JPH02156942A - Manufacture of artificial dental rod - Google Patents

Manufacture of artificial dental rod

Info

Publication number
JPH02156942A
JPH02156942A JP63310925A JP31092588A JPH02156942A JP H02156942 A JPH02156942 A JP H02156942A JP 63310925 A JP63310925 A JP 63310925A JP 31092588 A JP31092588 A JP 31092588A JP H02156942 A JPH02156942 A JP H02156942A
Authority
JP
Japan
Prior art keywords
sol
foaming agent
artificial dental
specific gravity
artificial tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63310925A
Other languages
Japanese (ja)
Inventor
Ryuichi Ozaki
隆一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63310925A priority Critical patent/JPH02156942A/en
Publication of JPH02156942A publication Critical patent/JPH02156942A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dental Prosthetics (AREA)

Abstract

PURPOSE:To obtain an artificial dental rod which possesses the superior erosionproofness and strength by pouring a sol containing aluminium alcoxide as main constituent into a mold having a prescribed shape and solidifying and drying the gel at the stage where the foaming agent concentration in the sol generates a certain distribution and by heating the dry gel over the decomposition temperature of the foaming agent and then carrying out sintering. CONSTITUTION:Into a sol containing aluminium alcoxide as main constituent, a foaming agent having a specific gravity difference to the specific gravity of the sol is added and dispersed, and then said sol is poured into a mold having a prescribed shape, and solidification and drying are performed at the stage in which the foaming agent concentration in the sol is inclined by the specific gravity difference and a certain distribution is generated, and a dry gel is formed. Said dry gel is heated over the decomposition temperature of the foaming agent, and after the foaming agent is decomposed and removed, sintering is carried out. Therefore, the alumina sintered body for artificial dental rod which possesses porosity and fineness can be obtained. Therefore, the adaptability to living body of the artificial dental rod made of alumina can be improved, with the superior dynamic characteristic. Further, since the vacant efficiency distribution of the artificial dental rod can be determined arbitrarily by changing the production conditions, the manufacture of the artificial dental rod which possesses the vacant efficiency proper for the individual is permitted.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、歯科治療に用いられる多孔質アルミナ製人工
歯根の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a porous alumina artificial tooth root used in dental treatment.

[従来の技術] 歯が抜けたあとの歯槽骨内に、人工材を打ち込み、その
上部に歯の役目を持たせようとする治療法がある。この
人工材のことを人工歯根といい、金属、セラミックスそ
して高分子などの色々な材料で研究が進められている。
[Prior Art] There is a treatment method in which an artificial material is implanted into the alveolar bone after a tooth has fallen out, and the upper part of the material is made to function as a tooth. This artificial material is called an artificial tooth root, and research is progressing on various materials such as metals, ceramics, and polymers.

この人工歯根に要求される条件は、■天然歯より形状が
小さくても強度が高いこと、■骨内にしっかりと長期間
にわたって固定できることの二つである。この条件を満
たすために、従来もっとも研究が進められていたのは、
チタンを中心とする金属製人工歯根である。
Two conditions are required for this artificial tooth root: 1) It must be smaller in shape than a natural tooth but have higher strength, and 2) It must be able to be firmly fixed in the bone for a long period of time. In order to satisfy this condition, the most research has been carried out in the past.
This is a metal artificial tooth root made mainly of titanium.

しかしながら、チタン製人工歯根、を含め金属製人工歯
根には、耐食性の問題が必ずつきまとうため、現在では
耐食性の心配がなく、且つ強度的にも優れたセラミック
ス製の人工歯根の研究が進められている。
However, artificial tooth roots made of metal, including artificial tooth roots made of titanium, always have the problem of corrosion resistance, so research is currently underway on artificial tooth roots made of ceramics, which do not have to worry about corrosion resistance and have excellent strength. There is.

[発明が解決しようとする課題] セラミックス製人工歯根としては、生体適合性のあるア
パタイトと高強度のアルミナの2種類で研究が進められ
ている。
[Problems to be Solved by the Invention] Research is underway on two types of ceramic artificial tooth roots: biocompatible apatite and high-strength alumina.

