JPH02161337A - Road surface state detecting device - Google Patents

Road surface state detecting device

Info

Publication number
JPH02161337A
JPH02161337A JP31382288A JP31382288A JPH02161337A JP H02161337 A JPH02161337 A JP H02161337A JP 31382288 A JP31382288 A JP 31382288A JP 31382288 A JP31382288 A JP 31382288A JP H02161337 A JPH02161337 A JP H02161337A
Authority
JP
Japan
Prior art keywords
road surface
image
polarization
light
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31382288A
Other languages
Japanese (ja)
Inventor
Isao Horiba
堀場 勇夫
Masahiro Tawada
昌弘 多和田
Koji Ueda
浩次 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Electric Works Co Ltd
Original Assignee
Nagoya Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Electric Works Co Ltd filed Critical Nagoya Electric Works Co Ltd
Priority to JP31382288A priority Critical patent/JPH02161337A/en
Publication of JPH02161337A publication Critical patent/JPH02161337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To extremely simplify the maintenance/inspection work by a concise device by extracting a vertical polarization image and a horizontal polarization image from in a reflected light from a road surface in the vicinity of a specific angle, and deciding a road surface state, based on a variation of density information in each image. CONSTITUTION:To a TV camera 11 installed toward a road surface 1 at an angle of about 53 deg., an image of an object to be monitored is inputted. In this state, when a linear polarizer 12 is set to a vertical polarization position, a video signal of a vertical polarization image is outputted from the TV camera 11, passes through an LPF 13 and an A/D converter 14 and sent to image memories 15, 16. When an input of one screen of the vertical polarization image to the image memory 15 is ended, a control part 22 sets a sampling timer 23, rotates the polarizer 12 by a time-up signal l and sets a plane of polarization to a horizontal polarization position. Thereafter, a video signal of a horizontal polarization image is outputted from the camera 11, brought to A/D conversion 14, digital density data (a) of multi-gradation is selected and stored in the image memory 16, and digital density data of the memories 15, 16 are brought to logarithmic calculation 17, 18, brought to difference conversion 19 and outputted to a microcomputer 21.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、路面の乾燥状態と湿潤(水濡れ、凍結等)状
態を検知するための路面状態検知装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a road surface condition detection device for detecting the dry state and wet (wet, frozen, etc.) state of a road surface.

〔従来の技術〕[Conventional technology]

この種の路面状態検知装置としては、特公昭62−39
896号公報記載のものがある。
As this type of road condition detection device,
There is one described in Publication No. 896.

この従来の装置はパターンマツチングの手法を用いて路
面状態を判定するようにしたもので、第11図にその構
成を示すように、検知対象とする道路51上に、路面を
構成するアスファルト等の路面部52、該路面部52よ
りも明るい明部53、路面部52よりも暗い暗部54の
三種類の反射体を所定間隔に並べてパターン化したター
ゲット55を敷設し、このターゲット55を照明袋25
6で照射し、その反射光を自動光量装置57で一定光量
に調節した後、ITVカメラ等の撮像装置58で撮影し
て映像信号に変換し、この映像信号の呈する反射光パタ
ーンをパターン比較部59において予め用意した第12
図山)〜(e)に示す如き乾燥時、降水時、凍結時、積
雪時等の各路面状態に対応する基準パターンと比較し、
そのパターンが−致するか否かによって路面状態を検知
するようにしたものである。
This conventional device uses a pattern matching method to determine the road surface condition, and as shown in FIG. A patterned target 55 is laid with three types of reflectors arranged at predetermined intervals: a road surface section 52, a bright section 53 that is brighter than the road surface section 52, and a dark section 54 that is darker than the road surface section 52. 25
6, the reflected light is adjusted to a constant light intensity by an automatic light intensity device 57, and then photographed by an imaging device 58 such as an ITV camera and converted into a video signal. 12 prepared in advance in 59
Compare with reference patterns corresponding to each road surface condition such as dry, rainy, frozen, snowy, etc. as shown in Figures 1) to (e),
The road surface condition is detected based on whether the patterns match or not.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記した従来の装置の場合、実際に路面
状態の判定を行うには、予め道路面上にパターン認識用
のターゲット55を敷設しなければならず、その設置作
業が煩雑となる上、タイヤ等との接触によるターゲット
の汚れや変色・脱色等のために検知精度が経時とともに
低下し、設置後の保守・点検作業も顧繁に行わねばなら
ないという問題があった。また、車両の走行によりター
ゲフト面に凹凸ができ易く、反射光パターンが変化して
理論通りのパターン認識結果を得ることができなくなる
という問題もあった。
However, in the case of the above-mentioned conventional device, in order to actually judge the road surface condition, it is necessary to lay out the target 55 for pattern recognition on the road surface in advance, which makes the installation work complicated, and the tire Detection accuracy deteriorates over time due to dirt, discoloration, and decolorization of the target due to contact with other objects, and maintenance and inspection work after installation must be performed frequently. Furthermore, there is also the problem that unevenness is likely to be formed on the target surface due to the running of the vehicle, and the reflected light pattern changes, making it impossible to obtain pattern recognition results according to theory.

さらに、上記した従来の装置は、ターゲット敷設部分の
スポット的な路面情報から路面全体の乾燥状態と湿潤状
態を決定しているが、ターゲット敷設部分がターゲット
敷設部分以外の他の路面部分と異なった路面状態、例え
ば、車両荷台の幌等に溜まった水がターゲット部分に落
ちたような場合やターゲット部分にできた車のわだちに
水が溜まっているような場合には、路面全体としては乾
燥状態にあるにもかかわらず湿潤状態と判定してしまう
ことがある等、面的な広がりを持つ路面全体の状況を正
しく把握することができないという問題があった。
Furthermore, the conventional device described above determines the dry and wet conditions of the entire road surface from spot information on the road surface in the target area, but if the target area is different from other road surface areas other than the target area. The road surface condition, for example, if water that has accumulated on the hood of a vehicle has fallen into the target area, or if water has accumulated in the ruts of a car that have formed in the target area, the road surface as a whole is dry. There has been a problem in that it is not possible to accurately grasp the condition of the entire road surface, which has a wide area, such as sometimes determining that the road surface is wet even though the road surface is wet.

