JPH02160640A - Alumina-glass composite material for airtight vessel and sintering thereof - Google Patents

Alumina-glass composite material for airtight vessel and sintering thereof

Info

Publication number
JPH02160640A
JPH02160640A JP21392589A JP21392589A JPH02160640A JP H02160640 A JPH02160640 A JP H02160640A JP 21392589 A JP21392589 A JP 21392589A JP 21392589 A JP21392589 A JP 21392589A JP H02160640 A JPH02160640 A JP H02160640A
Authority
JP
Japan
Prior art keywords
alumina
sintering
borosilicate glass
glass
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21392589A
Other languages
Japanese (ja)
Inventor
Yoshio Hino
日野 善雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electronic Components Ltd
Original Assignee
Seiko Electronic Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electronic Components Ltd filed Critical Seiko Electronic Components Ltd
Priority to JP21392589A priority Critical patent/JPH02160640A/en
Publication of JPH02160640A publication Critical patent/JPH02160640A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the subject alumina-glass composite sintered material excellent in airtightness and mechanical strength even in case of low sintering temperature and useful as a vessel for airtight sealing of a piezoelectric oscillator by specifying the mixture ratio of powdery alumina and borosilicate glass and the particle size thereof sintering the resultant composite material in specified conditions. CONSTITUTION:The subject alumina-glass composite burned material has the following composition. Namely, the mixture ratio of powdery alumina and powdery borosilicate glass in the alumina-glass composite material is 44-55wt.% borosilicate glass and the residual part of the powdery alumina. As the average particle size, that of the powdery alumina is <=2.5mum and that of the powdery borosilicate glass is <= that of the powdery alumina. For sintering the above- mentioned burned material, a green sheet consisting of the burned material is formed into a prescribed shape, cleaned and subsequently sintered at 850-950 deg.C and at >=15 deg.C/min. rate of temperature rise.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気密封止用容器として例えば水晶等の圧電振動
子を真空あるいは不活性ガスにて封入する気密容器用の
アルミナ−ガラス複合焼成体に関するものであり、詳し
くは、新規な構成による素材と、それに見合う低い焼結
温度で目的達成するもので、これにより例えば面実装用
に好適な小型圧電振動子の気密容器用として薄型化、小
型化。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an alumina-glass composite fired body for an airtight container in which a piezoelectric vibrator such as a crystal is sealed in vacuum or inert gas. Specifically, the objective is to be achieved using a material with a new configuration and a commensurately low sintering temperature, which allows for thinner and more compact packaging for small piezoelectric resonators suitable for surface mounting, for example. ification.

低廉価の気密容器が実現できるものである。A low-cost airtight container can be realized.

〔従来の技術〕[Conventional technology]

従来、小型圧電振動子を収納する気密容器は特公昭57
−18371号公報に開示されているようにセラミック
容器にガラス蓋をハンダあるいは低融点ガラスで封入し
て用いられるのが普通である。セラミック容器として一
般に95%程度の高純度のアルミナを焼結したセラミッ
ク容器が使用され、その製造方法はICパッケージと同
様な製造方法によって作製される。すなわちアルミナグ
リーンシート上に内部導体としてW、Mo−Mn金属ペ
ーストを用いてスクリーン印刷し、その上にアルミナグ
リーンシートを打抜いた枠を載せて加熱圧着する。加熱
圧着後、焼結温度として1500℃前後と高温であり、
上記した金属の酸化を防止するために水素あるいは還元
ガス雰囲気中で焼結して得られ、その後ボンディング及
びハンダ付が容易となるようにNiメツキ、ハンダメツ
キあるいはAuメツキが施されたものが一般的であった
Conventionally, an airtight container for storing a small piezoelectric vibrator was manufactured by the Special Publication Publication in 1983.
As disclosed in Japanese Patent No. 18371, it is common to use a ceramic container with a glass lid sealed with solder or low melting point glass. Generally, a ceramic container made of sintered alumina with a high purity of about 95% is used as the ceramic container, and the manufacturing method thereof is similar to that of an IC package. That is, screen printing is performed using W, Mo--Mn metal paste as an internal conductor on an alumina green sheet, and a frame punched out of the alumina green sheet is placed thereon and bonded under heat and pressure. After heat and pressure bonding, the sintering temperature is around 1500℃, which is a high temperature.
Generally, the metals mentioned above are sintered in a hydrogen or reducing gas atmosphere to prevent oxidation, and then Ni-plated, solder-plated, or Au-plated to facilitate bonding and soldering. Met.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで上記の製造方法においては製造工程が?31雑
であり、水素あるいは還元ガス雰囲気中で高温で焼成す
るため安全面等も含めてコストアップにつながる多くの
欠点を有していた。そこで、兼ねてから安全面等を含め
て低廉価を可能にするためには1000℃以下で焼成出
来るアルミナ−ガラス複合焼成材を用いることが試みら
れていたが、気密性、耐マイグレーシヨン性が悪く強度
が低下し、緻密に焼結することが困難であり実現してい
ない。
By the way, what is the manufacturing process in the above manufacturing method? 31, and because it is fired at high temperatures in a hydrogen or reducing gas atmosphere, it has many drawbacks, including safety issues, which lead to increased costs. Therefore, attempts have been made to use alumina-glass composite fired materials that can be fired at temperatures below 1000°C in order to reduce costs while also ensuring safety. Unfortunately, the strength decreases, and it is difficult to sinter densely, so this has not been achieved yet.