アパタイトの場合、生体適合成に優れており、骨組織と
化学的に結合できる。このため、骨組織内にアパタイト
を埋めこんでから2ケ月も経過すると、両者の間に境界
線が明瞭でない部分が出現してくる。このように周辺の
歯槽骨組織とよくなじむ特性がある一方で、力学的特性
に問題がありアパタイトのみでは人工歯根として使用す
ることはできない。このアパタイトの欠点を補うために
、人工歯根の芯部を金属性として、外周部をアパタイト
とする試みがなされているが、製造工程が複雑になりコ
ストが高くなるという問題点を有している。
Apatite has excellent biocompatibility and can be chemically bonded to bone tissue. For this reason, two months after apatite is embedded in bone tissue, a portion where the boundary line between the two is not clear appears. Although apatite has the property of blending well with the surrounding alveolar bone tissue, it has problems with its mechanical properties and cannot be used alone as an artificial tooth root. In order to compensate for this drawback of apatite, attempts have been made to make the core of the artificial tooth root metallic and the outer periphery made of apatite, but this has the problem of complicating the manufacturing process and increasing costs. .

アルミナは力学的特性に優れ、且つ長期安定性も問題な
いため人工歯根としては有望な材料である。しかし、ア
ルミナは隣接する骨組織に害をあたえない°ものの、分
子レベルで骨と結合することができないため、周辺の歯
槽骨組織となじまないという問題点を有している。この
ため、アルミナ製人工歯根の骨組織との接触部分を多孔
質にすることにより、生体の組織がこの多孔質の中に侵
入し、生体と人工歯根を強固に結びつけようとする方法
が考えられている。しかし、このような緻密性と多孔性
を同時に有する多孔質アルミナの製造は、通常の焼結法
ではできないという問題点も有している。
Alumina has excellent mechanical properties and long-term stability, making it a promising material for artificial tooth roots. However, although alumina does not harm adjacent bone tissue, it has the problem that it does not blend in with the surrounding alveolar bone tissue because it cannot bind to bone at the molecular level. For this reason, a method has been considered in which the contact area of the alumina artificial tooth root with the bone tissue is made porous so that the living tissue can penetrate into this porosity and firmly connect the living body and the artificial tooth root. ing. However, there is also a problem in that porous alumina having both density and porosity cannot be produced using a normal sintering method.

本発明はこのような問題点を解決するものであり、その
目的とするところは、力学的特性と生体適合成の両方の
特性を有するため、生体に埋めこまれ骨組織と接触する
部分では多孔質、外に出ている部分は緻密さ及び高強度
を有しているアルミナ製人工歯根の製造方法を提供する
ことにある。
The present invention is intended to solve these problems, and its purpose is to have both mechanical properties and biocompatible properties, so that the part that is implanted in a living body and comes into contact with bone tissue is porous. The purpose of the present invention is to provide a method for manufacturing an artificial tooth root made of alumina, the exposed part of which has high density and high strength.

[課題を解決するための手段] 本発明の人工歯根の製造方法は、アルミニウムアルコキ
シドを主成分とするゾル−ゲル法において、 a)作成したゾル中に、該ゾルと比重差のある発泡剤を
添加し分散させる工程と、 b)前記ゾルを所定の形状の型に注入し、比重差により
ゾル中の発泡剤濃度が傾斜、一定の分布を持った段階で
固化・乾燥してドライゲルを作成する工程と、 C)前記ドライゲルを発泡剤の分解温度以上に加熱して
、含有している発泡剤を分解除去したのち焼結を行う工
程とからなることを特徴とする。
[Means for Solving the Problems] The method for producing an artificial tooth root of the present invention uses a sol-gel method containing aluminum alkoxide as a main component, and includes the following steps: a) A blowing agent having a specific gravity different from that of the sol is added to the prepared sol. Adding and dispersing the sol, and b) injecting the sol into a mold with a predetermined shape, and solidifying and drying it to create a dry gel when the concentration of the blowing agent in the sol becomes gradient and has a certain distribution due to the difference in specific gravity. and C) heating the dry gel to a temperature higher than the decomposition temperature of the blowing agent to decompose and remove the blowing agent contained therein, followed by sintering.

