JPH02161407A - Heat resistant coated optical fiber - Google Patents

Heat resistant coated optical fiber

Info

Publication number
JPH02161407A
JPH02161407A JP63314901A JP31490188A JPH02161407A JP H02161407 A JPH02161407 A JP H02161407A JP 63314901 A JP63314901 A JP 63314901A JP 31490188 A JP31490188 A JP 31490188A JP H02161407 A JPH02161407 A JP H02161407A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber
silicone resin
strength
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63314901A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nishida
西田 秀俊
Takeshi Shimomichi
毅 下道
Teruyuki Tsujita
照之 辻田
Hideo Suzuki
秀雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63314901A priority Critical patent/JPH02161407A/en
Publication of JPH02161407A publication Critical patent/JPH02161407A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4436Heat resistant
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To prevent flawing of a glass fiber at the time of inserting the fiber into a metallic tube and to eliminate the possibility of the deterioration in its strength by thinly coating the glass fiber with a ladder type silicone resin having a high Young's modulus thereupon. CONSTITUTION:The ladder type silicone resin layer 4 is applied on the glass fiber 3 consisting of a core 1 and a clad 2 and this fiber is inserted into a metallic pipe 5. The optical fiber to be used may be a single mode optical fiber and may be a multimode type optical fiber as well. The ladder type silicone resin can be formed extremely thinly in thickness on the glass surface of the optical fiber. In addition, the characteristics equiv. to the optical fiber coated with an ordinary UV curing resin or silicone resin in terms of strength are obtd. The flawing of the fiber at the time of inserting the fiber into the metallic tube is prevented in this way and the degradation in the strength and reliability of the optical fiber is prevented.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明はビルの防災管理システム等に用いるに好適な
耐熱性光ファイバ心線に関し、特に耐炎性構造の光ファ
イバ心線に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a heat-resistant coated optical fiber suitable for use in a disaster prevention management system for a building, and particularly to a coated optical fiber having a flame-resistant structure.

〈従来の技術〉 従来金属管に光ファイバを挿入した光ファイバに関する
技術は、主として光ファイバの強度、側圧、環境等光フ
ァイバ自身の弱い特性を補なう目的で利用されてきてい
る。一般にこれらの目的で用いられている金属管に挿入
される素線は被覆材としてシリコーン樹脂、UV硬化性
樹脂、ポリアミド樹脂、ポリエチレン等が被覆されてい
る。
<Prior Art> Conventionally, technology related to optical fibers in which the optical fibers are inserted into metal tubes has been used mainly for the purpose of compensating for the weak characteristics of the optical fibers themselves, such as the strength, lateral pressure, and environment of the optical fibers. Generally, the strands inserted into metal tubes used for these purposes are coated with silicone resin, UV curable resin, polyamide resin, polyethylene, etc. as a coating material.

このため、これらに耐火試験を施すと、熱により光ファ
イバの被覆が熱分解あるいは燃焼し、伝送損失を増加さ
せるとともに、ファイバの強度も劣化させるので耐火用
として用いることはできない。 これを改良して耐火目
的で用いる光ファイバの製造方法は特開昭60−205
623号公報に開示されているが、これは金属管に光フ
ァイバを挿入する直前に被覆材を除去し、裸にして挿入
するものである。この方法では被覆材の影響による伝送
損失増加は起らないものの、光ファイバを裸で金属管に
挿入するので、光ファイバのガラス表面に微少なキズが
生成し、光ファイバの強度、信頼性を低下させるという
問題を生じる。
For this reason, when these are subjected to a fire resistance test, the coating of the optical fiber will thermally decompose or burn due to the heat, increasing transmission loss and degrading the strength of the fiber, so they cannot be used for fire resistance purposes. A method for manufacturing an optical fiber for use in fireproofing by improving this method was disclosed in Japanese Patent Application Laid-open No. 60-205.
This is disclosed in Japanese Patent No. 623, in which the covering material is removed immediately before an optical fiber is inserted into a metal tube, and the optical fiber is inserted bare. Although this method does not increase transmission loss due to the influence of the coating material, since the optical fiber is inserted bare into the metal tube, minute scratches are generated on the glass surface of the optical fiber, reducing the strength and reliability of the optical fiber. This causes the problem of deterioration.

