JPH0216137B2 - - Google Patents

Info

Publication number
JPH0216137B2
JPH0216137B2 JP58123713A JP12371383A JPH0216137B2 JP H0216137 B2 JPH0216137 B2 JP H0216137B2 JP 58123713 A JP58123713 A JP 58123713A JP 12371383 A JP12371383 A JP 12371383A JP H0216137 B2 JPH0216137 B2 JP H0216137B2
Authority
JP
Japan
Prior art keywords
signal
fetal
doppler
blood flow
heart rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58123713A
Other languages
Japanese (ja)
Other versions
JPS6014846A (en
Inventor
Masanobu Hogaki
Yasuto Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP58123713A priority Critical patent/JPS6014846A/en
Publication of JPS6014846A publication Critical patent/JPS6014846A/en
Publication of JPH0216137B2 publication Critical patent/JPH0216137B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、超音波ドプラ法により胎児の心拍数
を計数する胎児心拍数計に関するものである。 従来の、ドプラ法に基づくドプラ胎児心拍数計
としては、胎児心の心筋もしくは弁の動きに由来
する拍動性の成分を抽出して周期性の検出と心拍
数の導出を行うものであつた。 しかし、この手法は、良く完成されているとは
言え未だいくつかの難点を有している。例えば、
次の2点である。 (1) 胎児心が探触子の指向性から外れてしまう
と、信号がなくり、作業ができなくなる。この
点は、たとえ広角指向性の探触子を用いても完
全には解決されない。 (2) 歩行中の軽作業中の状態において観測を行う
場合、母体の周期的な動きが心拍とまぎらわし
い周期性のアーテイフアクトをもたらす。 このような点から、胎児生理の動態観測を行わ
んとしても、母体にストレスのかかる場合におい
ては、正確な観測が困難であつた。 本発明の目的は、このような点に鑑み、上記
(1)、(2)の点を解決した動態観測用胎児心拍数計を
提供することにある。 このような目的を達成するために、本発明で
は、超音波ドプラ法において、母体の急峻な体動
により生ずるアーテイフアクトのドプラシフト値
よりも更に高くキヤリア周波数(探触子の送波音
波の周波数)に対し0.3パーミル(0/00)以上の
ドプラシフトを呈する胎動脈血流からの拍動性ド
プラ信号のみをフイルタを用いて抽出し、胎児心
拍レートの計測を行うようにしたことを特徴とす
る。 以下図面を用いて本発明を詳しく説明する。そ
もそも、ドプラ血流信号に対しては、その振幅に
ではなく、ドプラシフト周波数ないしその分布に
注目して、血液の流速を評価するのが正当な評価
の仕方である。 しかしながら、ドプラ血液信号を、出現し得る
最高のドプラシフト周波数近辺を中心周波数とす
ると共に通過帯域の下方の切れが中庸なバンドパ
スフイルタを介して取り出すならば、周波数では
なく振幅に注目することによつても流速に注目し
たのとほぼ等価な結果を得ることができる。 なお、血液の脈動における立上りのみを検出す
るような場合には、前記バンドパスフイルタの下
方の切れを鋭いものとしておけばよい。このよう
なフイルタは広義のドプラフイルタに相当し、心
筋や弁、更に体動アーテイフアクト等は総べてド
プラシフトの低い不要な成分とみなしたこととな
る。本発明は、従来よりもずつと高域の、キヤリ
ア周波数に対し0.3〜1バーミル程度のドプラシ
フトに対して適合するバンドパスフイルタと、そ
の後の振幅検波を行う手段を含む。第1図にその
一実施例であるブロツク図を示す。図において、
1は被検体(母体)に対して超音波を送受する探
触子、2は探触子を駆動するための高周波エネル
ギーを発生する発振器、3は反射波信号よりドプ
ラシフト信号を求めるドプラ受信機、4はドプラ
シフト比として0.3〜1パーミルの成分のものは
通すがそれ以下の成分のものは急峻にカツトオフ
してしまうような少なくとも公称24dB/オクタ
ーブ以上のカツトオフ特性を有するドプラフイル
タ(例えばローカツトフイルタ)、5は検波回路、
6はローパスフイルタ、7は2値化回路である。 このような構成において、発振器2からの高周
波エネルギーにより付勢されて超音波を発生した
探触子はその後反射波を受波し、電気信号に変換
して出力する。ドプラ受信機3では発振器2の周
波数(探触子の送波音波の周波数に当る)とこの
電気信号からドプラシフト信号を求める。次段の
ドプラフイルタ4では、有用な範囲すなわちキヤ
リア周波数に対するドプラシフト比で0.3〜1パ
ーミル程度の拍動性ドプラ血流信号のみを抽出す
る。このフイルタリング効果によれば母体の動揺
ないし胎動による血流信号への妨害を抑圧するこ
とができる。この拍動性ドプラ信号を検波した後
ローパスフイルタ6でその高域成分を除去すると
第2図イに示すような脈動波形が得られる。次い
で、これを2値化回路7にかけて、あるスレシホ
ルドレベルで2値化することによつて第2図ロの
ようなパルス列信号を得る。このようにして得ら
れたパルス信号を心拍レートメータ(図示せず)
などに入力して計測することによつて、その胎児
心拍数を容易に求めることができる。 すなわち、本発明はキヤリア周波数に対しドプ
ラシフトが0.30/00以下の信号成分である心臓弁
等からの振幅を大きな周期信号をカツトし、0.3
〜10/00の高い成分である動脈血流からの振幅の
小さな周期信号を捕えて心拍数計測を行うもので
ある。このようにすることにより、母体の動き等
に起因するドプラシフト比の低い信号成分を十分
に取り除くことができる。また、心臓弁等からの
信号を必要としないので、探触子の指向性が胎児
心から外れてもいずれかの胎児動脈血流からの信
号を捕えることができれば心拍数計測を続けるこ
とができる。尚、0.30/00以下の信号を捕らえる
と、心弁による信号を捕らえることができるが速
い体動による信号が混入してしまう。また、0.15
0/00以下の信号を捕らえると、体動による信号を
取り除くことは殆どできない。また、10/00以上
の信号は装置固有のノイズによるものでこの領域
の信号は不要である。 第3図は本発明の他の実施例図である。同図に
おいて、上記と同様にしてフイルタ4を介して得
たドプラシフト信号の波形について、特にその立
上り点をゼロクロス検出器21にて求め、その検
出器出力でモノステーブルバイブレータ22を起
動することによつてある一定時間幅のパルスでな
るパルス列信号を得る。このパルス列信号をロー
パスフイルタ6にかければ第1図の場合と同様に
脈動波形が得られ、以下同様に2値化回路7によ
り胎児心拍に対応した周期の信号として求められ
出力される。 なお、ドプラフイルタ4からの出力信号をもと
に胎児心拍の周期を求める方法としては、本実施
例に限定されるものではなく、フーリエ変換法や
自己相関法を用いる方法を採用してもよい。 また、胎児血流信号に対して、胎児動脈血流の
ドプラ信号と母体動脈血流のそれとを区別して胎
児動脈血流のドプラ信号のみを抽出する工夫が必
要である。動脈血流の二者の鑑別には生理的標準
パラメータを用いる。つまり、第4図に示すよう
に、血流信号のある周波数帯域のエンベロープな
いしは広帯域的に見たスペクトラムのエンベロー
プから、拍出期の区間の長さtd(胎児の方が短
い)、拍出期における流れのパターンの立上り
時間tr(胎児の方が短い)のいずれか一方または
双方に注目すれば、大略第1表のような統計的差
異があることから、胎児動脈血流のドプラ信号の
みを区別して抽出することができる。
