【発明の詳細な説明】[Detailed description of the invention]
〔産業上の利用分野〕
本発明は、高分子液晶材料を有する記録媒体を用いて所
謂熱ヘツドにより書換え可能にした消去可能型熱記録方
式に関する。
〔発明の概要〕
本発明は、高分子液晶材料を有する記録媒体を用い、之
に熱記録手段を介してパルス的に等方相転移温度以上の
熱を与え、急冷して情報を記録し、記録媒体を熱消去手
段を介して等方相転移温度以上の温度にした後、徐冷し
て記録媒体に記録された情報を消去することにより、容
易に書換えを可能にした消去可能型熱記録方式を提供し
ようとするものである。
〔従来の技術〕
従来、印字情報を記録する方式では、インクによる印刷
、プリンターによる種々の転写印字方式が主流を占めて
いる。これ等の方式は、−同記録のみで書き換える機能
を有していない。また、例えばプラスチック又は紙を基
材とするカード形態の情報媒体にふいて、主データの他
に、更新される情報を使用者に識別できるように表示さ
れる表示情報が必要となってきている。最近、市場に出
ているものでは、テレホンカード、オレンジカード等の
プリペイドカード等の使用度数表示があり、パンチング
による穴情報で表示される。一方、銀行カード等を考え
る場合、預金残高等を知りたいとき、金額を正確な数字
で表示する必要がある。
銀行カードは既にICカードで検討されているが、表示
方法は電界駆動型のT’N (twisted nem
atic)型デイスプレィを用いている。この方法は、
既に確立された技術であるが、液体状の液晶材をガラス
板で挾み込んだ形態なので、カードを構成する場合、曲
げや衝撃に弱い欠点がある。更に、液晶を駆動するIC
やバッテリーが必要なためコスト高となる。
〔発明が解決しようとする課題〕
上述のように、従来技術においては紙、プラスチック等
に印字、図形、写真等を記録する方法として、印刷やプ
リンタ一方式が挙げられるが、画記録であり、容易に消
去できなかった。更に、プリペイカード、銀行カード等
において度数、預金残高等、随時最新データを更新する
必要のある表示情報を用意する場合、適当な媒体が存在
しなかった。
本発明は、上述の点に鑑み、高分子液晶材料を用い所謂
熱ヘツドによる記録及び消去を可能にし、例えばプリペ
イドカード、銀行カード等にも容易に応用できるように
した消去可能型熱記録方式を提供するものである。
〔課題を解決するための手段〕
本発明は、高分子液晶材料を主体とする記録層を有する
記録媒体に、熱記録手段を介してパルス的に等方相転移
温度以上の熱を与え、急冷して情報源からの信号に基づ
く情報を記録し、記録媒体を熱消去手段を介して等方相
転移温度以上の温度にした後、徐冷して記録媒体に記録
された情報を消去することを特徴としたものである。
高分子液晶材料としては、熱により可逆的に透明状態と
白濁状態をとる性質を有するもので、等方相転移温度(
クリアリング・ポイント)がガラス転移温度より高い高
分子ネマチック液晶を主体とする高分子液晶であり、側
鎖型高分子液晶が最適である。
以下は、本発明において使用可能な側鎖型高分子液晶の
例であるが、これらに限定されるものではない。
(a) シアノフェニルベンゾエートとメトキシピフ
ェニルベンゾエートの共重合系
(b) シアノビフェニル系
)1−C−H
(c) フェニルベンゾエート・アゾメチン系(d)
アゾメチン系
これらの高分子液晶は、クリアリング・ポイント・をガ
ラス転移点よりも高い温度域にもつことが特徴である。
ここでクリアリング・ポイントとは、クロス・ポーララ
イザーを用いた観測において温度の上昇につれ液晶相形
成により光学的異方性が顕著に増大、し、これにともな
って透過光強度がピークに達した後、等方相への移行に
より透過光強度が急峻にゼロとなる温度と定義される。
上記高分子液晶の分子量は10.000〜200.00
0の範囲であることが望ましく、これより小さい領域で
は成膜性が劣り、またこれより大きい領域では成膜時の
溶媒に対する溶解性が低いという実用上の問題がある。
記録媒体は、上記高分子液晶を適当な溶媒に溶解し、高
分子材料、紙、或いはガラス、金属等の基体上に塗布し
、乾燥して固体状高分子液晶よりなる記録層を形成して
構成される。又は、フィルム上に上記固体状高分子液晶
を成膜したものをラミネートして構成することもできる
。基体と記録層との間には熱拡教層を兼ねる高反射膜例
えばアルミニウム蒸着膜が設けられる。
熱記録手段及び熱消去手段としては、サーマルヘッド等
の熱ヘツドを用い得る。
〔作用〕
本発明における記録、消去原理は、次のような液晶の相
