)の曲率半径をr、探触子板6と
被検部との水距離をwPとする。
As shown in Fig. 1, the angle between the bending axis 3 and the nozzle center line N is θ 3 (counterclockwise is positive), and the angle between the bending axis 4 and the bending axis 3 is θ 4 (counterclockwise). The angle between the bending axis 5, which is the axis on which the probe plate 6 is attached, and the bending axis 4 is θ 5 (counterclockwise is positive), and the respective lengths of the bending axes 3, 4, and 5 are The angles of the virtual axis 7 with respect to the reference axis C are θ 7 as described above, the radius of curvature of the inner curved surface (center of curvature 10 ) of the nozzle mounting part is r , and the probe plate 6 is Let w P be the water distance between and the test area.

被検部Pがノズル曲面102a上にある場合
(ドラム胴部上ではない場合)には、水平移動軸
2と屈曲軸3との交点Oを原点とし、第1図にお
けるノズル曲面部の曲率中心10のxy座標を
(xr、yr)、屈曲軸5と屈曲軸4との接合点のxy座
粉を(xe、ye)とすると、xr、yr、xe、yeは次の
ように表される。
When the test part P is on the nozzle curved surface 102a (not on the drum body), the origin is the intersection O between the horizontal movement axis 2 and the bending axis 3, and the center of curvature of the nozzle curved surface in FIG. 10's xy coordinates are (x r , y r ), and the xy spot of the junction point between bending axis 5 and bending axis 4 is (x e , y e ), then x r , y r , x e , y e is expressed as follows.

yr=l3cosθ3+l4cos(θ3+θ4)+
(l5+wP+r)cosθ7……(1) xr=−l3sinθ3−l4sin(θ3+θ4
+(l5+wp+r)sinθ7……(2) ye=yr−(l5+wP+r)cosθ7 ……(3) xe=−{xr−(l5+wP+r)sinθ7
……(4) また、ドラム中心線Dとノズル中心線Nとの交
点O′を原点とすると、屈曲軸4,5の接合点の
座標は次のように表される。
y r = l 3 cos θ 3 + l 4 cos (θ 3 + θ 4 ) +
(l 5 +w P +r) cosθ 7 ...(1) x r = -l 3 sinθ 3 -l 4 sin (θ 34 )
+(l 5 +w p +r) sinθ 7 …(2) y e =y r −(l 5 +w P +r) cosθ 7 …(3) x e =−{x r −(l 5 +w P +r) sinθ 7 }
...(4) Furthermore, if the intersection O' between the drum center line D and the nozzle center line N is taken as the origin, the coordinates of the joining point of the bending shafts 4 and 5 are expressed as follows.

y′e=ye+(Rs+Rp) ……(5) x′e=−xe ……(6) ただし、Rpは水平移動軸1を最も引き込んだ
とき(移動量0mm)の水平移動軸1のドラム中心
線Dに対する出代(ドラム中心線Dから水平移動
軸1と屈曲軸3との交点までの距離)、RsはRp
基準とする水平移動軸1の移動量である。
y′ e =y e +(R s +R p ) ……(5) x′ e =−x e ……(6) However, R p is the value when the horizontal movement axis 1 is retracted the most (travel amount 0 mm). The protrusion of the horizontal movement axis 1 with respect to the drum center line D (distance from the drum center line D to the intersection of the horizontal movement axis 1 and the bending axis 3), R s is the amount of movement of the horizontal movement axis 1 with respect to R p It is.

以上より屈曲軸3,4,5の角度θ3、θ4、θ5
次のように表わされる。
From the above, the angles θ 3 , θ 4 , and θ 5 of the bending axes 3, 4 , and 5 are expressed as follows.

