JPH02161941A - Artificial tooth root and production thereof - Google Patents

Artificial tooth root and production thereof

Info

Publication number
JPH02161941A
JPH02161941A JP88317788A JP31778888A JPH02161941A JP H02161941 A JPH02161941 A JP H02161941A JP 88317788 A JP88317788 A JP 88317788A JP 31778888 A JP31778888 A JP 31778888A JP H02161941 A JPH02161941 A JP H02161941A
Authority
JP
Japan
Prior art keywords
sol
tooth root
alumina
hap
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP88317788A
Other languages
Japanese (ja)
Inventor
Ryuichi Ozaki
隆一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP88317788A priority Critical patent/JPH02161941A/en
Publication of JPH02161941A publication Critical patent/JPH02161941A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide both characteristics of mechanical strength and affinity to the living body by using a material having excellent mechanical strength in the inner cap part to be mounted with an upper structure and using a material having the excellent affinity to the living body in the tooth root part. CONSTITUTION:Porous HAP is used for the tooth root part to be implanted into the living body. The good affinity to the alveolar bone is, therefore, obtd. and the secure bond by the preparation and infiltration of the neonatal bond into the pores is possible. Dense alumina is used in the inner cap part. The mechanical strength is, therefore, high and the easy bonding to the upper structure is executed. The production is executed by a method consisting in adding the distilled water of ethanol dilution and acetic acid to a soln. mixture composed of a soln. prepd. by dissolving calcium diethoide in 2-methoxyethanol and triethyl phosphite diluted with ethanol and subjecting the soln. mixture to hydrolysis to prepare a sol. Fine alumina powder and polystyrene of a foaming agent are added to this sol. The sol is gelatinized by pH adjustment, etc., in the stage when the soln. begins to separate by a sp. gr. difference and the alumina and polystyrene in the sol exhibits a suitable concn. distribution. The gel is dried to form a dry gel. The artificial tooth root is produced by sintering this gel.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多孔質HAPとアルミナからなる人工歯根と
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an artificial tooth root made of porous HAP and alumina, and a method for manufacturing the same.

[従来の技術] 歯が抜けたあとの歯槽骨内に、人工材を打ち込み、その
上部に歯の役目を持たせようとする治療法がある。この
人工材のことを人工歯根といい、金属、セラミックスそ
して高分子などの色々な材料で研究が進められている。
[Prior Art] There is a treatment method in which an artificial material is implanted into the alveolar bone after a tooth has fallen out, and the upper part of the material is made to function as a tooth. This artificial material is called an artificial tooth root, and research is progressing on various materials such as metals, ceramics, and polymers.

この人工歯根に要求される条件は、■天然歯より形状が
小さくても強度が高いこと、■骨内にしかりと長期間に
わたって固定できることの二つである。この条件を満た
すために、従来もっとも研究が進められていたのは、チ
タンを中心とする金属製人工歯根である。
The two conditions required for this artificial tooth root are: 1. It must be smaller than a natural tooth but have high strength; 2. It must be able to be firmly fixed in the bone for a long period of time. In order to satisfy this condition, the most research has been carried out in the past on artificial tooth roots made of metal, mainly titanium.

しかしながら、チタン製人工歯根を含め金属製人工歯根
には、耐食性の問題が必ずつきまとうため、現在では耐
食性の心配がなく、且つ強度的にも優れたセラミックス
製の人工歯根の研究が進められている。
However, artificial tooth roots made of metal, including artificial tooth roots made of titanium, always have the problem of corrosion resistance, so research is currently underway on artificial tooth roots made of ceramics, which do not have to worry about corrosion resistance and have excellent strength. .

[発明が解決しようとする課題] セラミックス製人工歯根としては、高強度のアルミナと
生体親和性のあるアパタイトの2種類の材料及び、多孔
質体の研究が進められている。
[Problems to be Solved by the Invention] Research is underway on two types of materials, high-strength alumina and biocompatible apatite, and porous materials for ceramic artificial tooth roots.

アルミナは力学的特性に優れ、且つ長期安定性も問題な
いため人工歯根としては有望な材料である。しかし、ア
ルミナは隣接する骨組織に害をあたえないものの、分子
レベルて骨と結合することができないため、周辺の歯槽
骨組織となじまないという問題点を有している。
Alumina has excellent mechanical properties and long-term stability, making it a promising material for artificial tooth roots. However, although alumina does not harm adjacent bone tissue, it has the problem that it does not blend in with the surrounding alveolar bone tissue because it cannot bind to bone at the molecular level.