The present invention relates to a fetal heart rate meter that counts the heart rate of a fetus using the ultrasonic Doppler method. Conventional Doppler fetal heart rate monitors based on the Doppler method detect periodicity and derive heart rate by extracting pulsatile components derived from the movement of the cardiac muscle or valves of the fetal heart. . However, although this method is well-developed, it still has some drawbacks. for example,
There are two points below. (1) If the fetal heart deviates from the directivity of the probe, there will be no signal and work will no longer be possible. This point cannot be completely resolved even if a wide-angle directional probe is used. (2) When observations are made during light work while walking, periodic movements of the mother's body produce periodic artifacts that are confused with heartbeats. From this point of view, even when attempting to observe the dynamics of fetal physiology, accurate observation has been difficult when the mother's body is under stress. In view of these points, an object of the present invention is to solve the above-mentioned problems.
The object of the present invention is to provide a fetal heart rate monitor for dynamic observation that solves the problems (1) and (2). In order to achieve such an objective, the present invention uses a carrier frequency (frequency of the sound wave transmitted by the probe) that is higher than the Doppler shift value of the artifact caused by the sudden movement of the mother's body in the ultrasonic Doppler method. ), only the pulsatile Doppler signal from the fetal artery blood flow exhibiting a Doppler shift of 0.3 per mil (0/00) or more is extracted using a filter, and the fetal heart rate is measured. . The present invention will be explained in detail below using the drawings. In the first place, the proper way to evaluate the blood flow velocity of a Doppler blood flow signal is to focus on the Doppler shift frequency or its distribution rather than its amplitude. However, if the Doppler blood signal is extracted through a bandpass filter whose center frequency is near the highest possible Doppler shift frequency and whose passband has a moderate cut at the bottom, it is possible to focus on the amplitude rather than the frequency. However, it is possible to obtain almost the same results as by focusing on the flow velocity. In addition, in the case where only the rising edge of blood pulsation is to be detected, the lower cut of the band pass filter may be made sharp. Such a filter corresponds to a Doppler filter in a broad sense, and the myocardium, valves, and body movement artifacts are all considered to be unnecessary components with low Doppler shifts. The present invention includes a bandpass filter that is compatible with a Doppler shift of about 0.3 to 1 bar mil relative to a carrier frequency, which is much higher than that of the conventional filter, and means for performing amplitude detection thereafter. FIG. 1 shows a block diagram of one embodiment. In the figure,
1 is a probe that transmits and receives ultrasonic waves to and from the subject (mother body); 2 is an oscillator that generates high-frequency energy to drive the probe; 3 is a Doppler receiver that obtains a Doppler shift signal from a reflected wave signal; 4 indicates a Doppler shift ratio of a Doppler filter (for example, a low-cut filter) that has a cut-off characteristic of at least 24 dB/octave or higher, which allows components of 0.3 to 1 per mil to pass through, but sharply cuts off components of less than that. , 5 is a detection circuit,