θ4=cos-1(x′e 2+ye 2−l3 2−l4 2/2・l3
・l4) ……(7) θ3=tan-1{x′e・l3+l4(x
ecosθ4−yesinθ4)/ye・l4+l4(yecosθ4+x′es
inθ4)}……(8) θ5=−(θ3+θ4+θ7
……(9) なお、前述のように、第1図において、屈曲軸
3,4,5の回転方向は反時計回りを正とし、仮
想軸7の回転方向は時計回りを正とする。
θ 4 = cos -1 (x′ e 2 +y e 2 −l 3 2 −l 4 2 /2・l 3
・l 4 ) ...(7) θ 3 =tan -1 {x′ e・l 3 +l 4 (x
e cosθ 4 −y e sinθ 4 )/y e・l 4 +l 4 (y e cosθ 4 +x′ e s
inθ 4 )}……(8) θ 5 = −(θ 347 )
(9) As mentioned above, in FIG. 1, the rotation direction of the bending shafts 3, 4, and 5 is positive in the counterclockwise direction, and the rotation direction of the virtual axis 7 is positive in the clockwise direction.

次に、被検部Pがドラム胴部の楕円曲面101
a上にある場合について示す。
Next, the test portion P is the elliptical curved surface 101 of the drum body.
The case where it is on a is shown.

第1図において、ノズル曲面102aの曲率中
心10を通り、仮想軸7の角度θ7を傾きとする直
線の方程式は、曲率中心10の座標を(xr、y′r
とすると、次式で表わされる。
In FIG. 1, the equation of a straight line passing through the center of curvature 10 of the nozzle curved surface 102a and having an angle θ 7 of the virtual axis 7 as its inclination is expressed as
Then, it is expressed by the following formula.

y′=ax+b ……(10) a=tan(90゜−θ7) ……(11) b=y′r−axr ……(12) また、楕円の方程式は次式となる。 y'=ax+b...(10) a=tan(90° -θ7 )...(11) b= y'r - axr ...(12) Also, the equation of the ellipse is as follows.

x2/c2+y′2/R2=1 ……(13) c=R/sinθ2 ……(14) 以上より、座標(xe、y′e)の値は次式により
表わされる。
x 2 /c 2 +y′ 2 /R 2 =1 (13) c=R/sinθ 2 (14) From the above, the value of the coordinates (x e , y′ e ) is expressed by the following equation.

ただし、Rはドラム101の半径(ドラム軸中
心Dからドラム1内面までの距離)である。
However, R is the radius of the drum 101 (the distance from the drum axis center D to the inner surface of the drum 1).

以上のように、被検部Pがノズル曲面102a
上にあるかドラム胴部の楕円曲面101aにある
かによつて、上述の式(3)(4)又は(15)(16)によ
つて(xe、ye)を設定でき、式(7)(8)(9)から直ちに
屈曲軸3,4,5の移動量(角度θ3、θ4、θ5)が
得られる。なお、(xr、yr)は、傾斜角θ7、回転
角θ2に応じて予め求められる。
As described above, the test portion P is the nozzle curved surface 102a.
Depending on whether the position is above or on the elliptical curved surface 101a of the drum body, (x e , y e ) can be set using the above equations (3), (4), or (15) and (16), and the equation ( 7) From (8) and (9), the amount of movement (angles θ 3 , θ 4 , θ 5 ) of the bending shafts 3, 4, and 5 can be immediately obtained. Note that (x r , y r ) are determined in advance according to the tilt angle θ 7 and the rotation angle θ 2 .

一方、水平移動軸1は、屈曲軸3,4,5の移
動を容易にするため(移動できる空間を大きくす
るため)、ドラム壁面101bから回転軸2先端
までの距離Sが大きくなるように移動を制御する
必要がある。
On the other hand, the horizontal movement shaft 1 is moved so that the distance S from the drum wall surface 101b to the tip of the rotation shaft 2 becomes larger in order to facilitate the movement of the bending shafts 3, 4, and 5 (to increase the space in which they can move). need to be controlled.

ところが、水平移動軸1の移動可能な範囲は、
屈曲軸3,4,5の回転可能な角度範囲が物理的
に±100゜(本マニピユレータでは)であることと、
水平移動軸1のストローク量によつて制限され
る。
However, the movable range of horizontal movement axis 1 is
The rotatable angular range of the bending axes 3, 4, and 5 is physically ±100° (in this manipulator);
It is limited by the stroke amount of the horizontal movement axis 1.