本発明は上記事情に鑑みなされたもので、路面状態によ
って路面反射光の偏光状態が変わることに着目し、上記
したターゲットや特定の照明光をを必要とせずに、しか
も路面の乾燥状態と湿潤状態を面としての広がりを持っ
て判定することのできる路面状態検知装置を提供するこ
とを目的とする。
The present invention was developed in view of the above circumstances, and focuses on the fact that the polarization state of road surface reflected light changes depending on the road surface condition. It is an object of the present invention to provide a road surface condition detection device capable of determining conditions over a wide area.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するため、第1図にその原理を
示すように、路面法線Nに対して53゛近傍の角度に配
置した路面撮像手段2と、該路面撮像手段の前面に配置
すれ、偏光面を垂直・水平方向に可変可能な偏光素子3
と、該偏光素子の偏光面を垂直と水平方向に可変制御す
る偏光角制御手段4と、前記路面撮像手段の出力する偏
光角の異なる少なくとも2画面以上の画像を記憶する画
像記憶手段5と、該偏光角の異なる画像間の明暗濃度の
変化に基づいて路面の乾燥状態と湿潤状態を判定する路
面状態判定手段6とから構成した。
In order to achieve the above object, the present invention, as shown in the principle in FIG. Polarizing element 3 whose polarization plane can be varied vertically and horizontally
, a polarization angle control means 4 for variably controlling the polarization plane of the polarization element in vertical and horizontal directions, and an image storage means 5 for storing at least two or more images with different polarization angles output from the road surface imaging means; The image forming apparatus includes road surface condition determining means 6 for determining whether the road surface is dry or wet based on changes in brightness and darkness between images having different polarization angles.

〔作 用〕[For production]

本発明の路面状態検知装置の作用を説明する前に、本発
明における路面状態の判定処理の基礎となる光の屈折と
反射および偏光について述べる。
Before explaining the operation of the road surface condition detection device of the present invention, the refraction and reflection of light and polarization, which are the basis of the road surface condition determination process of the present invention, will be described.

なお、一般に自然光中の光の振動面はランダムであるが
、以下においては理解を容易とするために、第2図に示
すような、入射面に対して垂直に振動する垂直偏光(S
偏光)と、入射面に対して平行に振動する水平偏光(P
偏光)の2つの光のみを採り上げる。
Generally, the plane of vibration of light in natural light is random, but in order to make it easier to understand, in the following we will use vertically polarized light (S
polarized light) and horizontally polarized light (P
Only two types of light (polarized light) are picked up.

いま、第3図(a)において、11.I、、Ifを入射
光9反射光、屈折光の光強度、M、、M、、M、を入射
光の面積9反射光の面積9M折先の面積とすると、入射
光I盈1反射光I1.屈折光rrの各エネルギーW、、
W、、W、は次式で表すことができる。
Now, in FIG. 3(a), 11. If I, , If is the light intensity of the incident light 9 reflected light and refracted light, and M, , M, , M is the area of the incident light 9 the area of the reflected light 9 M, then the incident light I and the reflected light are I1. Each energy W of the refracted light rr,
W,, W, can be expressed by the following equation.

また、光の入射する物質Aのエネルギー反射率Rは次式
のように定義される。
Further, the energy reflectance R of the substance A on which light is incident is defined as the following equation.

ここで、Fresnelの公式から任意の入射角φに対
する水平偏光(P偏光)と垂直偏光(S偏光)のそれぞ
れのエネルギー反射率Rp、Rsを求めると、次式のよ
うになる。
Here, when the energy reflectances Rp and Rs of horizontally polarized light (P polarized light) and vertically polarized light (S polarized light) are calculated for an arbitrary incident angle φ from Fresnel's formula, the following equations are obtained.

なお、φ、Tは第3図(b)で示す入射角2M折角を表
す。
Note that φ and T represent the incident angle of 2M shown in FIG. 3(b).

この式(3)から、 (φ+γ)がπ/2となると、R
Pの分母のtan” (φ+γ)は無限大となり、した
がって水平偏光(P偏光)のエネルギー反射率RPは0
となる。つまり、(φ+γ)がπ/2のときは、水平偏
光成分は全て透過し、物質Aから反射してくる反射光は
垂直偏光(S偏光)成分のみとなる。これを式で表すと
、 π φ+γ=              ・−・−−−−
・・−・・−(4)となる。5nellの法則から、第
3図(′b)の屈折率n。
From this equation (3), when (φ+γ) becomes π/2, R
The denominator of P, tan” (φ+γ), becomes infinite, so the energy reflectance RP of horizontally polarized light (P polarized light) is 0.
becomes. That is, when (φ+γ) is π/2, all the horizontally polarized light components are transmitted, and the reflected light reflected from the substance A is only the vertically polarized (S-polarized) component. Expressing this in the formula, π φ+γ= ・−・−−−−
...--(4). From 5nell's law, the refractive index n in Fig. 3('b).

n2との関係は n冨     sin  φ =tanr             ・−−−−−(
5)n! となり、この式(5)の関係が成立する場合には、水平
偏光成分は全て物質Aを透過し、物質Aからの反射光は
垂直偏光のみとなる。
The relationship with n2 is n-thickness sin φ = tanr ・------(
5) n! If the relationship of equation (5) holds true, all horizontally polarized light components will pass through material A, and the reflected light from material A will be only vertically polarized light.

