JPH0216170B2 - - Google Patents

Info

Publication number
JPH0216170B2
JPH0216170B2 JP57038203A JP3820382A JPH0216170B2 JP H0216170 B2 JPH0216170 B2 JP H0216170B2 JP 57038203 A JP57038203 A JP 57038203A JP 3820382 A JP3820382 A JP 3820382A JP H0216170 B2 JPH0216170 B2 JP H0216170B2
Authority
JP
Japan
Prior art keywords
mold
tube
copper
tube piece
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57038203A
Other languages
Japanese (ja)
Other versions
JPS57159240A (en
Inventor
Guraafueman Horusuto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAABERU UNTO METARUERUKE GUUTEHOFUNUNKUSUHYUUTE AG
Original Assignee
KAABERU UNTO METARUERUKE GUUTEHOFUNUNKUSUHYUUTE AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAABERU UNTO METARUERUKE GUUTEHOFUNUNKUSUHYUUTE AG filed Critical KAABERU UNTO METARUERUKE GUUTEHOFUNUNKUSUHYUUTE AG
Publication of JPS57159240A publication Critical patent/JPS57159240A/en
Publication of JPH0216170B2 publication Critical patent/JPH0216170B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/24Making specific metal objects by operations not covered by a single other subclass or a group in this subclass dies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Metal Extraction Processes (AREA)

Description

【発明の詳細な説明】 本発明は、中空室を形成する鋳型壁が火薬によ
り型の幾何学的寸法にもたらされ、銅合金からな
る管の形をし、直線状又は湾曲状の連続鋳造鋳型
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides that the mold wall forming the hollow chamber is brought to the geometrical dimensions of the mold by means of gunpowder and is in the form of a tube made of copper alloy, straight or curved continuous casting. This invention relates to a mold manufacturing method.

西ドイツ特許公告第2533528号公報(=特開昭
51−37828号公報)に記載されているように、中
空室を形成する鋳型壁に、この壁を変形する力が
火薬により与えられ、この力によつて壁を型の幾
何学的寸法に変形する製造方法は周知である。周
知の方法の利点は次の点にある。即ちこの方法に
より変形した銅又は銅合金からなる鋳型は、中空
室内の表面特性及び寸法精度が良好である点であ
る。更に変形力によつて表面を硬化させることが
出来る。この場合ロツクウエルBの硬度40の出発
材料をロツクウエルBの硬度50〜75に硬化でき
る。
West German Patent Publication No. 2533528 (=JP-A-Sho
51-37828), gunpowder applies force to the mold wall that forms the hollow chamber to deform this wall, and this force deforms the wall to the geometric dimensions of the mold. Manufacturing methods are well known. The advantages of the known method are as follows. That is, the mold made of copper or copper alloy deformed by this method has good surface characteristics and dimensional accuracy inside the hollow chamber. Furthermore, the surface can be hardened by the deformation force. In this case, a starting material having a Rockwell B hardness of 40 can be hardened to a Rockwell B hardness of 50 to 75.

この方法による欠点は、爆発変形により壁厚の
減少が僅かしかなく、従つて全体の冷間変形も極
僅かしか可能でないことである。この点は鋳型の
横断面形の全体強度を比較的小さくし、従つて形
状の安定性が小さくなる。更に普通の銅合金では
冷間変形により成される冷間硬化が350℃以上の
温度では戻され、そのため高負荷を受ける鋳型で
は耐久性が極めて短くなることも欠点として挙げ
られる。より高い強度は周知の方法ではより合金
度の高い種類の銅合金を用いることにより達成さ
れる。しかしこの種の合金は、熱の伝導性が悪
く、また浴鏡面領域に割れ目を形成し易いもので
ある。
The disadvantage of this method is that the explosive deformation causes only a small reduction in the wall thickness and therefore only a small overall cold deformation is possible. This makes the overall strength of the cross-sectional shape of the mold relatively low, and hence the stability of the shape. Another disadvantage of ordinary copper alloys is that the cold hardening achieved by cold deformation is reversed at temperatures above 350°C, and as a result, the durability of molds subjected to high loads is extremely short. Higher strengths are achieved in known methods by using higher alloy types of copper alloys. However, this type of alloy has poor thermal conductivity and tends to form cracks in the bath mirror area.