屈曲軸4の回転可能な角度範囲は物理的に±
100゜であるから、(7)式より cos100゜≦x′e 2+ye 2−l3 2−l4 2/2・l3・l4≦cos0
゜ ……(17) よつて、 x′e 2+ye 2≦l3 2+l4 2+2・l3・l4cos100゜……(18) x′e 2+ye 2≦(l3+l42 ……(19) √3 24 2+2・34100゜−
e 2≦ye≦√(342−′e 2……(20) ここで、S=ye+(l5+wP+r)cosθ7−rよ
り、Sのとり得る範囲は、 Smin≦S≦Smax ……(21) となる。
The rotatable angle range of the bending shaft 4 is physically ±
100°, so from equation (7) cos100°≦x′ e 2 +y e 2 −l 3 2 −l 4 2 /2・l 3・l 4 ≦cos0
゜ ...(17) Therefore, x′ e 2 +y e 2 ≦l 3 2 +l 4 2 +2・l 3・l 4 cos100゜……(18) x′ e 2 +y e 2 ≦(l 3 +l 4 ) 2 ……(19) √ 3 2 + 4 2 +2・34 100゜−
e 2 ≦y e ≦√( 3 + 4 ) 2 −′ e 2 ...(20) Here, from S=y e + (l 5 +w P +r)cosθ 7 −r, the possible range of S is , Smin≦S≦Smax (21).

ただし、 Smax=√(342−′e 2)+(l5+wP
+r)cosθ7−r……(22) Smin=√3 24 2+23 4100゜−
e 2+(l5+wP+r)cosθ7−r……(23) である。
However, Smax=√( 3 + 4 ) 2′e2 ) +( l5 + wP
+r) cosθ 7 −r……(22) Smin=√ 3 2 + 4 2 +2 3 4 100゜−
e 2 +(l 5 +w P +r) cosθ 7 −r (23).

なお、(23)式よりx′eは実数であるから |x′e|≦√3 24 2+23 4100゜ であり、またx′eは第1図より、 x′e=xr−(l5+wP+r)sinθ7 であるから、 となる。 Note that since x′ e is a real number from equation (23), |x′ e |≦√ 3 2 + 4 2 +2 3 4 100°, and x′ e is x′ e = x Since r − (l 5 + w P + r) sinθ 7 , becomes.

とおくと、前述の(21)式が成立するためには、
θ7≧θcであることが必要十分条件となる。
Then, in order for the above equation (21) to hold,
It is a necessary and sufficient condition that θ 7 ≧θ c .

よつて、仮想軸7の角度θ7と、ドラム壁面10
1bから水平移動軸1先端Oまでの距離Sとの関
係を表す第4図に示すように、Sのとり得る範囲
は、屈曲軸4の角度θ4=0゜のときのSの値
(Smax)とθ4=100゜のときのS値(Smin)との
間(第4図中の右上りの斜線以外の部分)という
ことになる。
Therefore, the angle θ 7 of the virtual axis 7 and the drum wall surface 10
As shown in FIG . 4, which shows the relationship between the distance S from 1b to the tip O of the horizontal movement axis 1, the possible range of S is the value of S (Smax ) and the S value (Smin) when θ 4 =100° (the area other than the diagonal line on the upper right in FIG. 4).

また、水平移動軸1の移動量Rs≧0であるか
ら、第1図より、 Rs=R−Rp−S≧0 S≦Sp=R−Rp ……(26) となる。
Further, since the amount of movement R s ≧0 of the horizontal movement axis 1, from FIG. 1, R s =R−R p −S≧0 S≦S p =R−R p (26).

したがつて、Sのとり得る範囲SP-Pは、 Sp≧SmaxならばSP-P=Smax−Smin
……(27) Sp<SmaxならばSP-P=Sp−Smin ……(28) となる。つまり、第4図における、右上り及び左
上りの斜線以外の部分(斜線の引かれていない部
分)となる。さらに、回転軸2の回転角度θ2が変
わることによるノズル曲面102aの曲率中心1
0のドラム半径方向の変位Δr(第3図参照)を考
慮すると、Sのとり得る範囲ΔSは、 ΔS=SP-P−Δr ……(29) となる。
Therefore, the possible range S PP of S is, if S p ≧ Smax, then S PP = Smax − Smin
...(27) If S p < Smax, then S PP = S p −Smin ...(28). That is, in FIG. 4, it is a portion other than the diagonally shaded portions at the upper right and upper left (portions without diagonal lines). Furthermore, the center of curvature 1 of the nozzle curved surface 102a due to a change in the rotation angle θ 2 of the rotation axis 2
Considering the displacement Δr in the drum radial direction of 0 (see FIG. 3), the possible range ΔS of S is ΔS=S PP −Δr (29).