第4図と第5図は水と氷のエネルギー反射率R1゜R3
の測定例を示す、この図から明らかなように、水および
氷の場合、入射角(=反射角)φの53゜近傍で水平偏
光成分の反射率R2と垂直偏光成分の反射率R8に大き
な差が生じていることが分かる。他方、路面を構成する
アスファルトのような粗面では、光はほぼ全面乱反射す
ることがら、乾燥状態にある路面の水平偏光成分と垂直
偏光成分の反射光レベルはほとんど差を生じない。
Figures 4 and 5 show the energy reflectance R1°R3 of water and ice.
As is clear from this figure, which shows a measurement example of It can be seen that there is a difference. On the other hand, on a rough surface such as asphalt that constitutes a road surface, light is diffusely reflected almost all over the surface, so there is almost no difference in the level of reflected light between the horizontally polarized light component and the vertically polarized light component on a dry road surface.

したがって、上記53°近傍の反射光の垂直・水平偏光
成分の変化を検出することにより、路面の乾燥状態と湿
潤状態を識別することが可能となる。
Therefore, by detecting changes in the vertical and horizontal polarization components of the reflected light near 53°, it is possible to distinguish between a dry state and a wet state of the road surface.

本発明の路面状態検知装置は、上記結論に基づいて構成
されたもので、路面1からの反射光中の53°近傍の光
線のみを路面撮像手段2でピックアップする。この時、
該路面撮像手段2の前面に配置した偏光素子3を、偏光
角制御手段4により10ミリ秒ないし数秒程度の一定時
間間隔でその偏光角を水平方向と垂直方向に交互に切り
換える。
The road surface condition detection device of the present invention is constructed based on the above conclusion, and the road surface imaging means 2 picks up only light rays in the vicinity of 53° in the reflected light from the road surface 1. At this time,
The polarization angle of the polarization element 3 disposed in front of the road surface imaging means 2 is alternately switched between the horizontal direction and the vertical direction at constant time intervals of about 10 milliseconds to several seconds by the polarization angle control means 4.

したがって、路面撮像手段2には路面1の水平偏光画像
と垂直偏光画像が交互に入力し、それぞれの画像は路面
撮像手段2において明暗濃度を与える映像信号に変換さ
れる。
Therefore, horizontally polarized images and vertically polarized images of the road surface 1 are alternately input to the road surface imaging means 2, and each image is converted by the road surface imaging means 2 into a video signal that provides contrast density.

画像記憶手段5は路面撮像手段2の出力する前記水平偏
光画像と垂直偏光画像を画像データとして記憶し、その
画像データを路面状態判定手段6に送る。そして、路面
状態判定手段6はこの水平偏光画像と垂直偏光画像の濃
度データから路面が乾燥状態にあるか、あるいは湿潤(
水濡れ、凍結等)状態にあるかを判定する。
The image storage means 5 stores the horizontal polarization image and the vertical polarization image outputted from the road surface imaging means 2 as image data, and sends the image data to the road surface condition determination means 6. Then, the road surface condition determining means 6 determines whether the road surface is dry or wet based on the density data of the horizontally polarized image and the vertically polarized image.
Determine whether the device is wet, frozen, etc.).

第6図は路面撮像手段2を53°近傍に設置した時の路
面乾燥時の垂直偏光(S偏光)画像と水平偏光(P偏光
)画像の撮像例を示し、また第7図は路面湿潤時の垂直
偏光(S偏光)画像と水平偏光(P偏光)画像の撮像例
を示す。
Fig. 6 shows an example of a vertically polarized light (S polarized light) image and a horizontally polarized light (P polarized light) image when the road surface is dry when the road surface imaging means 2 is installed near 53 degrees, and Fig. 7 shows an example of a captured image when the road surface is wet. An example of capturing a vertically polarized light (S polarized light) image and a horizontally polarized light (P polarized light) image is shown below.

第6図(a) (b)の路面乾燥時においては、路面1
は前述したようにほぼ全面乱反射体と考えることができ
るため、路面撮像手段2の前面に配置した偏光素子3の
偏光面を(a) (b)図のように垂直・水平方向に変
えても、両者間にはほとんど明暗濃度の変化を生じない
、このため、例えばこの(a) (b)図の画像間で同
一画素位置同士の濃度値の減算を行うと、その減算画像
は濃度値はぼ0の画像となる。さらに、同一画素位置同
士の濃度値の除算を行えば、その除算画像は濃度値はぼ
1の均一画像となる。
When the road surface is dry as shown in Fig. 6(a) and (b), the road surface 1
As mentioned above, can be considered as an almost entire surface diffuse reflector, so even if the polarization plane of the polarizing element 3 placed in front of the road surface imaging means 2 is changed to vertical or horizontal directions as shown in (a) and (b), , there is almost no change in brightness or darkness between the two images.For this reason, for example, if you subtract the density values at the same pixel position between the images in (a) and (b), the subtracted image will have a density value of The image will be zero. Furthermore, if the density values at the same pixel positions are divided, the resulting divided image will be a uniform image with a density value of approximately 1.

他方、第7図(a) (b)の路面湿潤時においては、
(81図の垂直偏光画像は第6図Ta)の乾燥時とほと
んど差がないが、水の存在する部分(水濡れ、凍結等)
では、水平偏光(P偏光)成分は全て透過し、その下の
アスファルト面で吸収2反射される。したがって、路面
からの反射光は垂直偏光(S偏光)成分が大部分となり
、(b1図の水平偏光画像では、図中のハツチングで示
した水分の存在する部分の明暗濃度値が小さく (画像
としては暗く)なる。
On the other hand, when the road surface is wet as shown in Fig. 7(a) and (b),
(The vertical polarization image in Figure 81 has almost no difference from the dry image in Figure 6 Ta), but there are areas where water is present (wet, frozen, etc.)
In this case, all horizontally polarized light (P-polarized light) components are transmitted, absorbed and reflected by the asphalt surface below. Therefore, most of the reflected light from the road surface is vertically polarized (S-polarized) component, and (b) In the horizontally polarized image in figure 1, the contrast density value in the area where moisture exists, indicated by hatching in the figure, is small (as an image) becomes dark).