本発明は、任意の大きさの鋳型、例えば加工用
ブロツク成形装置用の大きな寸法の壁厚の管状鋳
型を製造でき、この鋳型が、全壁厚に渡つて非常
に強い強度の他、軟化温度が高く耐熱強度も大き
く、その際合金成分を適正に選択することによ
り、所定の如く熱伝導値乃至は導電値を非常に高
く又は例えば磁気撹拌用の鋳型では限定的に小さ
くできる方法を提示することを課題とする。
The present invention makes it possible to produce molds of any size, for example large-walled tubular molds for processing block forming equipment, which have a very high strength over the entire wall thickness as well as a softening temperature The present invention proposes a method in which the thermal conductivity or electrical conductivity can be made very high or to a limited extent in the case of molds for magnetic stirring, for example, by appropriately selecting the alloy components. That is the issue.

この課題は、本発明により次の様にして解決さ
れる。即ち出発材料として硬化可能な銅合金を用
い、この銅合金から管を作り、この管から管片へ
長さを短くし、この管片を溶体化処理し、次に管
片を所定の形状にし、溶体化処理した管片を400
〜600℃の範囲の温度で少なくとも15分間硬化し、
この管片を最終寸法付けのため最後に爆発成形に
付すという製造方法により解決される。
This problem is solved by the present invention as follows. That is, a hardenable copper alloy is used as a starting material, a tube is made from this copper alloy, the length of the tube is shortened into a tube section, the tube section is solution-treated, and the tube section is then formed into a predetermined shape. , 400 solution-treated tube pieces
Cure for at least 15 minutes at a temperature in the range of ~600℃,
The solution is achieved by a manufacturing method in which the tube section is finally subjected to explosive molding for final dimensioning.

尚、溶体化処理とは合金を硬化可能乃至は変形
可能とするため、溶解度曲線以上に熱処理するこ
とであり、溶体化処理温度では合金成分は固溶体
の状態にある。
Note that solution treatment is heat treatment to a temperature higher than the solubility curve in order to make the alloy hardenable or deformable, and the alloy components are in a solid solution state at the solution treatment temperature.

この方法で製造された鋳型は、周知の方法で製
造された鋳型よりも本質的に高い強度を有してい
る。その理由は、鋳型材料として硬化可能な銅合
金を用いている点にある。この材料において、
400〜600℃で加熱することにより合金成分の均一
分散効果(硬化)のため強度が増加する。鋳型の
特性を改善することはより寿命を長くすることに
なる。この寿命が長くなることは比較的高い温度
における熱応力に対して、形状保存性を増すこと
並びに僅かしか摩耗させない高い耐摩耗性を増す
ことから生ずる。
Molds made in this way have substantially higher strength than molds made in known ways. The reason for this is that a hardenable copper alloy is used as the mold material. In this material,
Heating at 400-600°C increases the strength due to the uniform dispersion effect (hardening) of the alloy components. Improving the properties of the mold will result in a longer life. This increased service life results from increased shape preservation against thermal stresses at relatively high temperatures as well as increased wear resistance with minimal wear.