前記金属管への光ファイバの挿入に当たり潤滑剤を使用
してもキズの程度を小さくするに留まり、キズの発生を
皆無とすることはできない。
Even if a lubricant is used when inserting the optical fiber into the metal tube, the extent of scratches can only be reduced, and the occurrence of scratches cannot be completely eliminated.

−aによく知られているように、このガラスのキズはた
とえごく微小なキズで強度的には問題とならないような
程度のものであっても、ストレスにより時間が経過する
に従ってキズは成長し、結局強度劣化に至るものである
。実際の使用環境下ではストレスは避は難く、又、長期
に亘り、信頼性を確保する必要があるので、前述の方法
は致命的とも云える欠点を有するものと云える。
As is well known in Japan, even if these scratches on glass are extremely small and do not pose a problem in terms of strength, they will grow over time due to stress. , which ultimately leads to strength deterioration. In actual use environments, stress is unavoidable, and reliability must be ensured over a long period of time, so the above-mentioned method has a fatal drawback.

〈発明が解決しようとする課題〉 火災時の高温下でも光ファイバの被覆剤が熱により変形
し、燃焼や分解による炭化を起し、光ファイバを曲げて
伝送損失を増加させるとともに、強度も低下し、さらに
燃焼した際に発生するガス等により金属管内部の圧力を
上昇し、これにより金属管や端末部を破損させる可能性
がある。−力先ファイバを被覆剤を以て被覆することな
しに裸にしてガラスのみとし、これを金属管内に挿入す
れば表面に発生するキズにより長期信頼性を低下させる
<Problem to be solved by the invention> Even under high temperatures during a fire, the coating material of the optical fiber is deformed by heat, causing carbonization due to combustion and decomposition, bending the optical fiber, increasing transmission loss, and reducing strength. Furthermore, the pressure inside the metal tube increases due to the gas generated during combustion, which may damage the metal tube or the end portion. - If the tip fiber is left bare without being coated with a coating material, leaving only glass, and this is inserted into a metal tube, the long-term reliability will be degraded due to scratches generated on the surface.

この発明はこのような従来の技術の課題を解決すること
を目的とする。
The present invention aims to solve the problems of the conventional technology.

く課題を解決するための手段〉 この発明はガラスファイバの表面に耐熱性のラダー型シ
リコーン樹脂被覆層を設け、これを金属管内に挿入して
なる耐熱性光ファイバ心線に存する。
Means for Solving the Problems The present invention resides in a heat-resistant optical fiber core wire formed by providing a heat-resistant ladder-type silicone resin coating layer on the surface of a glass fiber and inserting this into a metal tube.

ラダー型シリコーン樹脂被覆層は耐熱性が高く熱分解温
度は  ℃であり、2〜10μmと云う非常に薄い被覆
層で十分目的を達成することができる。
The ladder-type silicone resin coating layer has high heat resistance and a thermal decomposition temperature of 2° C., and a very thin coating layer of 2 to 10 μm can sufficiently achieve the purpose.

く作 用〉 ラダー型シリコーン樹脂は肉厚を非常に薄く光ファイバ
のガラス表面に形成することができ、しかも、強度的に
は通常のUv硬化樹脂やシリコーン樹脂で破壊された光
ファイバ素線と同等の特性が得られる。
Function> Ladder type silicone resin can be formed on the glass surface of optical fiber with a very thin wall thickness, and in terms of strength, it is comparable to optical fiber strands broken with ordinary UV curing resin or silicone resin. Equivalent characteristics can be obtained.