このため、例えばこの(a) (b)図の画像間で同一
画素位置同士の濃度値の差をとれば、水分の存在する部
分だけを正確に抽出することができる。
For this reason, for example, by calculating the difference in density values between the same pixel positions in the images shown in FIGS. 3(a) and 3(b), it is possible to accurately extract only the portion where moisture is present.

上記したように、路面乾燥時と路面湿潤時とでは、53
°近傍における垂直偏光画像と水平偏光画像とは大きく
異なるため、路面状態判定手段6でこれら画像間の濃度
変化を比較することにより撮影画像から路面状態を正確
に検知することができる。
As mentioned above, when the road surface is dry and when the road surface is wet, 53
Since the vertically polarized image and the horizontally polarized image in the vicinity are significantly different from each other, the road surface condition can be accurately detected from the photographed image by comparing the density changes between these images using the road surface condition determining means 6.

本発明の場合、53°近傍の路面反射光であればどのよ
うな光源の光でも検知光として利用できるため、路面を
照らす照明光源を特定光とする必要がない、したがって
、自然光の反射光成分を直接利用できるため、路面全面
の画像データを容易に得ることができ、この結果、例え
ば路面が全体に濡れているのかあるいは一部のみが濡れ
ているのか等、路面状態を面的な広がりを持って正確に
判定することが可能となる。
In the case of the present invention, any light source that illuminates the road surface can be used as detection light as long as it is near 53 degrees, so there is no need to use specific light as the illumination light source that illuminates the road surface. Therefore, the reflected light component of natural light Because it can be used directly, it is easy to obtain image data of the entire road surface, and as a result, it is possible to determine the extent of the road surface condition, such as whether the entire road surface is wet or only a part of it is wet. This makes it possible to make accurate judgments.

なお、路面撮像手段2としては、ITVカメラ等の周知
の1最像機器(撮像管、CCD等)を用いうろことは言
うまでもない。
As the road surface imaging means 2, it goes without saying that a well-known imaging device such as an ITV camera (image pickup tube, CCD, etc.) may be used.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例につき説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第8図は本発明になる路面状態検知装置の一例であり、
図中、11は路面撮像手段としてのITVカメラ等のテ
レビカメラ、12はテレビカメラ11の前面に配置した
直線偏光子、13はローパスフィルタ、14はA/D変
換器、15.16は入力画像の1画面以上の画像データ
をそれぞれ格納可能な画像メモリ、17.18は対数演
算器、19は差分演算器、20は演算結果を格納する出
力メモリ、21は路面状態の判定処理を行うマイクロプ
ロセッサ、22は直線偏光子12の偏光角の可変制御と
画像データ取り込みのためのサンプリング制御を行う制
御部、23はサンプリングタイマである。
FIG. 8 is an example of a road surface condition detection device according to the present invention,
In the figure, 11 is a television camera such as an ITV camera as a road surface imaging means, 12 is a linear polarizer placed in front of the television camera 11, 13 is a low-pass filter, 14 is an A/D converter, and 15.16 is an input image. 17 and 18 are logarithmic calculators, 19 are difference calculators, 20 are output memories that store calculation results, and 21 are microprocessors that perform road surface condition determination processing. , 22 is a control unit that performs variable control of the polarization angle of the linear polarizer 12 and sampling control for capturing image data, and 23 is a sampling timer.

上記テレビカメラ11は、例えば第9図に示すように、
路面状態を監視すべき道路の路側等に位置して、路面1
に向けてほぼφ=53°の角度で設置される。なお、夜
間等における検知をも考慮するならば、夜間照明灯24
等の近くに設置することがより望ましい。
The television camera 11, for example, as shown in FIG.
Road surface 1 is located on the side of the road where the road surface condition should be monitored.
It is installed at an angle of approximately φ=53° toward the In addition, if detection at night is also considered, the night illumination light 24
It is more desirable to install it near etc.

進んで、上記構成になる実施例の動作を説明する。Next, the operation of the embodiment having the above configuration will be explained.

路面1に向けてほぼ53°の角度で設置されたテレビカ
メラ11には、第6図および第7図に示したような監視
対象路面の画像が入力している。
Images of the road surface to be monitored as shown in FIGS. 6 and 7 are input to the television camera 11, which is installed at an angle of approximately 53 degrees toward the road surface 1.

制御部22は偏光角制御信号gを出力し、直線偏光子1
2を回転して垂直偏光位置とし、これに同期して、画像
取込信号mをA/D変換器I4へ出力する。
The control unit 22 outputs the polarization angle control signal g, and the linear polarizer 1
2 is rotated to the vertical polarization position, and in synchronization with this, the image capture signal m is output to the A/D converter I4.

直線偏光子12が垂直偏光位置に設定されると、テレビ
カメラIIからは第6図(a)または第7図(a)の如
き垂直偏光画像の映像信号が出力され、この映像信号は
ローパスフィルタ13を通じてA/D変換器14へ送ら
れる。そして、A/D変換器14はこの垂直偏光画像の
映像信号をサンプリングして多階調のディジタル濃度デ
ータaに変換し、画像メモリ15.16へ送る。
When the linear polarizer 12 is set to the vertical polarization position, a video signal of a vertically polarized image as shown in FIG. 6(a) or FIG. 7(a) is output from the television camera II, and this video signal is passed through a low-pass filter. 13 to the A/D converter 14. Then, the A/D converter 14 samples the video signal of this vertically polarized image, converts it into multi-gradation digital density data a, and sends it to the image memory 15.16.

なお、前記ローパスフィルタ13は高域雑音成分の除去
を目的として挿入されたものである。−般にテレビカメ
ラ等の撮像機器内部の増幅器等から発生する雑音は、高
い周波数成分から低い周波数成分までほぼ均一に存在す
るので、ローパスフィルタ13でこの高い周波数成分を
除去することにより、ランダム雑音成分の減少を図ると
ともに、サンプリング時の折り返し雑音の発生を防止す
る。
Note that the low-pass filter 13 is inserted for the purpose of removing high-frequency noise components. - In general, noise generated from amplifiers inside imaging equipment such as television cameras exists almost uniformly from high frequency components to low frequency components, so by removing this high frequency component with the low-pass filter 13, random noise In addition to reducing components, this also prevents aliasing noise from occurring during sampling.