本発明の方法の場合、溶体化処理した後で普通
の方法で軟化管を機械的に冷間変形するこにより
更に強度を上げることが出来る。この冷間変形加
工は、管状の鋳型内に心金−彎曲した管状鋳型で
はそれ相応に彎曲した心金−を挿入し、鋳型を心
金と共に母型(ダイス)により押圧して実施でき
る。この場合、冷間変形率を所望の最終強度に応
じて2〜30%に調節できる。この引き続いて行わ
れる硬化の後に生ずる部分的に非常に高い強度値
のため、溶体化処理後に補正する時に既に管状鋳
型の幾何学的最終寸法にすることは目的に適つて
いる。この様にして硬化する際に生ずる歪みを爆
発工程で除去し、最良の最終製品にすることが可
能である。
In the method of the present invention, the strength can be further increased by mechanically cold deforming the softened tube in a conventional manner after solution treatment. This cold deformation process can be carried out by inserting a mandrel (in the case of a curved tubular mold, a correspondingly curved mandrel) into a tubular mold, and pressing the mold together with the mandrel by a mother mold (die). In this case, the cold deformation rate can be adjusted from 2 to 30% depending on the desired final strength. Because of the locally very high strength values that occur after this subsequent hardening, it is expedient to bring the final geometrical dimensions of the tubular mold already to the correcting time after the solution treatment. In this way, it is possible to remove the distortions that occur during curing in the explosion process, resulting in the best possible final product.

使用する硬化可能な銅合金の選択は、鋳型の型
式の固有要件に関係している。最も一般的な使用
目的には、0.3〜1.2重量%のクロムと0.05〜0.2重
量%のジルコンを含有した銅合金が有利である。
この材料で鋳型に必要な高熱伝導性を保証してい
る。従来標準的に用いている材料、例えばSF−
銅、銅−銀−燐−合金の如き材料に比べ、本発明
方法で製造される硬化可能な銅−クロム−ジルコ
ン−材料からなる鋳型は、耐熱及び耐摩耗性に優
れている。これら鋳型は実質的に歪みがなく、耐
久性も優れている。
The selection of the hardenable copper alloy used is related to the specific requirements of the mold type. For the most common applications, copper alloys containing 0.3-1.2% by weight of chromium and 0.05-0.2% by weight of zircon are advantageous.
This material guarantees the high thermal conductivity required for the mold. Conventionally used standard materials, such as SF-
Compared to materials such as copper and copper-silver-phosphorus alloys, molds made of hardenable copper-chromium-zircon material produced by the method of the invention have superior heat and wear resistance. These molds are virtually distortion-free and durable.

銅−クロム−ジルコンでできた鋳型を製造する
本発明による方法を実施例に基づいて詳細に説明
することにする。
The method according to the invention for producing molds made of copper-chromium-zircon will be explained in detail on the basis of examples.

0.7重量%のクロムと0.18重量%のジルコンと、
残りが銅と普通の不純物とを有する銅合金から先
ずビレツトが鋳造され、次いで1030℃で管に連続
鋳造される。この管は水で焼入れされ、この管か
ら管片を切り出す。管片は曲げ機械で曲げられ、
管片の中空室内に丸い横断面形の型を挿入する。
管片の外側には、火薬が均等に分配され、これを
点火する。次いで管片から型を外し、管片を475
℃で4.5時間焼鈍する。焼鈍炉から取り出した管
片、場合により幾分歪みを伴う管片内に冷却後型
を挿入する。型の横断面は、鋳造すべき鋳物の横
断面形に正確に対応している。この場合、僅かに
曲げられた型を、管片の湾曲方向と型の湾曲方向
が同一方向になるように管片内に挿入するよう注
意する必要がある。上述の様に、爆発変形を今一
度実施し、また鋳型を所望寸法に冷間加工する。
0.7% by weight of chromium and 0.18% by weight of zircon,
A copper alloy with the balance copper and common impurities is first cast into billets and then continuously cast into tubes at 1030°C. The tube is water-quenched and tube sections are cut from the tube. The tube piece is bent on a bending machine,
A mold with a round cross section is inserted into the hollow space of the tube piece.
On the outside of the tube piece, gunpowder is evenly distributed and ignited. Next, remove the mold from the tube piece and 475
Anneal for 4.5 hours at °C. After cooling, a mold is inserted into the tube piece taken out from the annealing furnace, possibly with some distortion. The cross-section of the mold corresponds exactly to the cross-section of the casting to be cast. In this case, care must be taken to insert the slightly bent mold into the tube so that the direction of curvature of the tube and the direction of curvature of the mold are in the same direction. Explosive deformation is performed once again as described above, and the mold is cold worked to the desired dimensions.