転移挙動にもとづいている。即ち、第11図において、
過冷却あるいは過熱が起こらない限り液晶は常により低
エネルギーの状態をとる。まず、液晶ガラス相(A)の
温度を上げてゆくと、ガラス転移点(Tg)を越えた所
で液晶相(B)となり、さらにクリアリング・ポイント
(Tcjりを越えて不安定液晶相(C)に移行する。し
かし、不安定液晶相(C)は高エネルギー状態であるの
で、実際には等吉相(D>が達成される。これを再び冷
却すると、通常は等吉相(D)から不安定相(E)を経
て等方性アモルファス相(F)に至る径路をとらずに、
不安定相(E)はより安定な液晶相(B)へ、また等方
性アモルファス相(F)はより安定な液晶ガラス相(A
)へそれぞれ移行する。しかし、この高分子液晶ではガ
ラス転移温度Tgより低い温度では分子運動が凍結する
ため、等方性アモルファス相(F)も出現する。液晶ガ
ラス相(A)は、液晶ドメインの存在により光を散乱さ
せるので白濁して見え、一応等方性アモルファス相(F
)は透明である。
本発明ではこの現象が応用される。即ち記録時には、熱
記録手段を介して高分子液晶の記録層にパルス的にクリ
アリング・ポイント(T c Il)以上の温度が与え
られる。このときの温度特性は第9図の曲線(1)に示
すようになる。これにより第12Aに示すように液晶ガ
ラス相(A)から液晶相(B)を経て等吉相(D)に至
る昇温過程が瞬時に実施された後、急冷されて等吉相(
D)から不安定相(E)を経て等方性アモルファス相(
F)に至る降温過程が速やかに実施され、不安定相(E
) から液晶相(B)への変化が抑制されて等方性を保
ったまま記録層の高分子液晶が等方性アモルファス相(
F)に凍結され、記録される。この記録状態では透明で
あり、下地の高反射膜が露出し、他部(白濁)との反射
率の差によって記録情報が肉眼で識別可能となる。
次に、消去時には、熱消去手段を介して記録層にクリア
ング・ポイント(Tcj7)以上の一定温度を与えると
、第12図已に示すように等方性アモルファス相(F)
から不安定相(E)を経て等吉相(D)に至り、しかる
後、熱消去手段の記録層との接触をとり去り自然冷却さ
せることにより、徐冷条件が満たされ(第9図の消去時
の温度特性を示す曲線(n)を参照)、等吉相(D)か
ら不安定相(E)を経て、この不安定相(E)での保持
時間が長くなる(アニールされる)ことでエネルギー的
に安定な液晶相(B)に移行し、さらに冷却により液晶
ガラス相(A)に凍結され消去される。消去された状態
では白濁しており反射率は低い。または消去状態は、等
方性アモルファス相(F)から昇温し、クリアリングポ
イントに達するまで昇温しなくても、不安定相(E)に
保持するか、クリアリングポイントの近傍温度に近づけ
る事によっても、実現する事も可能である。
このように、本発明は、サーマル−・ラド等の熱手段に
より簡単に書換えが可能になる。
〔実施例〕
以下、図面を参照して本発明の詳細な説明する。
実施例1
第1図において、(1)は本発明に係る記録媒体を示し
、これは例えば厚さ100μmのポリエチレンテレフタ
レートフィルム(2〕上に、高反射膜となる厚さ0.2
μmのアルミニウム蒸着膜(3)を介して厚さ15μm
の固体質の高分子液晶を主体とする記録層(4)を形成
し、さらに記録層(4)上に厚さ3μmの保護層(5)
を形成して構成される。
そして、本例においては、夫々サーマルヘッドによる記
録ヘッド(6)及び消去ヘッド(力を用意する。
記録ヘッド(6)は一方向に配列した複数の細いストラ
イプ状の抵抗体(即ち発熱体) (8) 〔(81)
(82)(83) (84) (85) (86) (
87) (88) (89) (810) )を有して
構成され、消去ヘッド(7)は記録ヘッド(6)の各抵
抗体(8)の合計の幅に対応した幅の抵抗体(9)を有
して構成される(第2図参照)。これら記録ヘッド(6
)及び消去ヘッド(7)は保護層(5)を介して記録層
(4)に接触させた状態で記録媒体(1)に対して相対
的に走行させる。
記録時には、記録媒体(1)に接触して相対的に走行す
る記録ヘッド(6)の抵抗体(8)に、情報源よりの信
号に基づいて第3図Aに示すようなパルス電流(11)
を与える。このとき、記録層(4)の高分子液晶は一瞬
クリアリング・ポイント(T c 1)以上に昇温され
、液晶ガラス相(A)から液晶相(B)を経て等吉相(
D)に至り、次に電流オフの状態で急冷条件が満足され
等吉相(D)から不安定等吉相(E)を経て等方性アモ
ルファス相(F)に移行し、情報が記録される。
この記録状態では記録層(4)の記録された部分が透明
であり下地の高反射率(95%程度)のアルミニウム蒸