6 is a low-pass filter, and 7 is a binarization circuit. In such a configuration, the probe that is energized by the high frequency energy from the oscillator 2 and generates an ultrasonic wave then receives the reflected wave, converts it into an electrical signal, and outputs it. The Doppler receiver 3 obtains a Doppler shift signal from the frequency of the oscillator 2 (corresponding to the frequency of the sound wave transmitted by the probe) and this electrical signal. The next-stage Doppler filter 4 extracts only pulsatile Doppler blood flow signals in a useful range, that is, a Doppler shift ratio of about 0.3 to 1 per mil with respect to the carrier frequency. This filtering effect can suppress interference with blood flow signals due to maternal movement or fetal movement. After detecting this pulsating Doppler signal, a low-pass filter 6 removes its high-frequency components to obtain a pulsating waveform as shown in FIG. 2A. Next, this signal is applied to a binarization circuit 7 and binarized at a certain threshold level, thereby obtaining a pulse train signal as shown in FIG. 2B. The pulse signal obtained in this way is connected to a heart rate meter (not shown).
The fetal heart rate can be easily determined by inputting and measuring the fetal heart rate. That is, the present invention cuts periodic signals with large amplitudes from heart valves, etc., which are signal components with a Doppler shift of 0.30/00 or less relative to the carrier frequency, and
The heart rate is measured by capturing a periodic signal with a small amplitude from the arterial blood flow, which is a high component of ~10/00. By doing so, signal components with a low Doppler shift ratio caused by the movement of the mother's body or the like can be sufficiently removed. Further, since signals from heart valves and the like are not required, heart rate measurement can be continued even if the directivity of the probe deviates from the fetal center as long as a signal from any fetal arterial blood flow can be captured. Note that if a signal of 0.30/00 or less is captured, the signal from the heart valve can be captured, but the signal due to rapid body movement will be mixed in. Also, 0.15
If a signal of 0/00 or less is captured, it is almost impossible to remove the signal due to body movement. Further, signals of 10/00 or higher are due to noise inherent to the device, and signals in this region are unnecessary. FIG. 3 is a diagram showing another embodiment of the present invention. In the same figure, the waveform of the Doppler shift signal obtained through the filter 4 in the same manner as above is obtained by specifically determining its rising point with the zero-cross detector 21, and by activating the monostable vibrator 22 with the output of the detector. A pulse train signal consisting of pulses with a certain time width is obtained. When this pulse train signal is applied to a low-pass filter 6, a pulsating waveform is obtained in the same manner as in the case of FIG. 1, which is similarly determined and output by the binarization circuit 7 as a signal with a period corresponding to the fetal heartbeat. Note that the method for determining the period of the fetal heartbeat based on the output signal from the Doppler filter 4 is not limited to this embodiment, and a method using the Fourier transform method or autocorrelation method may be adopted. . Furthermore, with respect to fetal blood flow signals, it is necessary to distinguish between Doppler signals of fetal arterial blood flow and those of maternal artery blood flow, and to extract only the Doppler signals of fetal arterial blood flow. Physiological standard parameters are used to differentiate between the two types of arterial blood flow. In other words, as shown in Figure 4, from the envelope of a certain frequency band of the blood flow signal or the envelope of the spectrum viewed from a broadband perspective, we can calculate the length of the period t d (shorter in the fetus), the stroke output If we focus on one or both of the rise times t r (shorter in the fetus) of the flow pattern in the fetus, we can see that there are statistical differences as roughly shown in Table 1, so the Doppler signal of the fetal arterial blood flow It is possible to distinguish and extract only