本発明はこれに対し、素材の重量比1粒径を管理し、さ
らに工程順序及び焼結温度等の条件を設定することによ
り課題の解決をすることを目的とするものである。
In contrast, the present invention aims to solve this problem by controlling the grain size in weight ratio of the material and further setting conditions such as process order and sintering temperature.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するために、本発明はアルミナ−ガラ
ス複合材のアルミナ粉末とホウ珪酸ガラスの配合が、ホ
ウ珪酸ガラスを45〜55重量%含有し、残りをアルミ
ナ粉末にし、前記アルミナ粉末の平均粒径を2 、5 
p1m以下とし、前記ホウ珪酸ガラス粉末の平均粒径が
前記アルミナ粉末の平均粒径以下にした複合材を得ると
ともに、この焼成材よりなるグリーンシートを所定の形
状に形成し、脱脂工程の後、昇温速度を15℃/分以上
の速さで850〜950℃にて焼結することを特徴とす
る気密容器用のアルミナ−ガラス複合材と、その焼結方
法を提供するものである。
In order to solve the above-mentioned problems, the present invention provides that the composition of alumina powder and borosilicate glass in an alumina-glass composite material contains 45 to 55% by weight of borosilicate glass, and the remainder is alumina powder. The average particle size is 2,5
A composite material is obtained in which the average particle size of the borosilicate glass powder is equal to or less than the average particle size of the alumina powder, and a green sheet made of this fired material is formed into a predetermined shape, and after a degreasing step, The present invention provides an alumina-glass composite material for airtight containers, which is characterized by sintering at 850 to 950°C at a temperature increase rate of 15°C/min or more, and a method for sintering the same.

〔作用〕[Effect]

本発明による複合焼成材は、ホウ珪酸ガラス粉末が焼結
助剤として働き、アルミナ粉末間に介在する前記ホウ珪
酸ガラス粉末が全体にわたってほぼ同時に軟化1流動し
てアルミナ粉末を取囲み液相焼結を行う、そのために、
気孔の少ない緻密なアルミナ−ガラス複合焼成体となる
In the composite sintered material according to the present invention, the borosilicate glass powder acts as a sintering aid, and the borosilicate glass powder interposed between the alumina powders softens and flows almost simultaneously throughout, surrounding the alumina powder, and undergoes liquid phase sintering. To do that,
The result is a dense alumina-glass composite fired body with few pores.

この使用効果を詳しく説明すると、アルミナ粉末とホウ
珪酸ガラスの配合比は、アルミナの粉末粒子が細密に充
填されるように配位されたときの空隙の部分を、ホウ珪
酸ガラスが充填したときがもっとも理想的であって、そ
の空隙が零となり、このときのホウ珪酸ガラスの量が最
少必要量となることが最も好ましい様態である。しかし
実際にはアルミナ粉末粒子が理想的な細密充填に配位さ
れ得ないし、アルミナ粉末粒子とホウ珪酸ガラス粉末粒
子の濡れ性等を考慮しなければならない。
To explain the effect of this use in detail, the mixing ratio of alumina powder and borosilicate glass is such that when the alumina powder particles are arranged so as to be finely packed, the borosilicate glass fills the voids. The most ideal and most preferable embodiment is that the voids become zero and the amount of borosilicate glass at this time becomes the minimum required amount. However, in reality, the alumina powder particles cannot be arranged in an ideal close packing, and the wettability of the alumina powder particles and the borosilicate glass powder particles must be taken into consideration.

従って設計上量も空隙率が大きくなると考えられるアル
ミナ粉末粒子の配位を基準にして考える。
Therefore, the design amount is also considered based on the coordination of the alumina powder particles, which is thought to increase the porosity.