着膜(3)が露出され、周囲の液晶ガラス相(白濁)と
の反射率の差によって記録情報が識別可能となる。例え
ば記録ヘッド(6)の抵抗体(8)を記録媒体(1)に
対して相対的に10cm/secで走行させたとき、1
5m5ecのパルス電流を与えれば記録層(4)に1ド
ツトの径が150μmのドツト列が記録される。
次に、消去ヘッド(7)には抵抗体[Industrial Application Field] The present invention relates to an erasable thermal recording system that uses a recording medium containing a polymeric liquid crystal material and is rewritable by a so-called thermal head. [Summary of the Invention] The present invention uses a recording medium having a polymeric liquid crystal material, applies heat to the recording medium in a pulsed manner at a temperature higher than the isotropic phase transition temperature through a thermal recording means, rapidly cools the recording medium, and records information. Erasable thermal recording that enables easy rewriting by raising the temperature of the recording medium to a temperature higher than the isotropic phase transition temperature using a thermal erasing means and then slowly cooling it to erase the information recorded on the recording medium. The aim is to provide a method. [Prior Art] Conventionally, ink printing and various transfer printing methods using printers have been the mainstream methods for recording printed information. These methods do not have the function of rewriting only by recording the same. Furthermore, in addition to the main data, it has become necessary for display information to be displayed so that the user can identify the information to be updated, for example, for information media in the form of cards made of plastic or paper. . Recently on the market, there are telephone cards, prepaid cards such as orange cards, etc. that display the usage frequency, and the information is displayed by punching holes. On the other hand, when considering bank cards and the like, when one wants to know the balance of a deposit, it is necessary to display the amount as an accurate number. IC cards are already being considered for bank cards, but the display method is electric field-driven T'N (twisted nem).