アパタイトの場合、生体親和性に優れており、骨組織と
化学的に結合できる。このため、骨組織内にアパタイト
を埋めこんでから2ケ月も経過すると、両者の間に境界
線が明瞭でない部分が出現してくる。このように周辺の
歯槽骨組織とよくなじむ特性がある一方で、力学的特性
に問題がありアパタイトのみでは人工歯根として使用す
ることはできないという問題点を有している。
Apatite has excellent biocompatibility and can chemically bond with bone tissue. For this reason, two months after apatite is embedded in bone tissue, a portion where the boundary line between the two is not clear appears. Although apatite has the property of blending well with the surrounding alveolar bone tissue, it has problems with its mechanical properties and cannot be used alone as an artificial tooth root.

また、多孔質体の場合、気孔内に新生骨の増殖侵入が容
易に行われるため、長期にわたり歯槽骨との間に強固な
結合が保持される。しかし、多孔質セラミックスの機械
的強度は極めて低く、歯冠などの上部構造を取り付ける
ことは、不可能という問題点も有している。
In addition, in the case of a porous material, new bone can easily proliferate and invade into the pores, so that a strong bond with the alveolar bone is maintained for a long period of time. However, the mechanical strength of porous ceramics is extremely low, and there is also the problem that it is impossible to attach a superstructure such as a dental crown.

本発明は、このような問題点を解決するものであり、そ
の目的とするところは、上部構造を取りつける内冠部に
は機械的強度の優れた材料を使用し、歯根部には最も生
体親和性に優れた材料をそれぞれ使用することにより、
機械的強度と生体親和性の両方の特性を有する人工歯根
及びその製造方法を提供することにある。
The present invention aims to solve these problems, and its purpose is to use a material with excellent mechanical strength for the inner crown part to which the upper structure is attached, and to use the most biocompatible material for the root part of the tooth. By using materials with excellent properties,
An object of the present invention is to provide an artificial tooth root having both mechanical strength and biocompatibility, and a method for manufacturing the same.

[課題を解決するための手段] 本発明の人工歯根は、生体中に埋めこまれた歯根部は、
多孔質HAPからなり、生体から外に出ている内冠部は
、アルミナからなることを特徴とする。
[Means for Solving the Problems] The artificial tooth root of the present invention has the following characteristics:
The inner crown, which is made of porous HAP and is exposed outside the living body, is characterized by being made of alumina.

また、本発明の製造方法は、アルミナ及びHAPの何れ
か一方のゾル中に、残りの成分からなる微粉末と発泡剤
を添加し、このゾル、微粉末そして発泡剤の比重差によ
り、アルミナとHAPそして発泡剤の組成比が、連続的
に変化した段階でゲル化、発泡処理そして焼結すること
を特徴とする。
Furthermore, in the production method of the present invention, fine powder consisting of the remaining components and a foaming agent are added to the sol of either alumina or HAP, and the difference in specific gravity between the sol, fine powder, and foaming agent causes the alumina to It is characterized in that gelation, foaming treatment, and sintering are performed at stages in which the composition ratio of HAP and foaming agent is continuously changed.

[作用] 第3図に、本発明の人工歯根の外観図を示す。[Effect] FIG. 3 shows an external view of the artificial tooth root of the present invention.

生体中に埋めこまれた歯根部には、多孔質HAP使用し
ているため、歯槽骨とのなじみがあり、かつ新生骨の気
孔内への増殖侵入による強固な結合が可能になる。また
、内冠部には緻密なアルミナを使用しているため、機械
的強度が高く、上部構造との結合が容易に行われる。
Since porous HAP is used in the tooth root part embedded in the living body, it is compatible with the alveolar bone, and a strong bond is made possible by the growth and invasion of new bone into the pores. Furthermore, since dense alumina is used for the inner crown, it has high mechanical strength and can be easily connected to the upper structure.

本発明の製造方法は、ゾル中に残りの成分の微粉末と発
泡剤を混合し、その微粉末と発泡剤が一定の濃度分布を
示した段階で、ゲル化、発泡処理そして焼結することに
より、前記の人工歯根を作成することができる。
The manufacturing method of the present invention involves mixing the remaining component fine powder and a foaming agent in a sol, and at the stage when the fine powder and foaming agent exhibit a certain concentration distribution, gelling, foaming, and sintering. Accordingly, the artificial tooth root described above can be created.