この様にして形成した鋳型は次の特性を有して
いる。
The mold thus formed has the following characteristics.

熱伝導性 87% 軟化温度 525℃ (1時間の焼鈍後の室温での強度低下10%) 硬度 HB 2.5/62.5 145 引張り強度 442N/mm2 破断伸び 26% 熱強度 200℃で 380N/mm2 〃 350℃で 318N/mm2 上述の方法で製造された連続鋳造鋳型は、浴鏡
面領域で450回の鋳造を繰り返しても充分適正を
保ち、鋳型底部でほんの僅かな摩耗を発生した過
ぎない。
Thermal conductivity 87% Softening temperature 525℃ (10% decrease in strength at room temperature after 1 hour annealing) Hardness HB 2.5/62.5 145 Tensile strength 442N/mm 2 Elongation at break 26% Thermal strength 380N/mm 2 at 200℃ 318 N/mm 2 at 350° C. The continuous casting mold produced by the method described above remained well suited even after 450 castings in the bath mirror area, with only slight wear occurring at the bottom of the mold.

更に高い強度特性を有する同一材料、銅−クロ
ム−ジルコンからなる真つ直ぐでテーパー状の4
角形鋳型の製造は本発明の教える所に従い別の実
施例で詳細に説明する。
Straight and tapered 4-pieces made of the same material, copper-chromium-zircon, with even higher strength properties.
The manufacture of rectangular molds will be described in detail in separate embodiments in accordance with the teachings of the present invention.

先ず950℃で丸い管が連続鋳造され、この管を
所望の4角形状に引き抜きで成形される。この4
角形管は、990℃で45分間溶体化処理される。冷
却後長さを短くした管片を心金とダイスとにより
同時に壁厚15%だけ減少し最終寸法に補正し、
450℃で6時間硬化する。これに続いて上述の如
く爆発成形により最終補正を行う。
First, a round tube is continuously cast at 950°C, and then this tube is drawn into the desired square shape. This 4
The square tube is solution treated at 990°C for 45 minutes. After cooling, the tube piece whose length has been shortened is simultaneously reduced by 15% in wall thickness using a mandrel and a die to correct it to its final dimensions.
Cure at 450°C for 6 hours. This is followed by final correction by explosive molding as described above.

この様にして製造された鋳型は次の特性を有し
ている。
The mold manufactured in this manner has the following characteristics.

熱伝導性 84% 軟化温度 510℃ 硬度 HB 2.5/62.5 159 引張り強度 521N/mm2 破断伸び 21% この様に中間変形した鋳型は鋳型底部の耐摩耗
性はかなり改善される。
Thermal conductivity 84% Softening temperature 510℃ Hardness HB 2.5/62.5 159 Tensile strength 521N/mm 2 Elongation at break 21% In a mold that undergoes intermediate deformation in this way, the wear resistance of the mold bottom is considerably improved.

例えば冷却水品質が劣るため特に熱伝導性を高
くする必要のある鋳型には、0.05〜0.3%のジル
コンを含有する銅合金から鋳型を本発明により形
成する。適当な機械的中間冷却変形により、93%
以上の熱伝導性で350N/mm2の引張り強度に出来
る。この材料の軟化温度は550℃以上である。
For example, for molds requiring particularly high thermal conductivity due to poor cooling water quality, molds are formed according to the invention from copper alloys containing 0.05 to 0.3% zircon. 93% due to appropriate mechanical intercooling deformation
A tensile strength of 350N/mm 2 can be achieved with higher thermal conductivity. The softening temperature of this material is above 550°C.