そこでアルミナ粉末の粒子が同一の大きさと仮定して、
それが立体配列されたものをモデル化すると、その空隙
率は48%となる。そして、この空隙率を充填するホウ
珪酸ガラスの量はその比重が約3であるから4帽1%と
なる。更にアルミナ粉末粒子とホウ珪酸ガラス粉末粒子
の濡れ性等による影響を考慮するとホウ珪酸ガラスの必
要最小量は約45重量%になる。しかしホウ珪酸ガラス
を多く添加していくと気孔のない緻密な様態となるが、
次第に強度が低下して気密容器用として好ましくない。
Therefore, assuming that the particles of alumina powder are the same size,
When modeled in a three-dimensional arrangement, the porosity is 48%. The amount of borosilicate glass filling this porosity is 1% since its specific gravity is about 3. Furthermore, considering the influence of the wettability of the alumina powder particles and the borosilicate glass powder particles, the minimum necessary amount of the borosilicate glass is about 45% by weight. However, when a large amount of borosilicate glass is added, it becomes dense with no pores.
The strength gradually decreases, making it undesirable for use in airtight containers.

そこで気密容器のそなえるべき必要な強度として適合す
るホウ珪酸ガラスの量が55重M%が限度であることが
わかった。
Therefore, it has been found that the maximum amount of borosilicate glass that meets the required strength for an airtight container is 55% by weight.

次に粒子径について述べるとホウ珪酸ガラス粉末の粒子
の平均粒径がアルミナ粉末粒子の平均粒径より小さいと
、アルミナ粉末粒子の回りにホウ珪酸ガラス粉末がまん
べんなくまつわりついて充填された様態となる。これを
焼成するとアルミナ粉末粒子を取り囲むようにホウ珪酸
ガラス粉末が溶融して充填され、気孔率の小さな焼成体
となる。
Next, regarding the particle size, if the average particle size of the borosilicate glass powder particles is smaller than the average particle size of the alumina powder particles, the borosilicate glass powder will evenly surround and fill the alumina powder particles. . When this is fired, borosilicate glass powder is melted and filled so as to surround the alumina powder particles, resulting in a fired body with low porosity.

上記のようにアルミナ粉末の平均粒径が大きいことは好
ましいが、実際には融点の高いアルミナ粉末粒子の粒径
は焼結後もほとんど変化しないため、粗い粒径を用いる
と焼成後の表面粗さが大きくなり気密容器として好まし
くなく、実用的な粒径として平均2.5−が最適で、こ
のとき最大粒径は9−であった、この粒径は小さいこと
が好ましいが、前述したようにホウ珪酸ガラス粉末の平
均粒径は、これより小径にする必要があり、かつ小径に
するほどコスト高となり、妥当な粒径として平均2.5
μ−となった。
As mentioned above, it is preferable that the average particle size of the alumina powder is large, but in reality, the particle size of alumina powder particles with a high melting point hardly changes after sintering, so if a coarse particle size is used, the surface roughness after sintering will increase. The particle size becomes large, which is not desirable as an airtight container, and the optimum practical particle size is an average of 2.5-, and the maximum particle size was 9. It is preferable that this particle size is small, but as mentioned above, The average particle size of borosilicate glass powder needs to be smaller than this, and the smaller the particle size, the higher the cost, so a reasonable particle size is 2.5 on average.
It became μ-.

このような素材による複合材を混練し、グリーンシート
化し、成形したものを脱脂工程を施し、その後の焼結時
の昇温速度を15℃/分以上と速くする。このように急
速に加熱することは見掛上ホウ珪酸ガラスの結晶化温度
が高くなることを意味し、この種の再結晶ガラス特有の
特性、すなわち、溶融状態は部活晶化の始まりであり、
その間の時間の経過はある程度、特に小型の容器におい
て短時間の方が好ましく、かつ液相も良好に促進される
。そのためホウ珪酸ガラスの溶融中に発生する気孔を外
部に違い出し易くなり、気孔の少ない緻密な様態を示す
複合焼結体が得られる。
A composite material made of such materials is kneaded, formed into a green sheet, and the formed product is subjected to a degreasing process, and the temperature increase rate during subsequent sintering is increased to 15° C./min or more. Rapid heating in this way means that the apparent crystallization temperature of borosilicate glass increases, and this is a characteristic unique to this type of recrystallized glass, that is, the molten state is the beginning of partial crystallization.
The time elapsed during this period is preferably short to some extent, especially in a small container, and the liquid phase is also favorably promoted. Therefore, the pores generated during melting of the borosilicate glass are easily released to the outside, and a composite sintered body exhibiting a dense appearance with few pores can be obtained.