[実施例] (実施例−1) カルシウムジェトキシドを2−メトキシエタノールに溶
解させた溶液に、エタノールで希釈した亜りん酸トリエ
チルをCa / Pの原子比が1.67となるように混
合し、この混合溶液にエタノールで希釈した蒸留水及び
酢酸を加えて加水分解を行い、ゾルを作成する。このゾ
ルに粒子径が0.05〜0.1(μm)のアルミナ微粉
末と、発泡剤としてポリスチレンを0.03 (重量%
)i加し所定の容器に入れて密閉状態のままゲル化を起
こさないように保管する。アルミナの添加量は、ゲル化
後の組成が、アルミナ/HAP=1/1となるように調
整した。
[Example] (Example-1) Triethyl phosphite diluted with ethanol was mixed into a solution of calcium jetoxide dissolved in 2-methoxyethanol so that the atomic ratio of Ca/P was 1.67. Distilled water diluted with ethanol and acetic acid are added to this mixed solution to perform hydrolysis to create a sol. This sol contains fine alumina powder with a particle size of 0.05 to 0.1 (μm) and 0.03 (wt%) polystyrene as a blowing agent.
) Add i and store in a designated container in a sealed state to prevent gelation. The amount of alumina added was adjusted so that the composition after gelation was alumina/HAP=1/1.

容器中のゾル、アルミナそしてポリスチレンはその比重
差により分離を始める。ゾル中のアルミナ及びポリスチ
レンが適当な濃度分布を示した段階で、p Hi1整及
び加熱などの手段によりゲル化を起こす。作成したウェ
ットゲルを容器から取りだし、約2週間乾燥してドライ
ゲルを作る。
The sol, alumina, and polystyrene in the container begin to separate due to the difference in specific gravity. When the alumina and polystyrene in the sol exhibit an appropriate concentration distribution, gelation is caused by adjusting the pH and heating. The prepared wet gel is taken out of the container and dried for about two weeks to form a dry gel.

次に、このドライゲルを焼結炉にいれて、真空中、20
(”C/時間)の昇温速度で300°Cまで加熱し同温
度で8時間保持して、ポリスチレンを完全に分解除去す
るとともに、脱吸着水処理を行う。その後、30(’C
/時間)の昇温速度で1200(’C)に加熱、同温度
で24時間保持して焼結を行う。
Next, this dry gel was placed in a sintering furnace and heated for 20 minutes in a vacuum.
It is heated to 300°C at a heating rate of ('C/hour) and held at the same temperature for 8 hours to completely decompose and remove polystyrene, and to perform desorption water treatment.
Sintering is carried out by heating to 1200 ('C) at a temperature increase rate of 24 hours) and holding at the same temperature for 24 hours.

焼結は窒素雰囲気中或は真空中で行うが、発泡剤が完全
に分解・除去されるまでの発泡・脱ガス工程は真空中で
行うことが望ましい。
Sintering is performed in a nitrogen atmosphere or in vacuum, but it is desirable to perform the foaming and degassing steps in vacuum until the foaming agent is completely decomposed and removed.

本実施例で作成した人工歯根の形状は、φ10Xt20
(mm)の円柱状である。この焼結体を厚さ方向に10
等分し、各サンプルについて組成分析と水銀圧入法によ
る気孔率測定を行い、得られた結果を第1図に示す。
The shape of the artificial tooth root created in this example was φ10Xt20.
(mm) cylindrical shape. This sintered body is 10 mm thick in the thickness direction.
The samples were divided into equal parts, and each sample was subjected to compositional analysis and porosity measurement using mercury intrusion method. The obtained results are shown in FIG.

比重の重いアルミナは、底面側に沈降し、アルミナとH
APの比率は連続的に変化している。ポリスチレンは比
重が軽いため、HAP側に多く含まれ、この結果、HA
P側の気孔率が高くなっている。
Alumina with heavy specific gravity settles to the bottom side, and alumina and H
The ratio of AP is changing continuously. Since polystyrene has a light specific gravity, it is contained in large amounts on the HAP side, and as a result, HA
The porosity on the P side is high.

通常、このように複数の組成からなるセラミックスを同
時に焼結する場合、収縮率や熱膨張係数などの違いによ
り、接合面に大きな応力が加わり破損することが多い。
Normally, when ceramics made of multiple compositions are sintered at the same time, large stresses are applied to the bonded surfaces due to differences in shrinkage rates, coefficients of thermal expansion, etc., often resulting in breakage.