鋳型導入範囲に電磁的撹拌法を行う特別な場合
には磁界が弱まるのを小さく保つため出来るだけ
導電性の小さい鋳型材料が望ましい。この種の材
料では熱伝導性は導電性と同様に小さくなるの
で、壁温が非常に高くなる。変形(ねじり、ひね
り)を無くすために、鋳型材料をこれに対応して
高い耐熱強度を有するようにする必要がある。こ
の条件は0.6〜1.5%のニツケル、0.1〜0.3%の燐
を含有する銅−ニツケル−燐並びに1〜2.5%の
コバルト又は1〜2.5%のニツケル又は0.5〜1.5%
のニツケル+0.5〜1.5%のコバルト及びそれぞれ
0.3〜0.6%のベリリウムを含有する銅−コバルト
−ベリリウム乃至は銅−ニツケル−ベリリウム及
び更に0.2〜1.1%の珪素及び1.2〜3.5%のニツケ
ルを含有する銅−ニツケル−珪素からなる硬化可
能な材料が満足する。
In special cases where electromagnetic stirring is used in the mold introduction area, it is desirable to use a mold material with as little electrical conductivity as possible in order to keep the weakening of the magnetic field small. In this type of material, the thermal conductivity is as low as the electrical conductivity, resulting in very high wall temperatures. In order to eliminate deformations (twisting, twisting), the mold material must have a correspondingly high heat-resistant strength. The conditions are copper-nickel-phosphorus containing 0.6-1.5% nickel, 0.1-0.3% phosphorus and 1-2.5% cobalt or 1-2.5% nickel or 0.5-1.5%
of nickel + 0.5-1.5% cobalt and each
Hardenable material consisting of copper-cobalt-beryllium or copper-nickel-beryllium containing 0.3-0.6% beryllium and also copper-nickel-silicon containing 0.2-1.1% silicon and 1.2-3.5% nickel. is satisfied.

本発明の方法によれば、例えば彎曲した4角形
の管状鋳型をその内法を200×220mmにし、その肉
厚を14mmにした場合2.2%のコバルトと0.54%の
ベリリウムを含有する銅−コバルト−ベリリウム
合金から次の様にして製造する。
According to the method of the present invention, for example, when a curved rectangular tubular mold has an inner diameter of 200 x 220 mm and a wall thickness of 14 mm, copper containing 2.2% cobalt and 0.54% beryllium can be used. It is manufactured from beryllium alloy as follows.

先ず4角形の管を連続鋳造で作り、次いで935
℃で45分間溶体化処理する。次いで曲げ機械で所
望の如く曲げる。この様にした管片を前述の様に
心金を設けて爆発成形を行う。更に鋳型を480℃
で5時間硬化する。最後に硬化時に生じた歪みを
心金を介して爆発成形により除去し、この場合鋳
型は再補正が実施される。
First, a square tube was made by continuous casting, and then 935
Solution treat for 45 min at °C. It is then bent as desired using a bending machine. The thus-obtained tube piece is provided with a mandrel as described above and subjected to explosive forming. Further heat the mold to 480℃
Cure for 5 hours. Finally, the distortion caused during curing is removed by explosive molding through the mandrel, and in this case the mold is re-corrected.

この管状鋳型は次の特性を有している。 This tubular mold has the following characteristics.

熱伝導性 54% 軟化温度 505℃ 硬度 HB 2.5/62.5 235 引張り強度 805N/mm2 破断伸び 17% 熱強度(200℃で) 735N/mm2 熱強度(350℃で) 622N/mm2 いわゆる撹拌鋳型に利用する際磁場を弱めない
ので、周知の鋳型に比べてかなり撹拌効果を改善
できる。寸法精度は100回以上の鋳込みを実施し
ても損なわれることはない。
Thermal conductivity 54% Softening temperature 505℃ Hardness HB 2.5/62.5 235 Tensile strength 805N/mm 2Elongation at break 17% Thermal strength (at 200℃) 735N/mm 2Thermal strength (at 350℃) 622N/mm 2So -called stir mold Since the magnetic field is not weakened when used in applications, the stirring effect can be significantly improved compared to known molds. Dimensional accuracy remains unchanged even after more than 100 castings.