[作用] 本発明によれば、人工歯根の材料となる変効率に傾斜を
持つ多孔質アルミナは、ゾル中に比重の異なる発泡剤を
添加・分散させた後、その比重差によりゾル中の発泡剤
の濃度が傾斜した段階で、固化・乾燥、発泡処理そして
焼結を行うことにより得られる。
[Function] According to the present invention, porous alumina, which is a material for artificial tooth roots and has a gradient in conversion rate, is made by adding and dispersing foaming agents with different specific gravity into the sol, and then foaming in the sol due to the difference in specific gravity. It can be obtained by solidifying, drying, foaming, and sintering at the stage where the concentration of the agent has become gradient.

[実施例] (実施例−1) 第1図に本発明の製造方法の工程図、第3図に本発明の
製造方法により作成された人工歯根の外観図を示す。
[Example] (Example-1) Fig. 1 shows a process diagram of the manufacturing method of the present invention, and Fig. 3 shows an external view of an artificial tooth root created by the manufacturing method of the present invention.

アルミニウムイソプロポキシドを酸性下で加水分解し、
これに平均粒子径0.05〜0.1(μm)のA l 
203微粒子を添加、さらに発泡材料としてアゾジカル
ボンアミドを0.05(重量%)添加した後、アンモニ
ア水を加えpHを3.5に合わせゾルを調整する。この
ゾルをポリプロピレン製容器に入れて、密閉状態のまま
ゲル化を起こさないように保管する。アゾジカルボンア
ミドの比重はゾルの比重より小さいため、ゾル中のアゾ
ジカルボンアミドの濃度は容器の上部で高く下部で低く
くなり一定の分布を生じる、この段階で該ゾルにさらに
アンモニア水を添加、pH値を4゜5〜4.7まで上げ
る。このpH値の変化により、ゾルの脱水縮合−反応が
促進されウェットゲルが作られるその後、密閉容器から
ウェットゲルを取り出し、2週間乾燥させドライゲルを
作成する。
Hydrolyzing aluminum isopropoxide under acidic conditions,
To this, Al with an average particle diameter of 0.05 to 0.1 (μm)
After adding 203 fine particles and further adding 0.05 (wt%) of azodicarbonamide as a foaming material, ammonia water was added to adjust the pH to 3.5 to prepare a sol. This sol is placed in a polypropylene container and stored in a sealed state to prevent gelation. Since the specific gravity of azodicarbonamide is smaller than the specific gravity of the sol, the concentration of azodicarbonamide in the sol is higher in the upper part of the container and lower in the lower part, resulting in a constant distribution.At this stage, aqueous ammonia is further added to the sol, Raise the pH value to 4°5-4.7. This change in pH value promotes the dehydration condensation reaction of the sol to produce a wet gel. Thereafter, the wet gel is taken out from the sealed container and dried for two weeks to produce a dry gel.

このドライゲルを焼結炉にいれて、真空中、20(”C
/時間)の昇温速度で200°Cまで加熱し同温度で5
時間保持し、さらに同じ昇温速度で300″Cに加熱し
同温度で5時間保持して、添加したアゾジカルボンアミ
ドを完全に分解するとももに脱吸着水処理を行なう。前
記ドライゲルをさらに、窒素雰囲気下、30(’C/時
間)の昇温速度で1280°Cに加熱し、同温度で24
時間保持して焼結を行う。
This dry gel was placed in a sintering furnace and heated at 20 ("C") in vacuum.
/ hour) to 200°C, and at the same temperature
The dry gel is further heated to 300''C at the same temperature increase rate and held at the same temperature for 5 hours to completely decompose the added azodicarbonamide and perform a desorption water treatment. Heated to 1280 °C at a heating rate of 30 ('C/hour) under nitrogen atmosphere, and heated to 24 °C at the same temperature.
Sintering is performed by holding for a certain period of time.

得られた多孔質アルミナの焼結体は、それぞれの用途に
応じて必要があれば、最終的に人工歯根の形状に加工さ
れる。
The obtained porous alumina sintered body is finally processed into the shape of an artificial tooth root, if necessary according to each application.