しかし、本発明ではゾル−ゲル法を用いるため、ゾルの
段階で組成の傾斜化を容易に行うことが可能になる。こ
のため、焼結体中でアルミナとHAPの組成分布を連続
的に変化させることにより、いわゆる接合面を無くし応
力を緩和することができるため、2種類のセラミックス
の特性を併せ持った人工歯根の製造が可能になった。さ
らに、ポリスチレンはHAPゾル側に集中しているため
、生体親和性に優れた多孔質HAPができる。
However, since the present invention uses a sol-gel method, it becomes possible to easily gradient the composition at the sol stage. Therefore, by continuously changing the composition distribution of alumina and HAP in the sintered body, it is possible to eliminate so-called bonding surfaces and relieve stress, thereby producing artificial tooth roots that have the characteristics of two types of ceramics. is now possible. Furthermore, since polystyrene is concentrated on the HAP sol side, porous HAP with excellent biocompatibility can be produced.

また、ゾル−ゲル法は形状の自由度が大きく、ゲルを作
る容器の形状を選定すれば、焼結終了時で求める最終形
状に近い形にまで制御することができる。このため、二
次加工が不要となり、大幅な低コスト化が実現できる。
Furthermore, the sol-gel method has a large degree of freedom in shape, and by selecting the shape of the container in which the gel is made, it can be controlled to a shape close to the final shape desired at the end of sintering. This eliminates the need for secondary processing, making it possible to significantly reduce costs.

(実施例−2) アルミニウムイソプロポキシドとイソプロパツールの混
合液を酸性下で加水分解し、ゾルを作成する。このゾル
に0.05〜0.2(μm)の粒子径のHAP微粉末と
、発泡剤としてN、N”−ジニトロソペンタメチレンテ
トラミンを0.2 (ili量%)添加し、実施例−1
と同じ容°器に入れて、密閉状態のままゲル化を起こさ
ないように保管する。HAPの量は、ゲル化後の組成が
、アルミナ/HAP=674となるように調整した。
(Example 2) A mixed solution of aluminum isopropoxide and isopropanol is hydrolyzed under acidic conditions to create a sol. To this sol were added HAP fine powder with a particle size of 0.05 to 0.2 (μm) and 0.2 (ili amount %) of N,N''-dinitrosopentamethylenetetramine as a blowing agent. 1
Store in the same container and keep it tightly closed to prevent gelation. The amount of HAP was adjusted so that the composition after gelation was alumina/HAP=674.

容器中のゾル、HAPモしてN、N’−ジニトロソペン
タメチレンテトラミンはその比重差により分離を始める
。ゾル中のアルミナ及びポリスチレンが適当な濃度分布
を示した段階で、pH調整及び加熱などの手段によりゲ
ル化を起こす。作成したウェットゲルを容器から取りだ
し、約2週間乾燥してドライゲルを作る。
The sol, HAP, and N,N'-dinitrosopentamethylenetetramine in the container begin to separate due to the difference in their specific gravity. At the stage when alumina and polystyrene in the sol exhibit an appropriate concentration distribution, gelation is caused by means such as pH adjustment and heating. The prepared wet gel is taken out of the container and dried for about two weeks to form a dry gel.

次に、このドライゲルを焼結炉にいれて、真空中、20
(”C/時間)の昇温速度で300°Cまで加熱し同温
度で5時間保持し、さらに同じ昇温速度で600°Cに
加熱し同温度で5時間保持して、ポリスチレンを完全に
分解除去するとともに、脱吸着水処理を行う。その後、
30(”C/時間)の昇温速度で1200(”C)に加
熱、同温度で24時間保持して焼結を行う。
Next, this dry gel was placed in a sintering furnace and heated for 20 minutes in a vacuum.
Heating to 300°C at a heating rate of (C/hour) and holding at the same temperature for 5 hours, then heating to 600°C at the same heating rate and holding at the same temperature for 5 hours to completely remove polystyrene. Along with decomposition and removal, desorption water treatment is performed.After that,
Sintering is performed by heating to 1200 ("C) at a temperature increase rate of 30 ("C/hour) and holding at the same temperature for 24 hours.