次いで、制御部22は画像メモリ選択信号すを出力し、
2つの画像メモリのうちの一方の画像メモリI5を選択
し、垂直偏光画像の1画面分のディジタル濃度データを
画像メモリ15に格納する。
Next, the control unit 22 outputs an image memory selection signal,
One of the two image memories I5 is selected, and digital density data for one screen of the vertically polarized image is stored in the image memory 15.

画像メモリ15への垂直偏光画像の1画面分のディジタ
ル濃度データの取り込みが終了すると、制御部22はタ
イマ開始信号kを出力し、数10ミリ秒から数秒程度の
タイムアツプ時間を設定したサンプリングタイマ23を
起動する。そして、サンプリングタイマ23は、一定時
間の経過の後タイムアツプし、タイムアツプ信号lを制
御部22へ出力する。
When the capture of one screen worth of digital density data of a vertically polarized image into the image memory 15 is completed, the control unit 22 outputs a timer start signal k, and the sampling timer 23 is set with a time-up time of several tens of milliseconds to several seconds. Start. Then, the sampling timer 23 times up after a certain period of time has elapsed, and outputs a time-up signal l to the control section 22.

制御部22は上記タイムアツプ信号Eの受信後、再び偏
光角制御信号gを出力し、直線偏光子12を回転してそ
の偏光面を垂直偏光位置から水平偏光位置に変え、さら
にこれと同期して、画像取込信号mをA/D変換器14
へ出力する。
After receiving the time-up signal E, the control unit 22 outputs the polarization angle control signal g again, rotates the linear polarizer 12 to change its polarization plane from the vertical polarization position to the horizontal polarization position, and further synchronizes with this. , the image capture signal m is sent to the A/D converter 14
Output to.

直線偏光子12が水平偏光位置に設定されると、テレビ
カメラ11からは第6図(b)または第7同価)の如き
水平偏光画像の映像信号が出力され、ローパスフィルタ
13を通じてA/D変換器14へ送られる。そして、A
/D変換器14はこの水平偏光画像の映像信号をサンプ
リングして多階調のディジタル濃度データaに変換し、
画像メモリ15゜16へ送る。
When the linear polarizer 12 is set to the horizontal polarization position, the television camera 11 outputs a video signal of a horizontally polarized image as shown in FIG. The signal is sent to converter 14. And A
The /D converter 14 samples the video signal of this horizontally polarized image and converts it into multi-gradation digital density data a.
Send to image memory 15°16.

次いで、制御部22は画像メモリ選択信号Cを出力して
画像メモリ16を選択し、水平偏光画像の1画面分のデ
ィジタル濃度データを画像メモリ16に格納する。
Next, the control unit 22 outputs an image memory selection signal C to select the image memory 16, and stores one screen worth of digital density data of the horizontal polarization image in the image memory 16.

上記のようにして垂直偏光画像と水平偏光画像の1画面
分のディジタル濃度データの取り込みが終了すると、画
像メモリ15.16に格納されたディジタル濃度データ
は対数演算器17.18で対数演算された後、データバ
スd、eを通じて差分演算器19へ送られる。
When the digital density data for one screen of the vertically polarized image and the horizontally polarized image has been captured in the above manner, the digital density data stored in the image memory 15.16 is subjected to logarithmic calculation by the logarithm calculator 17.18. Thereafter, it is sent to the difference calculator 19 via data buses d and e.

差分演算器19は、対数演算器17.18から送られて
くる垂直偏光画像と水平偏光画像の対応する各画素毎の
差分演算を行い、その対数差分演算値fを出力メモリ2
0へ出力し、格納する。このように2つの画像のディジ
タル濃度データを一旦対数演算器17.18で対数変換
した後、差分演算器19で差分演算を行うことにより、
除算と等価の演算処理、すなわち垂直偏光画像と水平偏
光画像の対応する各画素毎の濃度比を求めたと同じ演算
を行ったことになる。
The difference calculator 19 calculates the difference for each corresponding pixel of the vertically polarized image and the horizontally polarized image sent from the logarithm calculators 17 and 18, and outputs the logarithmic difference calculation value f to the memory 2.
Output to 0 and store. In this way, the digital density data of the two images are once logarithmically converted by the logarithm calculators 17 and 18, and then the difference calculation is performed by the difference calculator 19.
This means that the calculation process is equivalent to division, that is, the same calculation as calculating the density ratio for each corresponding pixel of the vertically polarized image and the horizontally polarized image.

垂直偏光画像と水平偏光画像のIN面分について上記対
数差分演算が終了すると、差分演算器19はマイクロプ
ロセッサ21へ演算終了信号りを出力する。
When the logarithmic difference calculation is completed for the IN plane of the vertically polarized image and the horizontally polarized image, the difference calculator 19 outputs a calculation end signal to the microprocessor 21.

マイクロプロセッサ21は該演算終了信号りを受信する
と、データバスiを通じて出力メモリ20から対数差分
演算データを読みだし、該対数差分演算値に基づいて以
下に述べるような路面状態の判定処理を実行する。そし
て、この路面状態の判定処理が終了すると、マイクロプ
ロセッサ21は制御部22へ処理終了信号jを出力し、
制御部22の状態を初期状態に戻し、再び上述した各処
理を繰り返す。
When the microprocessor 21 receives the calculation end signal, it reads the logarithmic difference calculation data from the output memory 20 via the data bus i, and executes the following road surface condition determination process based on the logarithmic difference calculation value. . When this road surface condition determination process is completed, the microprocessor 21 outputs a process end signal j to the control unit 22,
The state of the control unit 22 is returned to the initial state, and the above-described processes are repeated again.