atic) type display is used. This method is
Although this technology is already established, it has the disadvantage that it is susceptible to bending and impact when used to construct cards because it uses a liquid crystal material sandwiched between glass plates. Furthermore, the IC that drives the liquid crystal
The cost is high because it requires batteries. [Problems to be Solved by the Invention] As mentioned above, in the prior art, printing and printer methods are cited as methods for recording prints, figures, photographs, etc. on paper, plastic, etc.; could not be easily erased. Furthermore, when preparing display information for prepaid cards, bank cards, etc., such as frequency, deposit balance, etc., which needs to be updated at any time, there is no suitable medium. In view of the above-mentioned points, the present invention provides an erasable thermal recording system that uses a polymeric liquid crystal material and enables recording and erasing using a so-called thermal head, and can be easily applied to prepaid cards, bank cards, etc. This is what we provide. [Means for Solving the Problems] The present invention provides a recording medium having a recording layer mainly made of a polymeric liquid crystal material, which is rapidly cooled by applying heat at a temperature higher than the isotropic phase transition temperature in pulses through a thermal recording means. to record information based on a signal from an information source, raise the temperature of the recording medium to a temperature equal to or higher than the isotropic phase transition temperature via a thermal erasing means, and then gradually cool it to erase the information recorded on the recording medium. It is characterized by Polymer liquid crystal materials have the property of reversibly changing between a transparent state and a cloudy state when heated, and have an isotropic phase transition temperature (
Polymer liquid crystals are mainly polymer nematic liquid crystals whose clearing point (clearing point) is higher than the glass transition temperature, and side-chain polymer liquid crystals are most suitable. The following are examples of side chain polymer liquid crystals that can be used in the present invention, but the invention is not limited thereto. (a) Copolymerization system of cyanophenyl benzoate and methoxypiphenyl benzoate (b) Cyanobiphenyl system) 1-C-H (c) Phenylbenzoate/azomethine system (d)
These azomethine-based polymer liquid crystals are characterized by having a clearing point in a temperature range higher than the glass transition point. The clearing point here refers to the point where the optical anisotropy increases significantly due to the formation of a liquid crystal phase as the temperature rises in observations using a cross polarizer, and the transmitted light intensity reaches its peak accordingly. After that, it is defined as the temperature at which the intensity of transmitted light suddenly becomes zero due to the transition to the isotropic phase. The molecular weight of the polymer liquid crystal above is 10.000 to 200.00.
It is desirable that the range is 0. If the range is smaller than this, the film forming property is poor, and if the range is larger than this, there is a practical problem that the solubility in the solvent during film formation is low. The recording medium is prepared by dissolving the polymer liquid crystal in a suitable solvent, coating it on a substrate such as a polymer material, paper, glass, metal, etc., and drying it to form a recording layer made of solid polymer liquid crystal. configured. Alternatively, it can also be constructed by laminating a film in which the solid polymer liquid crystal described above is formed on a film. A highly reflective film, such as an aluminum vapor-deposited film, which also serves as a thermal diffusion layer, is provided between the substrate and the recording layer. A thermal head such as a thermal head can be used as the thermal recording means and the thermal erasing means. [Operation] The recording and erasing principle of the present invention is based on the following phase transition behavior of liquid crystal. That is, in FIG.
Unless supercooling or overheating occurs, the liquid crystal always assumes a lower energy state. First, as the temperature of the liquid crystal glass phase (A) is increased, it becomes a liquid crystal phase (B) when it exceeds the glass transition point (Tg), and then reaches an unstable liquid crystal phase (beyond the clearing point (Tcj)). However, since the unstable liquid crystal phase (C) is in a high energy state, the isokyoshi phase (D>) is actually achieved. When this phase is cooled again, it usually changes from the isohyoshi phase (D). Without taking the path that leads to the isotropic amorphous phase (F) via the unstable phase (E),
The unstable phase (E) transforms into a more stable liquid crystal phase (B), and the isotropic amorphous phase (F) transforms into a more stable liquid crystal glass phase (A).
) respectively. However, in this polymeric liquid crystal, molecular motion freezes at temperatures lower than the glass transition temperature Tg, so an isotropic amorphous phase (F) also appears. The liquid crystal glass phase (A) scatters light due to the presence of liquid crystal domains, so it appears cloudy, and it appears to be an isotropic amorphous phase (F
) is transparent. This phenomenon is applied in the present invention. That is, during recording, a temperature higher than the clearing point (T c Il) is applied in a pulsed manner to the polymer liquid crystal recording layer via the thermal recording means. The temperature characteristics at this time are as shown by curve (1) in FIG. As a result, as shown in No. 12A, the temperature rise process from the liquid crystal glass phase (A) through the liquid crystal phase (B) to the Tokichi phase (D) is carried out instantaneously, and then the temperature is rapidly cooled to the Tokichi phase (D).
D) passes through the unstable phase (E) to the isotropic amorphous phase (
The temperature-lowering process leading to F) is carried out quickly, and an unstable phase (E
) to the liquid crystal phase (B) is suppressed and the polymer liquid crystal of the recording layer changes to the isotropic amorphous phase (B) while maintaining isotropy.