得られた焼結体に対し、実施例−1と同様の方法で、組
成分析と気孔率の測定を行ない、その結果を第2図に示
す。比重の重いHAPの微粉末とN、N’−ジニトロソ
ペンタメチレンテトラミンは、下に沈降してゆき、アル
ミナとHAPの組成比は連続的に変化するとともに、気
孔もHAP側に集中している。このように、ゾルと微粉
末の組成を互いに交替しても、同様な人工歯根が作成で
きる。
The obtained sintered body was subjected to compositional analysis and porosity measurement in the same manner as in Example 1, and the results are shown in FIG. The HAP fine powder and N,N'-dinitrosopentamethylenetetramine, which have a heavy specific gravity, settle to the bottom, and the composition ratio of alumina and HAP changes continuously, and the pores are concentrated on the HAP side. . In this way, even if the compositions of the sol and the fine powder are alternated, a similar artificial tooth root can be created.

発泡剤は、アルミナ微粉末を添加する場合には、比重が
ゾルより軽いものを用い、HAP微粉末を添加する場合
には、ゾルより重いものを用いる。
When fine alumina powder is added to the foaming agent, a blowing agent whose specific gravity is lighter than that of the sol is used, and when fine HAP powder is added, a blowing agent whose specific gravity is heavier than that of the sol is used.

使用する発泡剤は、N、N’−ジニトロソペンタメチレ
ンテトラミン等のN−ニトロソ系、アゾジカルボンアミ
ド等のアゾ系、ジフェニルスルホン−3,3’ジスルホ
ヒドラジン等のヒドラジン系等で代表される有機発泡剤
及びポリスチレン、ポリエチレン等の有機樹脂そしてカ
ーボン、CaCO3等の無機材料の何れでもよい。
The blowing agents used are typified by N-nitroso-based agents such as N,N'-dinitrosopentamethylenetetramine, azo-based agents such as azodicarbonamide, and hydrazine-based agents such as diphenylsulfone-3,3'disulfohydrazine. Any of organic foaming agents, organic resins such as polystyrene and polyethylene, and inorganic materials such as carbon and CaCO3 may be used.

[発明の効果] 以上述べたように本発明によれば、生体から出ている内
冠部には、機械的強度の優れたアルミナを配置し、生体
内の歯根部には、生体親和性に優れた多孔質HAPを配
置し、且つそれぞれの組成比率が連続的に変化している
ため、一つの人工歯根の中に、機械的強度と生体親和性
の2つの特性を有するという効果を有する。また、アル
ミナとHAPの何れか一方のゾルに、残りの組成の微粉
末と発泡剤を添加し、これらの微粉末が比重差により一
定の濃度分布を持った後、ゲル化、焼結するため、前述
の人工歯根を容易に作成することができるという効果を
有する。
[Effects of the Invention] As described above, according to the present invention, alumina with excellent mechanical strength is placed in the internal crown part protruding from the living body, and biocompatible alumina is placed in the tooth root part inside the living body. Because excellent porous HAP is arranged and the composition ratio of each is continuously changed, one artificial tooth root has the effect of having two properties of mechanical strength and biocompatibility. In addition, fine powder of the remaining composition and a foaming agent are added to the sol of either alumina or HAP, and after these fine powders have a certain concentration distribution due to the difference in specific gravity, they are gelled and sintered. This has the effect that the artificial tooth root described above can be easily created.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例−1において作成した、歯根内部の組
成分布と気孔率分布を示す図。 第2図は、実施例−2において作成した、歯根内部の組
成分布と気孔率分布を示す図。 第3図は、本発明の人工歯根の外観図。 人工 人工 第1図〜第2図の横軸の数字は、焼結体を10等分した
ときの各サンプルの番号を示す。小さい数字は、ゲル化
に使用した容器の底面側を示す。 (モ、ルヅ・) (にノ ボン7” W看う fJ2図 ブンアノン会う 第3図
FIG. 1 is a diagram showing the composition distribution and porosity distribution inside the tooth root, created in Example-1. FIG. 2 is a diagram showing the composition distribution and porosity distribution inside the tooth root, created in Example-2. FIG. 3 is an external view of the artificial tooth root of the present invention. The numbers on the horizontal axis in Figures 1 and 2 indicate the number of each sample when the sintered body is divided into 10 equal parts. Smaller numbers indicate the bottom side of the container used for gelation. (Mo, Ruzu・) (Ninobon 7” W look at fJ2 figure Bun Anon meet figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)アルミナとハイドロキシアパタイト(以下HAP
と略す)を主成分とする人工歯根において、生体中に埋
めこまれた歯根部は、多孔質HAPからなり、生体から
外に出ている内冠部は、アルミナからなることを特徴と
する人工歯根。
(1) Alumina and hydroxyapatite (hereinafter referred to as HAP)
An artificial tooth root whose main component is a tooth root embedded in a living body is made of porous HAP, and the inner crown part that is exposed outside the living body is made of alumina. tooth root.
(2)アルミナ及びHAPの何れか一方のゾル中に、残
りの成分からなる微粉末と発泡剤を添加し、このゾル、
微粉末そして発泡剤の比重差により、アルミナとHAP
そして発泡剤の組成比が、連続的に変化した段階でゲル
化、発泡処理そして焼結することを特徴とする請求項1
記載の人工歯根の製造方法。
(2) Add fine powder consisting of the remaining ingredients and a foaming agent to the sol of either alumina or HAP, and this sol,
Due to the difference in specific gravity between fine powder and blowing agent, alumina and HAP
Claim 1 characterized in that gelation, foaming treatment and sintering are performed at the stage where the composition ratio of the foaming agent is continuously changed.
The method for manufacturing the artificial tooth root described.
JP88317788A 1988-12-16 1988-12-16 Artificial tooth root and production thereof Pending JPH02161941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP88317788A JPH02161941A (en) 1988-12-16 1988-12-16 Artificial tooth root and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP88317788A JPH02161941A (en) 1988-12-16 1988-12-16 Artificial tooth root and production thereof