【表】 すなわち第5図はかかる母児両動脈血流信号の
区別のための手段の構成例を示すものであり、こ
れにおいては前記の如くして得た脈動波形51に
関して極大点と極小点の検出が充放電型のピーク
フオロワー52,53により行われる。第6図は
その作業行程を示す波形図であり、第7図は第5
図の要所の回路の一例を示す。 第7図において、増幅器A1、コンデンサC1
ダイオードD1、抵抗R1および電流源CS1である部
分は正ピークフオロワを成し、また同様にA2
C2,D2,R2およびCS2でなる部分は負ピークフ
オロワを成す。C12は各々D12の許容する方向に
のみ信号波形(入力脈波51)に追従する如く充
電されるがその逆の向きには各CS12により制御
されたレートにおいてしか放電し得ず、そのため
C1およびC2の端子波形は第6図61,62の如
く、対応する側の頂点又は底点に向う上り坂又は
下り坂(同順)にしか追従し得ない。追従してい
る間はA1又はA2の出力は各々入力電圧にフオロ
ーするが、追従できない時には負の飽和値が出力
される。この間の大振幅の立上り、立下りが各々
C3〜C6とR3〜R6により微分され、G1〜G4に印加
される。排他的論理和ゲートG1〜G4は図示の如
く接続すると各々目的とする極性の細幅パルスに
応答するようになる。結果はG5によりまとめら
れ、これらの内どれかが来ると(同時にくること
は原理上存在しない)図示せぬCPUに割込要求
を出し、同じくCPUはその直後にポートU1にお
いてどれがおこした割込みかを観測する。CPU
のするべき作業は、第6図でいつてb−d間の時
間幅を計ることを含み、その値と、前記の第1表
のデータとを勘案して信号源の母児いずれかの判
断をする。なお、割込みに基づいて割込みの種別
ごとにその時間間隔をソフトウエア的に計ること
は、公知の技術であり、ここではその説明を省略
する。 なお、前述の心拍数値は、心周周期τをもとに
計る場合には第6図の各d〜d間がτをいみし、
また信号が性質上各d点のタイミングがもつとも
ばらわきが少ないから、それを利用すのが最も好
ましい。 また、母児の区別は前述の如く第4図のTr
もとづいて行うことも可能で、それは姑息的なが
ら第6図中のc−d間の時間によつても行うこと
ができる。 以上説明したように、本発明の動態観測用胎児
心拍数計は、キヤリア周波数に対するドプラシフ
トの比が約0.3〜1パーミルの成分より成る信号
を抽出するものである。すなわち、ドプラシフト
比の低い胎児の心臓弁等からの信号ではなく、ド
プラシフト比の高い胎児の動脈血流からの信号に
よつて心拍周期を得るものである。従つて、母体
の動きや胎動等に起因するドプラシフト比の低い
信号成分を十分に取り除き、これらの影響がなく
胎児心拍動のみに関連したパルス列信号を得るこ
とができ、正確な胎児心拍数計測ができる。ま
た、いずれかの胎児動脈血流からの信号を捕える
ことができれば、探触子の指向性が胎児心から外
れても胎児心拍動に関連したパルス列信号を得る
ことができ、心拍数計測を容易に行うことができ
る。
[Table] That is, FIG. 5 shows an example of the configuration of a means for distinguishing blood flow signals between mother and child arteries, and in this figure, the maximum point and minimum point are Detection is performed by charge/discharge type peak followers 52, 53. Fig. 6 is a waveform diagram showing the working process, and Fig. 7 is a waveform diagram showing the working process.
An example of the circuit of the important part of the figure is shown. In FIG. 7, an amplifier A 1 , a capacitor C 1 ,
The part consisting of diode D 1 , resistor R 1 and current source CS 1 forms a positive peak follower, and likewise A 2 ,
The portion consisting of C 2 , D 2 , R 2 and CS 2 forms a negative peak follower. C 1 and 2 are charged only in the direction allowed by D 1 and 2 so as to follow the signal waveform (input pulse wave 51), but in the opposite direction they are charged only at a rate controlled by each CS 1 and 2 . cannot discharge, so
The terminal waveforms of C 1 and C 2 can only follow an uphill or downhill slope (in the same order) toward the top or bottom point of the corresponding side, as shown in FIG. 6, 61 and 62. While tracking, the output of A 1 or A 2 follows the input voltage, but when it cannot follow, a negative saturation value is output. The large amplitude rise and fall during this period are
It is differentiated by C 3 to C 6 and R 3 to R 6 and applied to G 1 to G 4 . When the exclusive OR gates G 1 to G 4 are connected as shown, they each respond to a narrow pulse of a desired polarity. The results are summarized by G 5 , and when any one of them arrives (in principle, they cannot come at the same time), an interrupt request is sent to the CPU (not shown), and the CPU immediately thereafter determines which one occurs on port U 1 . Observe whether any interrupts occur. CPU