通常の焼結法で得られる多孔質アルミナは、般に機械的
強度が低いが、本発明で作成された多孔質アルミナは、
完全に焼結されており優れた機械的強度を示す。
Porous alumina obtained by ordinary sintering methods generally has low mechanical strength, but porous alumina created by the present invention has
Fully sintered and exhibits excellent mechanical strength.

本実施例においては、φ15Xt20(mm)の円柱状
の多孔質アルミナ焼結体を作成し、その焼結体を厚さ方
向に10等分し、各位置の変効率を測定、焼結体の厚さ
方向に関する変効率の変化を測定した。その結果を第2
図に示す。
In this example, a cylindrical porous alumina sintered body of φ15×t20 (mm) was created, the sintered body was divided into 10 equal parts in the thickness direction, and the conversion efficiency at each position was measured. Changes in conversion efficiency in the thickness direction were measured. The result is the second
As shown in the figure.

第2図より焼結体の変効率はほぼ連続的に変化しており
、変効率の高い部分を歯槽骨組織と接触する臼歯部分に
、変効率の低い部分を外に出ている歯冠部分にそれぞれ
使い分けることができる。
As shown in Figure 2, the conversion rate of the sintered body changes almost continuously, with the high conversion rate part being the part of the molar that contacts the alveolar bone tissue, and the low conversion rate part being the crown part of the tooth that is exposed to the outside. Each can be used separately.

この焼結体の形状は、ウェットゲルを作るときに使用さ
れるポリプロピレン製容器の形状に大きく変化するため
、最終形状に近い形状の焼結体を作ることもできる。
Since the shape of this sintered body changes greatly depending on the shape of the polypropylene container used when making the wet gel, it is also possible to create a sintered body with a shape close to the final shape.

焼結は窒素雰囲気中或は真空中で行うが、発泡剤が完全
に分解・除去されるまでの発泡・脱ガス工程は真空中で
行うことが望ましい。
Sintering is performed in a nitrogen atmosphere or in vacuum, but it is desirable to perform the foaming and degassing steps in vacuum until the foaming agent is completely decomposed and removed.

使用する発泡剤は、アゾジカルボンアミド等のアゾ系、
ジフェニルスルホン−3,3′ジスルホヒドラジン等の
ヒドラジン系、N、N’−ジニトロソペンタメチレンテ
トラミン等のN−ニトロソ系等で代表される有機発泡剤
及びポリスチレンポリエチレン等の有機樹脂そしてカー
ボン、CaCo3等の無機材料の何れでもよい。
The blowing agents used are azo type such as azodicarbonamide,
Organic blowing agents represented by hydrazine type such as diphenylsulfone-3,3'disulfohydrazine, N-nitroso type such as N,N'-dinitrosopentamethylenetetramine, organic resin such as polystyrene polyethylene, and carbon, CaCo3 Any inorganic material may be used.

(実施例−2) 実施例−1において示した人工歯根の製造条件の中で、
発泡剤量と焼結温度を変化させ、色々な変効率分布を持
つ人工歯根用多孔質アルミナを作成した。本実施例で使
用したアゾジカルボンアミドの添加量と焼結温度を表−
1に示す。
(Example-2) Among the manufacturing conditions of the artificial tooth root shown in Example-1,
By varying the amount of foaming agent and sintering temperature, we created porous alumina for artificial tooth roots with various conversion efficiency distributions. The table shows the amount of azodicarbonamide added and the sintering temperature used in this example.
Shown in 1.

得られた多孔質アルミナの焼結体を、実施例−1と同様
に厚さ方向に10等分し、各々の空孔率を測定する。各
セラミックスについて、底辺がらの距離と変効率の関係
を第2図に示す。
The obtained porous alumina sintered body was divided into 10 equal parts in the thickness direction in the same manner as in Example-1, and the porosity of each part was measured. Figure 2 shows the relationship between the distance from the base and the conversion rate for each ceramic.

表−1 製造条件を変化させることで、空孔率の分布を変化させ
ることができる。また同様に人工歯根中の空孔径の制御
も可能であり、実験では数十(μm)〜数百(μm)の
範囲の空孔が得られた。
Table 1 By changing the manufacturing conditions, the porosity distribution can be changed. Similarly, it is also possible to control the pore size in the artificial tooth root, and in experiments, pores ranging from several tens (μm) to several hundred (μm) were obtained.