したがつて、上記範囲で最も大きいSをとる
と、 S(θ2、θ7)=Smin(θ7)+ΔS(θ2) ……(30) ただし、θ7≧θc S(θ2、θ7)=Smin(θc+ΔS(θ2) ……(31) ただし、0<θ7<θc となる。(30)式において、Smin(θ7)は、(23)
式にθ7を入れることにより求まり、ΔS(θ2)は
(27)〜(29)及び(22)(23)式より求まる。
(31)式におけるSmin(θc)も(25)(23)式より
も同様に求まる。なお、0<θ7<θcの範囲におい
ては、(24)式の条件から外れるので、Sminの最
大値であるSmin(θ7)に、とり得る最大のΔS
(θ2)を加えたものをSとしている。
Therefore, if we take the largest S in the above range, S(θ 2 , θ 7 )=Smin(θ 7 )+ΔS(θ 2 )...(30) However, θ 7 ≥θ c S(θ 2 , θ 7 )=Smin(θ c +ΔS(θ 2 )...(31) However, 0<θ 7c . In equation (30), Smin(θ 7 ) is expressed as (23)
It is found by inserting θ 7 into the equation, and ΔS (θ 2 ) is found from equations (27) to (29) and (22) (23).
Smin (θ c ) in equation (31) can also be found in the same way as in equations (25) and (23). Note that in the range of 0 < θ 7 < θ c , the condition of equation (24) is not met, so the maximum value of Smin (θ 7 ) is set to the maximum possible ΔS
2 ) is added to S.

このように、本実施例方法においては、ステツ
プ軸である仮想軸7の角度θ7、スキヤン軸である
回転軸2の回転角θ2に応じて、Sが最大の大きさ
をとり得るように水平移動軸1を動かすと共に、
θ2、θ7に応じて、(7)(8)(9)式に基づいて屈曲軸3,
4,5の角度を求めて、探触子板6が被検部Pに
対し一定距離離れ、かつ被検部Pにおける接線と
平行になるように制御するのである。
In this way, in the method of this embodiment, S can take the maximum size depending on the angle θ 7 of the virtual axis 7 that is the step axis and the rotation angle θ 2 of the rotation axis 2 that is the scan axis. While moving the horizontal movement axis 1,
According to θ 2 and θ 7 , the bending axis 3,
By determining the angles 4 and 5, the probe plate 6 is controlled to be a certain distance away from the test area P and parallel to the tangent to the test area P.

<発明の効果> 以上、詳述したように本発明はドラムとノズル
の取付部を内側から5自由度を有するマニピユレ
ータでならう場合、スキヤン軸とステツプ軸の角
度信号により他の軸の移動量を制御することで、
探触子板を被検部に平行かつ一定水距離はなして
保つことができる。先端屈曲軸の軸心が曲率中心
を通るように制御されるので、この屈曲軸に直角
に取付けられた探触子板と被検部接線との平行度
が保たれるのである。なお、マニピユレータ先端
の屈曲軸がノズル取付部の曲率中心を通るという
ことは、前述の如く、すべての計算式のベースと
なつている。
<Effects of the Invention> As described in detail above, the present invention is capable of controlling the amount of movement of other axes based on the angle signals of the scan axis and step axis when the mounting part of the drum and nozzle is aligned from the inside with a manipulator having 5 degrees of freedom. By controlling the
The probe plate can be kept parallel to the test area and at a constant water distance. Since the axis of the tip bending axis is controlled to pass through the center of curvature, the parallelism between the probe plate attached perpendicularly to the bending axis and the tangent to the test part is maintained. Note that the fact that the bending axis at the tip of the manipulator passes through the center of curvature of the nozzle mounting portion is the basis of all calculation formulas, as described above.