The work to be done includes measuring the time width between b and d as shown in Figure 6, and determining whether the signal source is the mother or child by taking into account that value and the data in Table 1 above. do. Note that measuring the time interval for each type of interrupt based on the interrupt using software is a well-known technique, and its explanation will be omitted here. In addition, when the above-mentioned heart rate value is measured based on the cardiac period τ, each period between d and d in Fig. 6 corresponds to τ,
Furthermore, since there is little variation in the timing of each d point due to the nature of the signal, it is most preferable to utilize this timing. Furthermore, mother and child can be distinguished based on T r in FIG. 4 as described above, and, although palliative, it can also be done based on the time between c and d in FIG. 6. As explained above, the fetal heart rate monitor for dynamic observation of the present invention extracts a signal consisting of a component with a Doppler shift ratio of about 0.3 to 1 per mil to the carrier frequency. That is, the heartbeat cycle is obtained not from a signal from the fetal heart valve, etc., which has a low Doppler shift ratio, but from a signal from the fetal arterial blood flow, which has a high Doppler shift ratio. Therefore, it is possible to sufficiently remove signal components with low Doppler shift ratios caused by maternal movement, fetal movement, etc., and obtain a pulse train signal related only to the fetal heartbeat without these influences, making it possible to accurately measure the fetal heart rate. can. Additionally, if it is possible to capture signals from the blood flow in any of the fetal arteries, it is possible to obtain pulse train signals related to fetal heartbeat even if the directivity of the probe deviates from the fetal heart, making heart rate measurement easier. It can be carried out.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る動態測用胎児心拍数計の
一実施例を示す構成図、第2図は第1図における
各部の動作波形図、第3図は本発明の他の実施例
図、第4図は動脈血流の生理的標準パラメータを
説明するための図、第5図は母児両動脈血流信号
の区別のための手断の構成図、第6図は第5図に
おける動作を説明するための波形図、第7図は第
5図の一部のより詳細な構成図である。 1…被検体、2…発振器、3…ドプラ受信機、
4…ドプラフイルタ、5…検波回路、6…ローパ
スフイルタ、7…2値化回路、21…ゼロクロス
検出器、22…モノステーブルバイブレータ。
FIG. 1 is a configuration diagram showing an embodiment of a fetal heart rate meter for measuring dynamics according to the present invention, FIG. 2 is an operational waveform diagram of each part in FIG. 1, and FIG. 3 is a diagram of another embodiment of the present invention. , Fig. 4 is a diagram for explaining the physiological standard parameters of arterial blood flow, Fig. 5 is a diagram showing the configuration of manual cutting for distinguishing between mother and child arterial blood flow signals, and Fig. 6 is a diagram for explaining the physiological standard parameters of arterial blood flow. A waveform diagram for explaining the operation, and FIG. 7 is a more detailed configuration diagram of a part of FIG. 5. 1... Subject, 2... Oscillator, 3... Doppler receiver,
4... Doppler filter, 5... detection circuit, 6... low pass filter, 7... binarization circuit, 21... zero cross detector, 22... monostable vibrator.