[発明の効果] 以上述べたように本発明によれば、ゾルと発泡剤の比重
差を利用し、ゾル中の発泡剤濃度に分布を紳たせた状態
でゲル化させ、その後発泡・焼結を行うことにより、多
孔性と緻密さという2つの相反する特性を有する人工歯
根用アルミナ焼結体を得ることができる。このため、力
学的特性に優れたアルミナ製人工歯根の生体適合成を改
善することができるという効果を有する。
[Effects of the Invention] As described above, according to the present invention, the difference in specific gravity between the sol and the foaming agent is used to gel the sol with a well-distributed concentration of the foaming agent, and then foaming and sintering are performed. By doing so, it is possible to obtain an alumina sintered body for artificial tooth roots that has two contradictory properties: porosity and density. Therefore, it is possible to improve the biocompatibility of an alumina artificial tooth root with excellent mechanical properties.

また、製造条件を変えることにより、人工歯根の変効率
分布を任意に決定することができるため、個人に適した
変効率分布を持った人工歯根の製造方法が可能になると
いう効果を有する。
Furthermore, by changing the manufacturing conditions, it is possible to arbitrarily determine the transformation rate distribution of the artificial tooth root, which has the effect of making it possible to manufacture an artificial tooth root with a transformation rate distribution suitable for each individual.

さらに本発明では、ゾル−ゲル法によるアルミナの製造
方法の特徴を活がして、人工歯根の最終形状に近い複雑
な形状をした焼結体の製造が容易に行われるという効果
を有する。
Furthermore, the present invention has the advantage that by taking advantage of the features of the sol-gel method for producing alumina, a sintered body having a complex shape close to the final shape of an artificial tooth root can be easily produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の人工歯根の製造方法を示す工程図。 第2図は、本発明の製造方法で作成した人工歯根用多孔
貿アルミナ焼結体の空効率分布を示す図。 第3図は、製造条件を代えて作成した人工歯根用多孔質
アルミナ焼結体の空効率分布を示す図。 第4図(a) (b)は本発明の製造方法で作成した人
工歯根を示す図。 (a)は加工後の人工歯根を歯槽骨内に入れたときの縦
断面図を示し、 (b)は空効率分布を測定するために作成した円柱状の
人工歯根の形状を表す。図中の1〜10の番号は、試料
を厚さ方向に10等分したときの各試料の番号である。 101・・・・人工歯根 102・・・・空孔 103・・・・歯肉 104・・・・歯槽骨 以上 出願人セイコーエプソン株式会社 代理人弁理土鈴木喜三部(他1名) 第3図
FIG. 1 is a process diagram showing the method for manufacturing an artificial tooth root of the present invention. FIG. 2 is a diagram showing the air efficiency distribution of a porous alumina sintered body for artificial tooth roots produced by the manufacturing method of the present invention. FIG. 3 is a diagram showing the air efficiency distribution of porous alumina sintered bodies for artificial tooth roots produced under different manufacturing conditions. FIGS. 4(a) and 4(b) are diagrams showing an artificial tooth root produced by the manufacturing method of the present invention. (a) shows a longitudinal cross-sectional view of the processed artificial tooth root inserted into the alveolar bone, and (b) shows the shape of the cylindrical artificial tooth root prepared to measure the air efficiency distribution. The numbers 1 to 10 in the figure are the numbers of each sample when the sample is divided into 10 equal parts in the thickness direction. 101...Artificial tooth root 102...Vacancy 103...Gingiva 104...Alveolar bone and above Applicant: Seiko Epson Co., Ltd. Attorney Kizobe Tsuchi Suzuki (and 1 other person) Figure 3

Claims (1)