Claims (1)

【特許請求の範囲】 1 成形中空室を形成する鋳型壁を火薬で変形さ
せる様な、銅合金から成り管形状をした直線状又
は湾曲状の連続鋳造鋳型を製造するための方法に
おいて、出発材料として硬化可能な銅合金を用
い、この銅合金から管を作り、この管から管片へ
と長さを短くし、この管片を溶体化処理し、次に
管片を所定の形状にし、溶体化処理した管片を
400〜600℃の範囲の温度で少なくとも15分間硬化
し、この管片を最終寸法付けのため最後に爆発成
形に付すことを特徴とする方法。 2 上記形状付けが冷間加工法により行われるこ
とを特徴とする特許請求の範囲第1項に記載の方
法。 3 管片内に心金が入れられ、次に管片は心金を
一緒に冷間変形のため母型により押圧されること
を特徴とする特許請求の範囲第2項に記載の方
法。 4 銅合金には0.3〜1.2重量%のクロム及び0.05
〜0.2重量%のジルコンが使われることを特徴と
する特許請求の範囲第1項から第3項のうちの1
項に記載の方法。
[Scope of Claims] 1. A method for manufacturing a straight or curved continuous casting mold made of a copper alloy and having a tubular shape, in which the walls of the mold forming a molding cavity are deformed by explosives, the starting material Using a copper alloy that can be hardened as The treated pipe piece
A process characterized by curing for at least 15 minutes at a temperature in the range from 400 to 600°C and finally subjecting the tube piece to explosive forming for final dimensioning. 2. The method according to claim 1, wherein the shaping is performed by a cold working method. 3. A method as claimed in claim 2, characterized in that a mandrel is introduced into the tube piece and then the tube piece is pressed by a matrix for cold deformation of the mandrel together. 4 Copper alloys contain 0.3-1.2% chromium and 0.05% by weight
One of claims 1 to 3, characterized in that ~0.2% by weight of zircon is used.
The method described in section.
JP57038203A 1981-03-12 1982-03-12 Manufacture of tubular, rectilinear or curved continuous casting with parallel or conical internal form from copper alloy which can be cured Granted JPS57159240A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19813109438 DE3109438A1 (en) 1981-03-12 1981-03-12 "METHOD FOR THE PRODUCTION OF TUBULAR, STRAIGHT OR CURVED CONTINUOUS CASTING CHILLS WITH PARALLELS OR CONICAL INTERIOR CONTOURS FROM CURABLE copper ALLOYS"

Publications (2)

Publication Number Publication Date
JPS57159240A JPS57159240A (en) 1982-10-01
JPH0216170B2 true JPH0216170B2 (en) 1990-04-16

Family

ID=6127018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57038203A Granted JPS57159240A (en) 1981-03-12 1982-03-12 Manufacture of tubular, rectilinear or curved continuous casting with parallel or conical internal form from copper alloy which can be cured

Country Status (11)

Country Link
JP (1) JPS57159240A (en)
BR (1) BR8201280A (en)
CA (1) CA1196552A (en)
CH (1) CH654502A5 (en)
DE (1) DE3109438A1 (en)
ES (1) ES510190A0 (en)
FR (1) FR2501556B1 (en)
GB (1) GB2096496B (en)
IN (1) IN157659B (en)
IT (1) IT1148120B (en)
ZA (1) ZA821484B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3218100A1 (en) * 1982-05-13 1983-11-17 Kabel- und Metallwerke Gutehoffnungshütte AG, 3000 Hannover METHOD FOR PRODUCING A TUBE CHOCOLATE WITH A RECTANGULAR OR SQUARE CROSS SECTION
DE3514123C2 (en) * 1985-04-19 1994-12-08 Kabelmetal Ag Process for producing continuous casting molds for continuous casting machines
DE3725950A1 (en) * 1987-08-05 1989-02-16 Kabel Metallwerke Ghh USE OF A COPPER ALLOY AS A MATERIAL FOR CONTINUOUS CASTING MOLDS
JPH02221344A (en) * 1989-02-21 1990-09-04 Mitsubishi Shindoh Co Ltd High strength cu alloy having hot rollability and heating adhesiveness in plating
EP0498296B2 (en) * 1991-02-06 2000-12-06 Concast Standard Ag Mould for continuous casting of metals, especially of steel
DE4427939A1 (en) 1994-08-06 1996-02-08 Kabelmetal Ag Use of a hardenable copper alloy
DE10018504A1 (en) * 2000-04-14 2001-10-18 Sms Demag Ag Use of a hardenable copper alloy containing beryllium and nickel for molds for producing plates for thin slab continuous casting molds
JP2006326634A (en) * 2005-05-25 2006-12-07 Daido Steel Co Ltd Method for predicting damage of metal die