第10図は上記したマイクロプロセッサ21の路面状態
の判定処理のフローチャートである。
FIG. 10 is a flowchart of the road surface condition determination processing performed by the microprocessor 21 described above.

マイクロプロセッサ21は差分演算器19から演算終了
信号りを受信すると、路面状態の判定処理を行うべき路
面の検知領域を指定しくステップ[1])、出力メモリ
20からこの指定した領域内に存在する各画素について
の対数差分演算値を読み出し、これ゛らの値の加算を行
う(ステップ[2])。
When the microprocessor 21 receives the computation end signal from the difference calculator 19, it specifies the detection area of the road surface in which the road surface condition determination process is to be performed (step [1]), and selects from the output memory 20 information that exists within the specified area. The logarithmic difference calculation value for each pixel is read out, and these values are added (step [2]).

前述したように、路面が乾燥している場合(第6図(a
)(b))は、垂直偏光画像と水平偏光画像の間にはそ
の濃度値に大きな差はなく、したがって前記ステップ[
2]における加算値は小さな値となる。
As mentioned above, when the road surface is dry (Fig. 6 (a)
)(b)) There is no significant difference in the density value between the vertically polarized image and the horizontally polarized image, so the step [
2] is a small value.

他方、路面が雨等で濡れたり、凍結して湿潤している場
合(第7図(a) (b) ’)は、垂直偏光画像と水
平偏光画像の間にはその濃度値に大きな差を生じ、前記
ステップ[2]における加算値は大きな値となる。
On the other hand, when the road surface is wet due to rain, etc. or frozen and moist (Fig. 7(a)(b)'), there is a large difference in the density value between the vertically polarized image and the horizontally polarized image. This occurs, and the added value in step [2] becomes a large value.

上記加算値の大小は、ステップ[3]において所定のし
きい値を用いて判定され、設定されたしきい値よりも大
きいときは路面は湿潤状態にあると判定しくステップ[
4] ) 、またしきい値よりも小さいときは路面は乾
燥状態にあると判定する(ステップ[5〕)。
The magnitude of the above added value is determined using a predetermined threshold in step [3], and if it is larger than the set threshold, it is determined that the road surface is in a wet state.
4]), and when it is smaller than the threshold value, it is determined that the road surface is in a dry state (step [5]).

以上のようにして、垂直偏光画像と水平偏光画像の濃度
データの変化に基づき、路面の乾燥状態と湿潤状態を安
定に検出することができる。
As described above, the dry state and wet state of the road surface can be stably detected based on changes in the density data of the vertically polarized light image and the horizontally polarized light image.

路面がやや湿ったような状態と水溜まりができるほどの
状態とでは、路面上に水分が存在することでは同一であ
るものの、両者の反射レベルには大きな違いがあり、単
に全反射光の光強度レベルを比較するのみでは路面状態
を正確に判定することは困難であるが、上記実施例のよ
うに垂直偏光画像と水平偏光画像の比をとることにより
各偏光成分の相対的な振る舞いを知ることができ、路面
状態を一意的に決定することが可能となる。
Although the presence of moisture on the road surface is the same between a slightly damp road surface and a state where puddles form, there is a big difference in the reflection level between the two, and it is simply a matter of the light intensity of total reflected light. Although it is difficult to accurately determine the road surface condition by simply comparing the levels, it is possible to know the relative behavior of each polarization component by taking the ratio of the vertical polarization image and the horizontal polarization image as in the above example. This makes it possible to uniquely determine the road surface condition.

さらに、上記実施例は、垂直偏光画像と水平偏光画像の
取り込み間隔を数10ミリ秒から数秒程度の短い時間間
隔で行うことにより両画像の差分の相対的な比を求めて
いるため、背景の明るさの変化に影響を受けることがな
く、安定なデータの取り込みが可能である。
Furthermore, in the above embodiment, the relative ratio of the difference between the vertically polarized image and the horizontally polarized image is determined by capturing the vertically polarized image and the horizontally polarized image at a short time interval of several tens of milliseconds to several seconds. It is not affected by changes in brightness and can stably capture data.

なお、上記実施例はアナログ信号からなる映像信号をデ
ィジタル信号に変換し、各処理をディジタル的に行った
場合の例を示したが、同様な処理をアナログ的に行うこ
ともできる。この場合には、例えばテレビカメラ11の
出力する水平偏光画像と垂直偏光画像の映像信号をそれ
ぞれアナログ信号形式で記録した後、同期をとりながら
再生することにより両信号の差分を求め、この差分信号
を積分回路等で積算してその積算値の大小をしきい値判
定すればよい、また、路面状態の判定領域を指定するに
は、指定領域に同期して映像信号をゲートすればよい。
In addition, although the above-described embodiment shows an example in which a video signal consisting of an analog signal is converted into a digital signal and each processing is performed digitally, similar processing can also be performed analogously. In this case, for example, the video signals of the horizontally polarized image and the vertically polarized image output by the television camera 11 are respectively recorded in an analog signal format, and then the difference between the two signals is determined by reproducing them in synchronization. may be integrated by an integrating circuit or the like, and the magnitude of the integrated value may be determined by a threshold value.Furthermore, in order to designate a road surface condition determination area, the video signal may be gated in synchronization with the designated area.

〔発明の効果〕〔Effect of the invention〕

以上述べたところから明らかなように、本発明の路面状
態検知装置によるときは、路面からの53°近傍の反射
光を利用し、該反射光中から垂直偏光画像と水平偏光画
像を抽出してその濃度情報を求め、各画像における濃度
情報の変化に基づいて路面状態を判定するようにしたの
で、従来の装置のようなパターン認識のための専用のタ
ーゲットおよび特定の照射光源を必要とすることがなく
なり、装置をM潔に構成し得るとともに、その設置およ
び保守・点検作業も極めて簡単になるという優れた効果
を奏する。
As is clear from the above description, when using the road surface condition detection device of the present invention, reflected light from the road surface at an angle of about 53° is utilized, and a vertically polarized image and a horizontally polarized image are extracted from the reflected light. The density information is obtained and the road surface condition is determined based on the change in density information in each image, which eliminates the need for a dedicated target and specific irradiation light source for pattern recognition as in conventional devices. This has the advantage that the device can be constructed in a more compact manner, and its installation, maintenance, and inspection operations are also extremely simple.