F) and recorded. In this recorded state, it is transparent, and the underlying high-reflection film is exposed, and the recorded information can be identified with the naked eye due to the difference in reflectance from other parts (cloudy). Next, during erasing, when a constant temperature above the clearing point (Tcj7) is applied to the recording layer via a thermal erasing means, an isotropic amorphous phase (F) is formed as shown in FIG.
Then, the contact with the recording layer of the heat erasing means is removed and the slow cooling condition is satisfied (the erasure in Fig. 9). (see curve (n) showing the temperature characteristics at The phase shifts to an energetically stable liquid crystal phase (B), and is further frozen and erased to a liquid crystal glass phase (A) by cooling. In the erased state, it is cloudy and has low reflectance. Alternatively, the erased state can be achieved by increasing the temperature from the isotropic amorphous phase (F) and maintaining it in the unstable phase (E) or approaching the temperature near the clearing point without increasing the temperature until it reaches the clearing point. Depending on the circumstances, it is possible to achieve this. In this way, the present invention enables easy rewriting using thermal means such as thermal rad. [Example] Hereinafter, the present invention will be described in detail with reference to the drawings. Example 1 In FIG. 1, (1) shows a recording medium according to the present invention, which includes, for example, a polyethylene terephthalate film (2) with a thickness of 100 μm and a film with a thickness of 0.2 μm to form a highly reflective film.
15 μm thick through μm aluminum vapor deposited film (3)
A recording layer (4) mainly made of solid polymer liquid crystal is formed, and a protective layer (5) with a thickness of 3 μm is further formed on the recording layer (4).
It is composed by forming. In this example, a recording head (6) and an erasing head (forces are prepared respectively) using a thermal head. 8) [(81)
(82) (83) (84) (85) (86) (
87) (88) (89) (810)), and the erasing head (7) has a resistor (9) having a width corresponding to the total width of each resistor (8) of the recording head (6). ) (see Figure 2). These recording heads (6
) and the erasing head (7) are moved relative to the recording medium (1) while being in contact with the recording layer (4) via the protective layer (5). During recording, a pulse current (11) as shown in FIG. )
give. At this time, the polymer liquid crystal in the recording layer (4) is momentarily heated to a temperature above the clearing point (T c 1), and changes from the liquid crystal glass phase (A) to the liquid crystal phase (B) to the Tokichi phase (
D), and then the rapid cooling conditions are satisfied with the current turned off, and the phase transitions from the isokitic phase (D) to the isotropic amorphous phase (F) via the unstable isokitsu phase (E), and information is recorded. In this recording state, the recorded portion of the recording layer (4) is transparent, and the underlying aluminum vapor deposited film (3) with high reflectance (approximately 95%) is exposed, causing reflections with the surrounding liquid crystal glass phase (white turbidity). Recorded information can be identified by the difference in rate. For example, when the resistor (8) of the recording head (6) is moved at a speed of 10 cm/sec relative to the recording medium (1), 1
When a pulse current of 5 m5 ec is applied, a dot array with a diameter of 150 μm is recorded on the recording layer (4). Next, the erase head (7) is equipped with a resistor.