Claims (1)

【特許請求の範囲】 1 母体腹壁上から探触子をあてて超音波ドプラ
法により胎児の動脈血流に基づくドプラシフト信
号を得てこれより胎児心の拍動周期を求めるよう
にした胎児心拍数計において、キヤリア周波数に
対するドプラシフトの比が約0.3パーミル以下の
成分を遮断するドプラフイルタを備え、前記ドプ
ラシフト信号をこのドプラフイルタに通すことに
より主としてキヤリア周波数に対するドプラシフ
トの比が約0.3〜1パーミルの成分より成る信号
を抽出し、母体の動揺及び胎動の影響を受けるこ
となく胎児心の拍動周期に関連した信号を得るこ
とができるようにしたことを特徴とする動態観測
用胎児心拍数計。 2 前記ドプラフイルタを通して得られる胎児血
流信号からその短時間平均周波数の変化の周期性
を検出することにより胎児心拍数値を得るように
構成されたことを特徴とする特許請求の範囲第1
項記載の動態観測用胎児心拍数計。 3 前記ドプラフイルタを通して得られる胎児血
流信号に対して、心拍動行程の拍出期間の長短に
由来して胎児動脈血流のドプラ信号と母体動脈血
流のそれとを区別するようにしたことを特徴とす
る特許請求の範囲第1項記載の動態観測用胎児心
拍数計。
[Scope of Claims] 1. Fetal heart rate obtained by applying a probe from above the maternal abdominal wall to obtain a Doppler shift signal based on the fetal arterial blood flow using the ultrasound Doppler method, and determining the fetal heart beat cycle from this signal. The meter is equipped with a Doppler filter that blocks components with a ratio of Doppler shift to the carrier frequency of about 0.3 permil or less, and by passing the Doppler shift signal through the Doppler filter, mainly components with a ratio of Doppler shift to the carrier frequency of about 0.3 to 1 permil are included. 1. A fetal heart rate monitor for dynamic observation, characterized in that it is capable of extracting a signal consisting of the following, and obtaining a signal related to the beating cycle of the fetal heart without being affected by maternal agitation or fetal movement. 2. The first aspect of the present invention is characterized in that the fetal heart rate value is obtained by detecting the periodicity of changes in the short-term average frequency of the fetal blood flow signal obtained through the Doppler filter.
Fetal heart rate monitor for dynamic observation as described in section. 3. With respect to the fetal blood flow signal obtained through the Doppler filter, the Doppler signal of the fetal arterial blood flow and that of the maternal artery blood flow are distinguished based on the length of the ejection period of the heartbeat stroke. A fetal heart rate monitor for dynamic observation according to claim 1.
JP58123713A 1983-07-07 1983-07-07 Embryo cardiac pulse meter for observing movement state Granted JPS6014846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58123713A JPS6014846A (en) 1983-07-07 1983-07-07 Embryo cardiac pulse meter for observing movement state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58123713A JPS6014846A (en) 1983-07-07 1983-07-07 Embryo cardiac pulse meter for observing movement state