Publications (1)

Publication Number Publication Date
JPH02161941A true JPH02161941A (en) 1990-06-21

Family

ID=18092049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP88317788A Pending JPH02161941A (en) 1988-12-16 1988-12-16 Artificial tooth root and production thereof

Country Status (1)

Country Link
JP (1) JPH02161941A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5676745A (en) * 1995-06-07 1997-10-14 The United States Of America, As Represented By The Secretary Of Commerce Pre-ceramic polymers in fabrication of ceramic composites

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5676745A (en) * 1995-06-07 1997-10-14 The United States Of America, As Represented By The Secretary Of Commerce Pre-ceramic polymers in fabrication of ceramic composites

Similar Documents

Publication Publication Date Title
EP1711122B1 (en) INORGANIC-INORGANIC COMPOSITE MATERIAL, METHOD FOR PRODUCING THE SAME and its use
JP5371772B2 (en) Metal oxide scaffolding
US20050031704A1 (en) Tricalcium phosphates, their composites, implants incorporating them, and method for their production
Bapat et al. Review on synthesis, properties and multifarious therapeutic applications of nanostructured zirconia in dentistry
JPS5941946B2 (en) porcelain
Gaddam et al. Robocasting and surface functionalization with highly bioactive glass of ZrO2 scaffolds for load bearing applications
WO2013004361A2 (en) Composite ceramic for dental implants
Lim et al. Effectiveness of biphasic calcium phosphate block bone substitutes processed using a modified extrusion method in rabbit calvarial defects
JPH02182261A (en) Preparation of ceramic member for living body
JPH02161941A (en) Artificial tooth root and production thereof
JPH0214866A (en) Solution of calcium phosphate compound ceramic precursor and production thereof
Zhang et al. Preparation and characterization of (HAp/SiO2)/Ti biocomposites
JPH02184580A (en) Cellular artificial dental root
JPS62266065A (en) Living body compatible laminar substance containing calcium phosphate and its production
KR100559171B1 (en) Mixture for Producing a Bioactive Bone Cement and Method for Producing a Bioactive Bone Cement Using the Same
JP3769427B2 (en) Ceramic biomaterial
JP2576404B2 (en) Bone defect, bone void and bone resorbing part manufacturing method
Sabree et al. Fabrication of Porous Biologic Hydroxyapatite Scaffold Reinforced with Polymer Coating for Bone Tissue Engineering Candidate
JPH02159270A (en) Artificial dental root and preparation thereof
JPH02161940A (en) Production of artificial tooth root
JPH02159271A (en) Artificial dental root and preparation thereof
CN115974543B (en) Bionic acidic amorphous calcium iron phosphate nanoparticle as well as preparation method and application thereof
JPS61242978A (en) Vital body substitute ceramic material
JPH02156942A (en) Manufacture of artificial dental rod
Goia et al. Titanium and Ti-13Nb-13Zr alloy porous implants obtained by space-holder technique with addition of albumin