〔9〕に第3図へに
示す一定電流(12)を流し、クリアリング・ポイン)
(Tc1)以上の温度に保持するように温度調節してお
く。そして、消去時、消去ヘッド(7)が記録層(4)
に走行接触すると、最初に記録層(4)が昇温しでクリ
アリング・ポイント(”l’cjりまで到達すると等方
性アモルファス相(F)から不安定等方相(E)を経て
等吉相(D)へ至り熱平衡状態に達する。次に、消去ヘ
ッド(7〕が次の位置に走行することによって消去ヘッ
ド(7)の接触がとり去られると自然冷却により、徐冷
条件が満足され、等吉相(D)から不安定相(E)を経
て、ここでの保持時間が長くなる(アニールする)こと
により液晶相(B)に移行し、さらに冷却されて液晶ガ
ラス相(A)に凍結される。消去された状態は白濁して
おり、反射率は20%程度である。
実施例2
本例においては、実施例1と同様の記録媒体(1〕を用
い、実施例1と同等の原理で熱的消去及び記録を行うが
、特に記録ヘッドと消去ヘッドを共通のセラミック基体
上に薄膜状に形成して一体化する。即ち、第4図及び第
5図に示すようにセラミック基体(13)上に夫々電極
(14)を有した記録用の薄膜抵抗体(25)及び消去
用の薄膜抵抗体(16)を形成して記録ヘッド(17)
及び消去ヘッド(18)を一体化して構成する。このよ
うに所謂薄膜ヘッドをもって記録ヘッド(17)及び消
去ヘッド(18)を一体化して構成するときは、ヘッド
全体が小型化でき、熱伝達効率に優れる。更に、消去ヘ
ッド(18)においては第4図及び第5図に示すように
その薄膜抵抗体(16)を複数のストライブ状の抵抗素
体(161)(162) (163) (164) (
165) (166) に分割し、各抵抗素体(16
1) 〜(166) に与える電流を第6図Aに示す
ように順次消去方向に向かって小さくする。この構成に
よれば、抵抗体(16)に発生する熱は最初の抵抗素体
(161)で高く、順次抵抗素体(162)〜(166
) と低くなり、この消去ヘッド(18)を記録媒体
(1)に接触したとき、記録媒体(1)の温度上昇は、
最初の抵抗素体(161) に対応する部分が高く、
以後抵抗素体(162) 〜(166) に対応して
徐々に下降する傾向になる。即ち走行方向に温度勾配が
生ずる。従って、このような薄膜消去ヘッド(18〉を
用いて高分子液晶の記録層(4)を消去する場合、比較
的速い走行速度で操作しても、徐冷条件を満足し易くな
り、高速消去が可能となる。なお、記録時に記録ヘッド
(17)の抵抗体(15)に与える電流は第6図已に示
すように実施例1と同様のパルス電流(11)である。
第10図は実施例1と同様の記録媒体(1)を使用して
、実際に熱ヘツド上で消去特性を実施した例を示す。記
録媒体(1)を温度調節された熱ヘツド上に置き、反射
率の温度特性を記録する。この場合、光源は8300
Aの半導体レーザを用い検出器で検出する。図中、曲線
(III)は反射率を示し、曲線(rV)は温度を示す
。図示のように最初記録媒体(1)を150℃以上に昇
温保持しておく。この状態では高分子液晶の記録層(4
)は透明であり、高反射率である下地のアルミニウム蒸
着膜(3)が露出されている(反射率が大きく、記録状
態と同等)。さらにこの状態から熱ステージを制御して
降温すると、高分子液晶のクリアリング・ポイン)Tc
j7(約120℃)を過ぎると液晶状態が凍結されて白
濁色に変化する(反射率が低く、消去状態と同等)この
場合降温速度は5℃/secである。
第7図及び第8図は本発明に適用される高分子液晶層を
利用したカード上のデイスプレィの例を示す。第7図は
プリペイドカードに適用した場合でカード(21)上に
高分子液晶による記録層(22)を形成し、記録用熱ヘ
ツド又は消去用熱ヘツドを用いて使用度数を書くか、消
去するようになす。
第8図は銀行カードの例であり、磁気ストライブ(24
)を有するカード(23)上に高分子液晶による記録層
(25)を形成し、記録用熱ヘツド及び消去用熱ヘツド
を用いて預金残高を取引き毎に書き換えるようになす。
〔発明の効果〕
本発明によれば、高分子液晶材料を有する記録媒体を用
い、その記録及び消去をサーマルヘッド等による熱記録
手段及び熱消去手段を用いて行うことにより、安価で且
つ簡易に消去可能な熱記録方式を提供することができる
。
特に、熱消去手段は記録媒体上を、接触操作させた場合
、高分子液晶の等吉相転移温度以上に昇温するだけでよ
く、以後は自然冷却による徐冷で容易に消去することが
できる。
本発明では、表示記録材料として曲げ、衝撃に強い固体
質の高分子液晶層が用いられるので、例えばプリペイド
カード、銀行カード等における情報の書換え等に応用す
ることが可能となる。Flow the constant current (12) shown in Figure 3 to [9] to reach the clearing point)
The temperature is adjusted to maintain the temperature above (Tc1). Then, during erasing, the erasing head (7) touches the recording layer (4).