【特許請求の範囲】 アルミニウムアルコキシドを主成分とするゾル−ゲル法
において、 a)作成したゾル中に、該ゾルと比重差のある発泡剤を
添加し分散させる工程と、 b)前記ゾルを所定の形状の型に注入し、比重差により
ゾル中の発泡剤濃度が傾斜、一定の分布を持った段階で
固化・乾燥してドライゲルを作成する工程と、 c)前記ドライゲルを発泡剤の分解温度以上に加熱して
、含有している発泡剤を分解除去したのち焼結を行う工
程とからなることを特徴とする人工歯根の製造方法。
[Claims] A sol-gel method containing aluminum alkoxide as a main component includes: a) adding and dispersing a blowing agent having a specific gravity different from that of the sol into the prepared sol; and b) adding the sol to a predetermined value. and c) forming a dry gel by injecting the foaming agent into a mold with the shape of the foaming agent, and solidifying and drying the foaming agent at a stage where the concentration of the foaming agent in the sol has a gradient and a certain distribution due to the difference in specific gravity; A method for producing an artificial tooth root, comprising the steps of heating to the above temperature to decompose and remove the foaming agent contained therein, and then sintering.
JP63310925A 1988-12-08 1988-12-08 Manufacture of artificial dental rod Pending JPH02156942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63310925A JPH02156942A (en) 1988-12-08 1988-12-08 Manufacture of artificial dental rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63310925A JPH02156942A (en) 1988-12-08 1988-12-08 Manufacture of artificial dental rod

Publications (1)

Publication Number Publication Date
JPH02156942A true JPH02156942A (en) 1990-06-15

Family

ID=18011040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63310925A Pending JPH02156942A (en) 1988-12-08 1988-12-08 Manufacture of artificial dental rod

Country Status (1)

Country Link
JP (1) JPH02156942A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0676383A2 (en) * 1994-04-06 1995-10-11 Kodak-Pathe Process for preparing a porous or pseudoporous anisotropic material, with a ceramic polymer lattice
FR2718434A1 (en) * 1994-04-06 1995-10-13 Kodak Pathe Pseudo-porous anisotropic materials having ceramic polymer lattices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0676383A2 (en) * 1994-04-06 1995-10-11 Kodak-Pathe Process for preparing a porous or pseudoporous anisotropic material, with a ceramic polymer lattice
FR2718432A1 (en) * 1994-04-06 1995-10-13 Kodak Pathe Process for the preparation of a porous or pseudoporous anisotropic material with a ceramic polymer matrix
FR2718434A1 (en) * 1994-04-06 1995-10-13 Kodak Pathe Pseudo-porous anisotropic materials having ceramic polymer lattices
EP0676383A3 (en) * 1994-04-06 1997-04-23 Kodak Pathe Process for preparing a porous or pseudoporous anisotropic material, with a ceramic polymer lattice.

Similar Documents

Publication Publication Date Title
JP4070951B2 (en) Method for producing porous calcium phosphate ceramic sintered body
US5549123A (en) Process for producing biocompatible implant material by firing a mixture of a granulated powder and a combustible substance
US4969913A (en) Ceramics composites
JP4929286B2 (en) Composite bone
JP2003500112A (en) Anatomically accurate polymer-reinforced bioactive prosthesis
JP4540969B2 (en) Calcium phosphate ceramic porous body and method for producing the same
JP2010513330A (en) Dental implant and manufacturing method thereof
CN111440961A (en) Active element doped porous titanium material and preparation method and application thereof
US20170183270A1 (en) Method for producing a shaped body and molding
US4187608A (en) Implantable teeth and method of making
JPH02156942A (en) Manufacture of artificial dental rod
JP4699902B2 (en) Calcium phosphate ceramic porous body and method for producing the same
JPH02182261A (en) Preparation of ceramic member for living body
CN102796908B (en) Preparation method of medical porous titanium implant material
JPH02184580A (en) Cellular artificial dental root
JP4443077B2 (en) Method for producing porous calcium phosphate ceramic sintered body and porous calcium phosphate ceramic sintered body
CN110408810B (en) Method for preparing porous titanium by calcium thermal reduction of porous TiO
ES2776887T3 (en) Method of producing a metal implant
JPS6067601A (en) Preparation of sintered body
CN113979729A (en) Lithium-silicon compound enhanced bioactive ceramic material and preparation method thereof
JPH02159271A (en) Artificial dental root and preparation thereof
CN102475902B (en) Preparation method of medical porous metal implant material
JPH02161941A (en) Artificial tooth root and production thereof
CN101407869B (en) Process for preparing high porosity metal and composite material
JPH0193473A (en) Production of formed ceramic article having honeycomb layer on surface