さらに、本発明の路面状態検知装置においては、53°
近傍の反射光であれば自然光、照明光にかかわらず検知
光として用い得るため、検知対象路面の全面から放射さ
れる53°近傍の反射光を画像情報として利用すること
ができ、従来の装置のように路面の一部に敷設したター
ゲットからのスポット的な部分反射光情報により路面全
体の状態を決定するようなこともなくなり、路面の乾燥
状態と湿潤状態を面的な広がりをもって正確に判定でき
るという優れた効果を奏する。
Furthermore, in the road surface condition detection device of the present invention, 53°
Since reflected light in the vicinity can be used as detection light regardless of whether it is natural light or illumination light, reflected light in the vicinity of 53° emitted from the entire surface of the road surface to be detected can be used as image information, making it possible to use conventional equipment as image information. This eliminates the need to determine the condition of the entire road surface based on spot-like partial reflected light information from a target placed on a part of the road surface, making it possible to accurately determine the dry or wet condition of the road surface based on the area. It has this excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、 第2図は水平偏光と垂直偏光の説明図、第3図は光の屈
折・反射の説明図、 第4図は水の反射率の測定図、 第5図は氷の反射率の測定図、 第6図は路面乾燥時の撮影画像の例を示す図、第7図は
路面湿潤時の撮影画像の例を示す図、第8図は本発明の
一実施例のプロ、り図、第9図はテレビカメラの設置例
を示す図、第10図は路面状態の判定処理のフローチャ
ート、第11図は従来例を示す図、 第12図は従来例の検出原理の説明図である。 1・・・路面、2・・・路面撮像手段、3・・・偏光素
子、4・・・偏光角制御手段、5・・・画像記憶手段、
6・・・路面状態判定手段、N・・・路面法線。 (a)  垂直偏光面像           (b)
  水平偏光面像路面乾燥時の撮影画像 第6図
Fig. 1 is an illustration of the principle of the present invention, Fig. 2 is an illustration of horizontal polarization and vertical polarization, Fig. 3 is an illustration of refraction and reflection of light, Fig. 4 is a measurement diagram of water reflectance, and Fig. 5 Figure 6 shows an example of an image taken when the road surface is dry; Figure 7 shows an example of an image taken when the road surface is wet; and Figure 8 shows an example of the image taken when the road surface is wet. Figure 9 is a diagram showing an example of installing a television camera, Figure 10 is a flowchart of road surface condition determination processing, Figure 11 is a diagram showing a conventional example, and Figure 12 is a diagram showing a conventional example. It is an explanatory diagram of a detection principle. DESCRIPTION OF SYMBOLS 1... Road surface, 2... Road surface imaging means, 3... Polarization element, 4... Polarization angle control means, 5... Image storage means,
6... Road surface condition determination means, N... Road surface normal. (a) Vertical polarization plane image (b)
Horizontal polarization plane image taken when the road surface is dry Figure 6

Claims (1)

【特許請求の範囲】  路面法線に対して53゜近傍の角度に配置した路面撮
像手段と、 該路面撮像手段の前面に配置され、偏光面を垂直・水平
方向に可変可能な偏光素子と、 該偏光素子の偏光面を垂直と水平方向に可変制御する偏
光角制御手段と、 前記路面撮像手段の出力する偏光角の異なる少なくとも
2画面以上の画像を記憶する画像記憶手段と、 該偏光角の異なる画像間の明暗濃度の変化に基づいて路
面の乾燥状態と湿潤状態を判定する路面状態判定手段と
からなることを特徴とする路面状態検知装置。
[Scope of Claims] Road surface imaging means disposed at an angle of approximately 53° with respect to the road surface normal; a polarizing element disposed in front of the road surface imaging means and capable of varying the plane of polarization in vertical and horizontal directions; polarization angle control means for variably controlling the polarization plane of the polarization element in vertical and horizontal directions; image storage means for storing at least two or more images output from the road surface imaging means with different polarization angles; A road surface condition detection device comprising a road surface condition determining means for determining whether a road surface is dry or wet based on changes in brightness and darkness between different images.
JP31382288A 1988-12-14 1988-12-14 Road surface state detecting device Pending JPH02161337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31382288A JPH02161337A (en) 1988-12-14 1988-12-14 Road surface state detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31382288A JPH02161337A (en) 1988-12-14 1988-12-14 Road surface state detecting device

Publications (1)

Publication Number Publication Date
JPH02161337A true JPH02161337A (en) 1990-06-21

Family

ID=18045933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31382288A Pending JPH02161337A (en) 1988-12-14 1988-12-14 Road surface state detecting device

Country Status (1)