又、このラダー型シリコーン樹脂は熱分解温度が従来公
知の前記樹脂より高いので、たとえ熱分解したとしても
肉厚が薄いためにファイバに与えるダメージが非常に少
ない。
Furthermore, since the thermal decomposition temperature of this ladder-type silicone resin is higher than that of the conventionally known resins, even if it is thermally decomposed, the damage to the fiber is extremely small because of its thin wall thickness.

又、ヤング率が高いためにキズがつきにくく、金属管内
に挿入する際に、ガラス表面にまで達するキズの発生は
皆無である。
In addition, since it has a high Young's modulus, it is difficult to get scratched, and when it is inserted into a metal tube, there are no scratches that reach the glass surface.

従ってたとえば火災による火焔にさらされている間は勿
論その後も伝送損失が異常に増加することはない。
Therefore, the transmission loss will not increase abnormally during or after exposure to flames caused by a fire, for example.

ラダー型シリコーン樹脂の好ましい肉厚は2〜10μm
であり、2μmより薄い場合は製造時に均一な肉厚を得
ることができなくなり、ガラス表面が表われてしまうの
で好ましくない。又10μmより厚い場合は製造時の線
速を低下し、製造能率を低下すること及び高温において
分解によるガラスファイバの伝送損失の増加を来すもの
で好ましくない。この発明の実施に際し、金属管として
はステンレス、アルミニウム等細径のパイプ状になるも
のであればいずれでもよく、又、金属管の外径及び肉厚
は使用目的に応じて設計する必要がある。
The preferred thickness of the ladder type silicone resin is 2 to 10 μm.
If it is thinner than 2 μm, it will not be possible to obtain a uniform wall thickness during manufacturing, and the glass surface will be exposed, which is not preferable. If it is thicker than 10 .mu.m, it is not preferable because it lowers the linear velocity during manufacturing, lowers manufacturing efficiency, and increases the transmission loss of the glass fiber due to decomposition at high temperatures. When carrying out this invention, the metal tube may be made of stainless steel, aluminum, or any other material with a small diameter, and the outer diameter and wall thickness of the metal tube must be designed according to the purpose of use. .

〈実施例〉 この発明による耐熱性光ファイバ心線の構造例は図面に
示すとおりで、コアlとクラ・ノド2とからなるガラス
ファイバ3上にラダー型シリコーン樹脂N4を設け、こ
れを金属パイプ5内に挿入してなるものである。
<Example> An example of the structure of the heat-resistant optical fiber core according to the present invention is as shown in the drawings, in which a ladder-type silicone resin N4 is provided on a glass fiber 3 consisting of a core 1 and a node 2, and this is attached to a metal pipe. It is inserted into 5.

ここに用いられる光ファイバとしてはシングルモード光
ファイバでもよいが、多モード型光ファイバでもよい。
The optical fiber used here may be a single mode optical fiber or a multimode optical fiber.

又、ラダー型シリコーン樹脂はペンダントグループとし
てメチル基、フェニル基、又は水素のいずれでもよい。
Further, the ladder type silicone resin may have a methyl group, a phenyl group, or a hydrogen group as a pendant group.

次にコア径φ10.czm、クラッド径φ125μm、
ラダー型シリコーン樹脂被覆層径φ135μmの光ファ
イバを作成し、これをステンレスパイプ径φ2 am、
j7さt =0.5 重置の中に挿入して耐熱光ファイ
バ心線とした。
Next, the core diameter is φ10. czm, cladding diameter φ125μm,
An optical fiber with a ladder type silicone resin coating layer diameter of φ135 μm was created, and this was made into a stainless steel pipe with a diameter of φ2 am,
j7sat = 0.5 It was inserted into a superposition to obtain a heat-resistant optical fiber core.

これについて耐火試験により伝送損失増の有無、強度低
下の有無を調べた。その結果を第1表に示しである。
A fire resistance test was conducted to determine whether there was an increase in transmission loss or a decrease in strength. The results are shown in Table 1.