Publications (2)

Publication Number Publication Date
JPS6014846A JPS6014846A (en) 1985-01-25
JPH0216137B2 true JPH0216137B2 (en) 1990-04-16

Family

ID=14867513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58123713A Granted JPS6014846A (en) 1983-07-07 1983-07-07 Embryo cardiac pulse meter for observing movement state

Country Status (1)

Country Link
JP (1) JPS6014846A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160213349A1 (en) * 2013-09-10 2016-07-28 Here Med Ltd. Fetal heart rate monitoring system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126265A (en) * 1976-04-15 1977-10-22 Hewlett Packard Yokogawa Instantaneous information arithmetic unit
JPS5726206U (en) * 1980-07-22 1982-02-10

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126265A (en) * 1976-04-15 1977-10-22 Hewlett Packard Yokogawa Instantaneous information arithmetic unit
JPS5726206U (en) * 1980-07-22 1982-02-10

Also Published As

Publication number Publication date
JPS6014846A (en) 1985-01-25

Similar Documents

Publication Publication Date Title
US5441051A (en) Method and apparatus for the non-invasive detection and classification of emboli
JP5815705B2 (en) How to reduce ambiguity of ultrasound signals during fetal monitoring
US7798968B2 (en) Automatic detection system and method of spectral Doppler blood flow velocity
US5170791A (en) Method and apparatus for calculating the fetal heart rate
KR101264442B1 (en) Ultrasonic technique for assessing wall vibrations in stenosed blood vessels
Wells A range-gated ultrasonic Doppler system
US8050476B2 (en) Heart rate demodulation of periodic movement in ultrasound data for object identification
JP5634999B2 (en) Fetal heart rate monitoring system
US4152928A (en) System for detecting fat particles in blood
Eriksen et al. Improved method for cardiac output determination in man using ultrasound Doppler technique
WO1992010135A1 (en) Distinguishing ultrasound signals returned from bubbles
EP0885593A3 (en) Ultrasonic diagnosing apparatus
JPS62117535A (en) Ultrasonic doppler apparatus
Borodziński et al. Quantitative transcutaneous measurements of blood flow in carotid artery by means of pulse and continuous wave Doppler methods
JP3578680B2 (en) Ultrasound diagnostic equipment
JPH0216137B2 (en)
Rouvre et al. Empirical mode decomposition (EMD) for multi-gate, multi-transducer ultrasound Doppler fetal heart monitoring
RU2587310C1 (en) Method of determining and differentiation microemboluses in brain blood stram by means of ultrasonic doppler system
Shinozuka et al. Measurement of fetal movements using multichannel ultrasound pulsed Doppler: autorecognition of fetal movements by maximum entropy method
JP3238467B2 (en) Ultrasound Doppler diagnostic device
CN103494615A (en) Method and device for calculating maximum frequency enveloping curve
CN108852413B (en) Ultrasonic pulse detection probe and detection method based on multi-aperture coupling piece
US4888744A (en) Pulsed directional doppler frequency domain output circuit
JPS6132643Y2 (en)
JP4357260B2 (en) Acceleration pulse wave measuring device