When the recording layer (4) is brought into contact with the surface, the temperature first rises, and when it reaches the clearing point (l'cj), it changes from an isotropic amorphous phase (F) to an unstable isotropic phase (E). The auspicious phase (D) is reached and a state of thermal equilibrium is reached.Next, when the erase head (7) is removed from contact with the erase head (7) by traveling to the next position, the slow cooling condition is satisfied due to natural cooling. , it passes from the Tokichi phase (D) to the unstable phase (E), and then transitions to the liquid crystal phase (B) by increasing the holding time (annealing), and then becomes the liquid crystal glass phase (A) after being further cooled. The erased state is cloudy and the reflectance is about 20%. Example 2 In this example, the same recording medium (1) as in Example 1 is used, and the same recording medium as in Example 1 is used. Thermal erasing and recording are performed on the principle of (13) A recording head (17) is formed by forming a recording thin film resistor (25) and an erasing thin film resistor (16) each having an electrode (14) thereon.
and an erasing head (18) are integrated. When the recording head (17) and the erasing head (18) are integrated into a so-called thin film head in this way, the entire head can be made smaller and has excellent heat transfer efficiency. Furthermore, in the erasing head (18), the thin film resistor (16) is formed into a plurality of striped resistive elements (161) (162) (163) (164) (as shown in FIGS. 4 and 5).
165) (166) and each resistor element (16
1) The current applied to (166) to (166) is sequentially decreased in the erasing direction as shown in FIG. 6A. According to this configuration, the heat generated in the resistor (16) is high in the first resistor element (161), and in turn the heat generated in the resistor element (162) to (166) is high.
), and when this erasing head (18) comes into contact with the recording medium (1), the temperature rise of the recording medium (1) is
The part corresponding to the first resistor element (161) is high;
Thereafter, it tends to gradually decrease corresponding to the resistance elements (162) to (166). That is, a temperature gradient occurs in the running direction. Therefore, when erasing the recording layer (4) of polymer liquid crystal using such a thin film erasing head (18), even if it is operated at a relatively high running speed, the slow cooling condition can be easily satisfied and high-speed erasing can be achieved. The current applied to the resistor (15) of the recording head (17) during recording is the same pulse current (11) as in Example 1, as shown in FIG. 6. An example is shown in which the erasing characteristic was actually performed on a thermal head using the same recording medium (1) as in Example 1.The recording medium (1) was placed on a temperature-controlled thermal head, and the reflectance was measured. Record the temperature characteristics, in this case the light source is 8300
It is detected by a detector using the semiconductor laser A. In the figure, the curve (III) shows the reflectance, and the curve (rV) shows the temperature. As shown in the figure, the temperature of the recording medium (1) is initially raised to 150° C. or higher. In this state, the polymer liquid crystal recording layer (4
) is transparent, and the underlying aluminum vapor deposited film (3), which has a high reflectance, is exposed (the reflectance is high and is equivalent to the recorded state). Furthermore, when the temperature is lowered by controlling the thermal stage from this state, the clearing point of the polymer liquid crystal) Tc
After j7 (approximately 120° C.), the liquid crystal state is frozen and changes to a cloudy white color (low reflectance, equivalent to an erased state). In this case, the temperature decrease rate is 5° C./sec. 7 and 8 show an example of a display on a card using a polymer liquid crystal layer applied to the present invention. Figure 7 shows a case where the card is applied to a prepaid card, in which a recording layer (22) made of polymer liquid crystal is formed on the card (21), and the number of uses is written or erased using a thermal head for recording or a thermal head for erasing. Do it like this. Figure 8 is an example of a bank card with magnetic stripes (24
) A recording layer (25) made of polymeric liquid crystal is formed on a card (23) having a card (23), and the deposit balance is rewritten every time a transaction is made using a recording thermal head and an erasing thermal head. [Effects of the Invention] According to the present invention, a recording medium having a polymeric liquid crystal material is used, and recording and erasing thereof is performed using a thermal recording means and a thermal erasing means such as a thermal head, thereby achieving inexpensive and simple recording. An erasable thermal recording system can be provided. In particular, when the thermal erasing means performs a contact operation on the recording medium, it is only necessary to raise the temperature to a temperature equal to or higher than the isobathic phase transition temperature of the polymeric liquid crystal, and thereafter erasing can be easily performed by slow cooling by natural cooling. In the present invention, a solid polymer liquid crystal layer that is resistant to bending and impact is used as the display recording material, so it can be applied to, for example, rewriting information on prepaid cards, bank cards, etc.