また、各軸の移動量は、被検部及びマニピユレ
ータの寸法、角度、形状等に基づき予め設定され
て制御されるため、探触子板及びマニピユレータ
等が被検部に接触して破損する危険性もなく、自
動的に被検部をならわすことができる。したがつ
て、探触子板に超音波探傷装置や目視装置等を取
付けることで、探傷精度や探傷能率の向上はもち
ろん、遠隔自動操作によつて被曝線量が無く、探
傷の安全性の向上を図ることができ、また、目視
装置で目視できるなど適用範囲の広いならい方法
である。更に、対象円筒の変更などにも容易に対
応でき、互換性も確保できる。
In addition, since the amount of movement of each axis is preset and controlled based on the dimensions, angles, shapes, etc. of the test part and manipulator, there is a risk that the probe plate, manipulator, etc. may come into contact with the test part and be damaged. The test area can be automatically aligned without any hassle. Therefore, by attaching ultrasonic flaw detection equipment, visual inspection equipment, etc. to the probe plate, it is possible to not only improve flaw detection accuracy and flaw detection efficiency, but also to improve the safety of flaw detection by eliminating radiation exposure through remote automatic operation. It is a tracing method that has a wide range of applications, as it can be used to visualize images using a visual inspection device. Furthermore, changes in the target cylinder can be easily accommodated, and compatibility can be ensured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のならい方法を適用するマニピ
ユレータを円筒形ドラムのノズル取付部内側の探
傷に用いる場合を示す断面図、第2図は本発明を
適用する円筒形ドラムの説明図、第3図はドラム
とノズルとの接続部の断面形状を示す説明図、第
4図は実施例における水平移動軸がとり得る範囲
の説明図であり、第5図は仮想する軸の説明図、
第6図及び第7図はドラムとノズルの接続部の断
面の説明図である。第8図は被検部がノズル曲面
からドラム胴部の楕円曲面上に移る様子を示す説
明図である。 図面中、1は水平移動軸、2は回転軸(スキヤ
ン軸)、3,4,5は屈曲軸、6は探触子板、7
はノズル取付部に設定された仮想軸(ステツプ
軸)、8はキヤリツジ、9は主柱、10はノズル
取付部の曲率中心である。
Fig. 1 is a sectional view showing a case where a manipulator to which the profiling method of the present invention is applied is used for flaw detection inside the nozzle attachment part of a cylindrical drum, Fig. 2 is an explanatory diagram of the cylindrical drum to which the present invention is applied, and Fig. 3 The figure is an explanatory diagram showing the cross-sectional shape of the connection part between the drum and the nozzle, FIG. 4 is an explanatory diagram of the possible range of the horizontal movement axis in the embodiment, and FIG. 5 is an explanatory diagram of the hypothetical axis,
FIG. 6 and FIG. 7 are explanatory diagrams of a cross section of the connecting portion between the drum and the nozzle. FIG. 8 is an explanatory diagram showing how the test portion moves from the nozzle curved surface to the elliptical curved surface of the drum body. In the drawing, 1 is a horizontal movement axis, 2 is a rotation axis (scan axis), 3, 4, and 5 are bending axes, 6 is a probe plate, and 7
is a virtual axis (step axis) set on the nozzle mounting part, 8 is a carriage, 9 is a main column, and 10 is the center of curvature of the nozzle mounting part.

Claims (1)