Country Link
JP (1) JPH02161337A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264442A (en) * 1992-03-19 1993-10-12 Niigata Denki Kk Method and apparatus for detecting wetting condition of pavement
JPH05264441A (en) * 1992-03-19 1993-10-12 Niigata Denki Kk Method and apparatus for detecting wetting condition of road surface
JPH0829343A (en) * 1994-07-12 1996-02-02 Takuwa:Kk Method and apparatus for measuring road surface state
JPH11211659A (en) * 1998-01-23 1999-08-06 Nagoya Denki Kogyo Kk Road surface state discrimination method and device
JP2002502048A (en) * 1998-01-30 2002-01-22 レオポルト・コスタール・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト Method and apparatus for detecting objects above a light-transmitting window glass
JP2007064888A (en) * 2005-09-01 2007-03-15 Tokai Rika Co Ltd Road surface condition detector
WO2007036695A1 (en) * 2005-09-27 2007-04-05 Trw Limited Image analysis
JP2010025915A (en) * 2008-06-18 2010-02-04 Ricoh Co Ltd Imaging apparatus and road surface state discrimination method
CN102230884A (en) * 2011-03-29 2011-11-02 南京大学 Detection method for accumulated water and accumulated ice on road surface based on polarization measurement, and apparatus thereof
CN102782720A (en) * 2009-12-25 2012-11-14 株式会社理光 Object identifying apparatus, moving body control apparatus, and information providing apparatus
CN102901489A (en) * 2011-07-25 2013-01-30 中兴通讯股份有限公司 Pavement water accumulation and ice accumulation detection method and apparatus thereof
DE102014205204B3 (en) * 2014-03-20 2015-05-13 Conti Temic Microelectronic Gmbh Camera-based driver assistance system for detecting the condition of a road surface
WO2017068743A1 (en) * 2015-10-22 2017-04-27 京セラ株式会社 Road surface state determination device, imaging device, imaging system, and road surface state determination method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55156841A (en) * 1979-05-25 1980-12-06 Fujitsu Ten Ltd Road surface state sensor
JPS58158540A (en) * 1982-03-15 1983-09-20 Fujitsu Ten Ltd Device for judging road surface condition
JPS62247319A (en) * 1986-04-01 1987-10-28 Hamamatsu Photonics Kk Method and apparatus for image forming for substance showing optical activity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55156841A (en) * 1979-05-25 1980-12-06 Fujitsu Ten Ltd Road surface state sensor
JPS58158540A (en) * 1982-03-15 1983-09-20 Fujitsu Ten Ltd Device for judging road surface condition
JPS62247319A (en) * 1986-04-01 1987-10-28 Hamamatsu Photonics Kk Method and apparatus for image forming for substance showing optical activity

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264441A (en) * 1992-03-19 1993-10-12 Niigata Denki Kk Method and apparatus for detecting wetting condition of road surface
JPH05264442A (en) * 1992-03-19 1993-10-12 Niigata Denki Kk Method and apparatus for detecting wetting condition of pavement
JPH0829343A (en) * 1994-07-12 1996-02-02 Takuwa:Kk Method and apparatus for measuring road surface state
JPH11211659A (en) * 1998-01-23 1999-08-06 Nagoya Denki Kogyo Kk Road surface state discrimination method and device
JP2002502048A (en) * 1998-01-30 2002-01-22 レオポルト・コスタール・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト Method and apparatus for detecting objects above a light-transmitting window glass
JP2007064888A (en) * 2005-09-01 2007-03-15 Tokai Rika Co Ltd Road surface condition detector
WO2007036695A1 (en) * 2005-09-27 2007-04-05 Trw Limited Image analysis
JP2010025915A (en) * 2008-06-18 2010-02-04 Ricoh Co Ltd Imaging apparatus and road surface state discrimination method
EP2517175A4 (en) * 2009-12-25 2018-01-10 Ricoh Company, Ltd. Object identifying apparatus, moving body control apparatus, and information providing apparatus
CN102782720A (en) * 2009-12-25 2012-11-14 株式会社理光 Object identifying apparatus, moving body control apparatus, and information providing apparatus
CN102230884A (en) * 2011-03-29 2011-11-02 南京大学 Detection method for accumulated water and accumulated ice on road surface based on polarization measurement, and apparatus thereof
WO2013013563A1 (en) * 2011-07-25 2013-01-31 中兴通讯股份有限公司 Road surface ponding and icing detection method and device
CN102901489A (en) * 2011-07-25 2013-01-30 中兴通讯股份有限公司 Pavement water accumulation and ice accumulation detection method and apparatus thereof
DE102014205204B3 (en) * 2014-03-20 2015-05-13 Conti Temic Microelectronic Gmbh Camera-based driver assistance system for detecting the condition of a road surface
WO2017068743A1 (en) * 2015-10-22 2017-04-27 京セラ株式会社 Road surface state determination device, imaging device, imaging system, and road surface state determination method
US10501088B2 (en) 2015-10-22 2019-12-10 Kyocera Corporation Road surface state determination apparatus, imaging apparatus, imaging system, and road surface state determination method

Similar Documents

Publication Publication Date Title
JPH02161337A (en) Road surface state detecting device
JP5664152B2 (en) Imaging device, in-vehicle imaging system, and object identification device
JP3783588B2 (en) Road surface discrimination device
JP2021148790A (en) Device for detecting water on surface and method for detecting water on surface
FR2466767A1 (en) METHOD FOR TESTING THE QUALITY OF THE ASSEMBLY CONSISTING OF A WIPER BLADE AND THE SURFACE OF THE ICE
JP2006308514A (en) Image processing type snow cover sensor on road surface and snow cover detecting method
JP2006058122A (en) Road surface condition deciding method and its device
JP5190204B2 (en) Road area snow detection device and road area snow detection method
JP2672863B2 (en) Vehicle detection method
JP3733434B2 (en) Detection method of water, ice and snow on road surface and detection device of water, ice and snow on road surface
JPH03296873A (en) Fingerprint collating device
JP3552504B2 (en) Road surface condition determination device
JP3314923B2 (en) Road surface moisture detection method and road surface moisture detection device
JPH10221042A (en) Apparatus for determining road surface state
JPH08327530A (en) Road surface condition detecting device
JP4398282B2 (en) Pantograph slip board inspection device.
JP3863098B2 (en) Road surface condition determination device
JP3438368B2 (en) Road surface condition detection device
JPH10332576A (en) Method and apparatus for detection of wet state of road surface
JP5564960B2 (en) Wet detection device and wet detection method
JPH08201288A (en) Detector for state of road surface
CN109632830A (en) Sample detection methods, sample detection apparatus and computer readable storage medium
JPH04178545A (en) Method and apparatus for inspecting transparent band-like body
JP2707427B2 (en) Road area snow detector
KR100229539B1 (en) Apparatus for identifying a conductive pattern of a subject material