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2768287A (en) * 1952-12-24 1956-10-23 Westinghouse Air Brake Co Railway track switch controlling apparatus
US3522112A (en) * 1967-06-26 1970-07-28 Olin Corp Process for treating copper base alloy
US3882712A (en) * 1973-10-01 1975-05-13 Olin Corp Processing copper base alloys
ZA754574B (en) * 1974-07-29 1976-06-30 Concast Inc A method of forming the walls of continuous casting and chill
DE2635454C2 (en) * 1976-08-06 1986-02-27 Kabel- und Metallwerke Gutehoffnungshütte AG, 3000 Hannover Use of a copper alloy
JPS5446131A (en) * 1977-09-20 1979-04-11 Mishima Kosan Co Ltd Method of making mold for continuous casting process

Also Published As

Publication number Publication date
ES8303147A1 (en) 1983-02-01
GB2096496A (en) 1982-10-20
JPS57159240A (en) 1982-10-01
ES510190A0 (en) 1983-02-01
CH654502A5 (en) 1986-02-28
IT1148120B (en) 1986-11-26
DE3109438C2 (en) 1991-02-21
IN157659B (en) 1986-05-10
FR2501556B1 (en) 1986-03-28
IT8247942A0 (en) 1982-03-08
GB2096496B (en) 1984-09-05
DE3109438A1 (en) 1982-09-30
FR2501556A1 (en) 1982-09-17
CA1196552A (en) 1985-11-12
ZA821484B (en) 1983-04-27
BR8201280A (en) 1983-01-18

Similar Documents

Publication Publication Date Title
US4844746A (en) Method of producing a tantalum stock material of high ductility
JPH0480081B2 (en)
US4394185A (en) Processing for copper beryllium alloys
US4421570A (en) Making molds for continuous casting
JPH0216170B2 (en)
US2666721A (en) Process of producing ductile molybdenum
JP4012845B2 (en) 70/30 brass with refined crystal grains and method for producing the same
JP2001288517A (en) Cu-BASED ALLOY, CASTING HAVING HIGH STRENGTH AND HIGH THERMAL CONDUCTIVITY USING THE SAME AND METHOD FOR PRODUCING CASTING
CN107916359A (en) A kind of preparation method of the medium managese steel with favorable forming property
JP2011063868A (en) Methods for manufacturing aluminum molded component and metal structure including the aluminum molded component
JPH04198460A (en) Production of casting mold member for continuous casting
KR920004452B1 (en) Moulds for continuous casting
JPH0142327B2 (en)
JP2002266057A (en) Method for producing magnesium alloy sheet having excellent press formability
JPH0673482A (en) Aluminum alloy member and its production
JP2000017410A (en) Production of alloy casting, particularly of aluminum casting
US5407499A (en) Making a mold for continuous casting
JPS5826425B2 (en) Manufacturing method for high-strength aluminum alloy with excellent mechanical properties in the thickness direction
JPH06220566A (en) Molybdenum-base alloy minimal in anisotropy and its production
JPH03140444A (en) Manufacture of beryllium copper alloy member
CN115466828B (en) Production method for improving bending degree of low-alloy high-strength steel
JP2878842B2 (en) High tensile steel parts and manufacturing method
JP2003225734A (en) Unified molding method of aluminum alloy casing for bus bar
EP0588128A1 (en) Process of hot forging at ultrahigh temperature
JP4175823B2 (en) Manufacturing method of special steel for molds