【図面の簡単な説明】[Brief explanation of the drawing]
第1図は本発明の一例を示す構成図、第2図はその消去
ヘッド及び記録ヘッドの平面図、第3図A及びBはその
消去ヘッド及び記録ヘッドに与える電流波形図、第4図
は本発明に適用される消去ヘッド及び記録ヘッドの他の
例を示す要部の平面図、第5図はその断面図、第6図へ
及びBはその消去ヘッド及び記録ヘッドに与える電流波
形図、第7図及び第8図は夫々本発明を応用できるプリ
ペイドカード及び銀行カードの構成図、第9図は本発明
の説明に供する消去ヘッド及び記録ヘッドの抵抗体の温
度特性図、第10図は高分子液晶材料を有する記録媒体
の反射率の温度特性を示す特性図、第11図は液晶の自
由エネルギーと温度との関係を示す特性図、第12図A
は高分子液晶材料を用いた記録過程を示す概念図、第1
2図Bは消去過程を示す概念図である。
(1)は記録媒体、(2)はポリエチレンテレフタレー
トフィルム、(3)はアルミニウム蒸着膜、(4)は高
分子液晶の記録層、(5)は保護層、(6)は記録入ツ
ド、(7)は消去ヘッド、(17)は記録ヘッド、(1
8)は消去ヘッドである。
ツクζ 宇〕し瞥シイ予・1のtAI=]第1図
A云へ、ドAl/R含集へJの1(わ1ハ第2図
一@間
:A七へ、7)
一的閏
就」1へ、11
5角f、″X−r¥AV詑蛤鳩V1ニジえ5電ンし1m
1D第3図
A1.トのf 5IPの折面
第5図
ジAtへつl−′
配録へ7に5角六へ、、l’ A t/’ We ’t
tc ’= Z ¥ l :Q之S電;i;79fi1
3第6図
第9図
不発+3月とに用 (たプリペイド
第7図
クト# 6月 2 1ひ用 (1′: ミロ イ↑
カー ト°の (鼻 A 1ψコ第8図
晴間
記臂煤怪の尺幇主のLσ吟株4干■1ハ第10図
Tcfl
二θ
DIL
度
A −B −D :
4遅
D−E→F :
降温
D−EB−A:
P4温FIG. 1 is a configuration diagram showing an example of the present invention, FIG. 2 is a plan view of the erasing head and recording head, FIG. 3 A and B are current waveform diagrams applied to the erasing head and recording head, and FIG. 5 is a sectional view thereof, and FIG. 6 and B are current waveform diagrams applied to the erasing head and recording head; 7 and 8 are configuration diagrams of a prepaid card and a bank card, respectively, to which the present invention can be applied, FIG. 9 is a temperature characteristic diagram of the resistor of the erasing head and recording head used to explain the present invention, and FIG. A characteristic diagram showing the temperature characteristics of the reflectance of a recording medium having a polymeric liquid crystal material, FIG. 11 is a characteristic diagram showing the relationship between the free energy of liquid crystal and temperature, and FIG. 12A
is a conceptual diagram showing the recording process using polymeric liquid crystal material, Part 1
FIG. 2B is a conceptual diagram showing the erasing process. (1) is a recording medium, (2) is a polyethylene terephthalate film, (3) is an aluminum vapor-deposited film, (4) is a polymer liquid crystal recording layer, (5) is a protective layer, (6) is a recording layer, ( 7) is the erase head, (17) is the recording head, (1
8) is an erasing head. Tsuku ζ 1, 11 5 square f, 1 m
1D Figure 3 A1. f 5 IP fold plane Figure 5
To the distribution 7 to pentagon hex,,l' A t/' We 't
tc'=Z ¥ l :Q之S电;i;79fi1
3 Figure 6 Figure 9 Unexploded
Cart° (nose A 1ψko Fig. 8 Haruma Ki Soot Monster's Shaku Yunshi's Lσ Ginstock 4 Han ■ 1 Ha Fig. 10 Tcfl 2θ DIL degree A-B-D: 4 slow D-E→ F: Temperature drop D-EB-A: P4 temperature