同時に光ファイバ心線の上に何も被覆しない光ファイバ
を用いた場合を比較例1とし、光ファイバ心線上に通常
のシリコーン樹脂もしくはナイロン樹脂を被覆した場合
を比較例2とし、実施例と同様な耐火試験を行ない、そ
の結果も第1表に示しである。
At the same time, Comparative Example 1 is a case in which an optical fiber without any coating is used on the optical fiber core wire, and Comparative Example 2 is a case in which the optical fiber core wire is coated with ordinary silicone resin or nylon resin. A fire resistance test was conducted and the results are shown in Table 1.

第1表 又、被覆剤は極めて薄くてよいので、熱により被覆剤が
変形したり燃焼しても内部のガラスファイバに影響して
伝送損失を増加させることがない。
Table 1 Also, since the coating material can be extremely thin, even if the coating material is deformed or burned by heat, it will not affect the internal glass fibers and increase transmission loss.

【図面の簡単な説明】[Brief explanation of the drawing]

ゝL−はこの発明による耐熱性光ファイバ心線の一例を
示す横断面図である。 l:コア 2:クランド 3:ガラスノア4:ラダー型
シリコーン樹脂被覆層 5:金属管 イバ
ゝL- is a cross-sectional view showing an example of a heat-resistant optical fiber core according to the present invention. 1: Core 2: Clamp 3: Glass nozzle 4: Ladder type silicone resin coating layer 5: Metal tube rivet

Claims (1)

【特許請求の範囲】[Claims] ラダー型シリコーン樹脂被覆層を有する光ファイバ素線
を内蔵し、外側に金属管を設けたことを特徴とする耐熱
性光ファイバ心線
A heat-resistant optical fiber core wire characterized by having a built-in optical fiber having a ladder-type silicone resin coating layer and a metal tube provided on the outside.
JP63314901A 1988-12-15 1988-12-15 Heat resistant coated optical fiber Pending JPH02161407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63314901A JPH02161407A (en) 1988-12-15 1988-12-15 Heat resistant coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63314901A JPH02161407A (en) 1988-12-15 1988-12-15 Heat resistant coated optical fiber

Publications (1)

Publication Number Publication Date
JPH02161407A true JPH02161407A (en) 1990-06-21

Family

ID=18059002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63314901A Pending JPH02161407A (en) 1988-12-15 1988-12-15 Heat resistant coated optical fiber

Country Status (1)

Country Link
JP (1) JPH02161407A (en)

Similar Documents

Publication Publication Date Title
JPS61204609A (en) Optical transmission body
GB2438572A (en) Optical fiber
GB2138168A (en) Fire resistant optical fibre cable
JPH02161407A (en) Heat resistant coated optical fiber
JPS63189814A (en) Heat resisting optical fiber
GB1575134A (en) Fibre-optic cable
JP2004252400A (en) Fiber optic device with enhanced resistance to external environmental condition and its method
JP3130180B2 (en) Heat resistant fiber optic cable
JPH0387703A (en) Method for fixing optical fiber end
JP2975210B2 (en) Manufacturing method of heat-resistant optical fiber cable
JPH0381717A (en) Fiberscope
JPS634166Y2 (en)
JPH0560955A (en) Optical fiber cable
JPH04331905A (en) Heat resistant optical fiber
JPS5946605A (en) Optical fiber
JP2601719Y2 (en) Heat resistant optical fiber
JPH08313767A (en) Heat resistant optical fiber
JP3610157B2 (en) Endoscope
JP2581285B2 (en) Manufacturing method of heat resistant optical fiber
JP3293967B2 (en) Optical fiber carbon coating method
JPH0118525B2 (en)
JPH03233503A (en) Infrared transmission body
JPS6014245Y2 (en) optical cable
JP2000180269A (en) Optical fiber cable enclosed in metallic tube
JPH06300944A (en) Highly heat resistant optical fiber and its production and optical temperature sensor