【特許請求の範囲】[Claims] 1 一の円筒とその側面に接続された他の円筒と
の取付部の内側の曲面部を被検部とし、前記他の
円筒の中心線上に当該中心線方向に移動可能に取
付けられた中心線上移動軸と、この中心線上移動
軸先端に取付けられ、中心線上移動軸の中心軸を
軸として回転する回転軸と、この回転軸に連続し
て取付けられた傾動可能な3本の屈曲軸とでなり
先端側の屈曲軸に検査具が取付けられるマニピユ
レータの前記検査具を前記被検部にならわせるに
際し、前記被検部の曲率中心に向けた前記マニピ
ユレータ先端の屈曲軸の軸心を仮想する軸として
当該仮想する軸の前記曲率中心を通りかつ前記他
の円筒の中心線に平行な軸に対する傾斜角と、前
記回転軸の回転角度とで前記他の4軸の移動量を
制御して前記被検部に対する前記検査具の位置及
び向きを適正に保つようにしたことを特徴とする
曲面のならい方法。
1 The curved surface part inside the attachment part of one cylinder and another cylinder connected to its side surface is the test part, and the test part is on the center line of the other cylinder which is attached movably in the direction of the center line. A moving shaft, a rotary shaft that is attached to the tip of this centerline moving shaft and rotates about the center axis of the centerline moving shaft, and three tiltable bending shafts that are successively attached to this rotating shaft. When aligning the test tool of a manipulator, in which the test tool is attached to the bending axis on the tip side, to the test area, imagine the axis of the bend axis of the tip of the manipulator pointing toward the center of curvature of the test part. The amount of movement of the other four axes is controlled by the inclination angle of the imaginary axis with respect to an axis passing through the center of curvature and parallel to the center line of the other cylinder, and the rotation angle of the rotation axis. A method for tracing a curved surface, characterized in that the position and orientation of the test tool relative to the test part are maintained appropriately.
JP15238879A 1979-11-27 1979-11-27 Profiling method of curved surface Granted JPS5676045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15238879A JPS5676045A (en) 1979-11-27 1979-11-27 Profiling method of curved surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15238879A JPS5676045A (en) 1979-11-27 1979-11-27 Profiling method of curved surface

Publications (2)

Publication Number Publication Date
JPS5676045A JPS5676045A (en) 1981-06-23
JPH021633B2 true JPH021633B2 (en) 1990-01-12

Family

ID=15539419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15238879A Granted JPS5676045A (en) 1979-11-27 1979-11-27 Profiling method of curved surface

Country Status (1)

Country Link
JP (1) JPS5676045A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526037A (en) * 1983-06-13 1985-07-02 Combustion Engineering, Inc. Nozzle inner radius inspection system

Also Published As

Publication number Publication date
JPS5676045A (en) 1981-06-23

Similar Documents

Publication Publication Date Title
US4368644A (en) Tool for inspecting defects in irregular weld bodies
US5362962A (en) Method and apparatus for measuring pipeline corrosion
JP6445274B2 (en) Equipment for non-destructive inspection of stringers
CN102077052B (en) Vision system for scan planning of ultrasonic inspection
US10684261B2 (en) Ultrasonic bar and tube end testing with linear axis robot
EP2691736B1 (en) Profiling tool for determining material thickness for inspection sites having complex topography
US7253908B2 (en) Non-destructive inspection using laser profiling and associated method
US20070140403A1 (en) Method for inspection and maintenance of an inside of a nuclear power reactor
JPS6057543B2 (en) Operation device for pipe bend inspection
US4526037A (en) Nozzle inner radius inspection system
EP0852721B1 (en) Process and device for the ultrasonic examination of disk elements of unknown contours shrunk onto shafts
US5036707A (en) Ultrasonic testing apparatus and method for rapidly inspecting a large number of gas cylinders of similar design for internal neck-shoulder defects
US20200393418A1 (en) Automated Ultrasonic Inspection of Elongated Composite Members Using Single-Pass Robotic System
JP2961145B2 (en) Three-dimensional displacement measuring method and three-dimensional displacement measuring device
JPH021633B2 (en)
WO2018121805A1 (en) Scanning device and method for measurement and analysis of circular holes in transparent liquids in ionizing radiation environment
KR20180088993A (en) Robot system for 3d scan traveling plant of tank
KR100220084B1 (en) Portable automatic supersonic probe using multi-axis portable scanner
CN209667368U (en) Unmanned plane for mechanical structured member detection
JP2000249783A (en) Position detection method of in-core pipe welding part and device thereof
CN112326799A (en) Method for applying phased array technology to pressure pipeline regular inspection and grading
CN205581059U (en) Probe voussoir fixture who is fit for pipeline ultrasonic non -destructive testing
JPH0155952B2 (en)
CN116908311A (en) Control method of flaw detector
JPH07167840A (en) Flaw detection method of inclination angle of axle