〔実施例〕〔Example〕

以下本発明による複合材と、それを焼結するまでの一実
施例を説明する。まず原材料の一つアルミナ粉末の平均
粒径2.5−を重量で40.45,50,55゜60.
65%とし、残りを他の一方の原材料として平均粒径1
.3μmのホウ珪酸ガラスとし、両者を混合して、それ
に有機バインダー、可塑剤、トルエンあるいはメチルエ
チルケトン等の公知の溶剤を通常通り加えボールミルで
混練しスラリー状を作製した0次に公知のドクターブレ
ード法により厚み160−のグリーンシートを成形した
。これらのシートを30關角に切断して、脱バインダー
は昇温5℃/分で400℃にて30分行い、引き続いて
行う本焼結の400℃からの昇温速度は15℃/分と急
速に加熱し、900℃に至って30分間大気中で焼結し
て試料を作り、リークテスト、及び組成の様態を研磨し
た表面の顕微鏡観察で行った。又、強度テスト用試料と
して前記グリーンシートを5Nラミネートし30 X 
10■1角に切断して上記と同じ条件で焼結して厚さ約
650pmの試料片の抗折強度を測定して第1表のよう
な結果が得られた。
An example of the composite material according to the present invention and its sintering process will be described below. First, the average particle size of one of the raw materials, alumina powder, is 2.5 - 40.45, 50, 55° 60.
65%, and the rest is the other raw material with an average particle size of 1.
.. Borosilicate glass with a thickness of 3 μm was used, the two were mixed, an organic binder, a plasticizer, and a known solvent such as toluene or methyl ethyl ketone were added thereto in the usual manner and kneaded in a ball mill to create a slurry. A green sheet with a thickness of 160 mm was molded. These sheets were cut into 30 square pieces, and binder removal was carried out at 400°C for 30 minutes at a heating rate of 5°C/min, followed by main sintering at a heating rate of 15°C/min from 400°C. Samples were prepared by rapidly heating to 900° C. and sintering in the air for 30 minutes, and leak tests and compositional aspects were performed by microscopic observation of the polished surface. In addition, as a strength test sample, the green sheet was laminated with 5N and 30X
The bending strength of a sample piece having a thickness of about 650 pm was measured by cutting it into 10 square pieces and sintering it under the same conditions as above, and the results shown in Table 1 were obtained.

同表において、一般に使用されるHeによるリークテス
トで気密性を試験したところ、試料1〜4は規定値I 
Xl0−”atIlce/see以下で、リークなしと
認められ、試料5と6はこの規定値をオーバした。この
理由は先に述べたようにアルミナの量が多すぎたために
、ホウ珪酸ガラスの濡れ廻りが不充分で気孔が生じたも
のである。その様態は第6図の(b)の写真に示すよう
に、試料6の表面は結晶化したガラスとアルミナの境界
は認められず緻密な固体となっている。しかし上述した
ようにアルミナの量が多いので随所に気孔が認められる
In the same table, when the airtightness was tested using a commonly used He leak test, samples 1 to 4 had a specified value of I
Xl0-"atIlce/see or less, it was recognized that there was no leakage, and Samples 5 and 6 exceeded this specified value. The reason for this was that the amount of alumina was too large as mentioned earlier, and the wetting of the borosilicate glass. Pores were formed due to insufficient surroundings.As shown in the photograph in Figure 6(b), the surface of Sample 6 was a dense solid with no boundary between the crystallized glass and alumina. However, as mentioned above, since the amount of alumina is large, pores are observed everywhere.

これに対し試料4の様態は、同図fa)に示すように結
晶化したガラスの中に均一にアルミナが分布し、良好な
濡れ廻りとなり緻密であるとともに気孔は少なくなって
いる。
On the other hand, in the case of sample 4, as shown in figure fa), alumina is uniformly distributed in the crystallized glass, resulting in good wetting and denseness with fewer pores.

次に機械的な強度について、205mの間隔の2点で支
持された試料の中心を加圧して抗折する強度な評価をし
た。この抗折強度試験の結果、一般の電子部品、特に表
面実装に適用される容器の強度として、従来のアルミナ
製の強度約2500 kg / cdに対し、必要充分
な値として1650kr/−を低限と設定した0以上第
1表の結果、気密性と機械的強度の双方の観点から、ア
ルミナ粉末の平均粒径を2゜5n、ホウ珪酸ガラスの平
均粒径はそれより小さH,3nとし、両者の混合比はホ
ウ珪酸ガラスが45〜55重量%であり、残りをアルミ
ナ粉末とする複合材を素材とすることが好ましく、この
素材を公知の方法でグリーンシート、さらに成形して、
400℃で30分間脱バインダー後、昇温速度として1
5℃/分以上の可能な範囲で急速に900℃まで上昇し
、その温度で30分間かけて焼結することにより良好な
小型気密容器が得られる。
Next, mechanical strength was evaluated by applying pressure to the center of the sample supported at two points 205 m apart and bending the sample. As a result of this bending strength test, the strength of containers applied to general electronic components, especially surface mounting, was determined to be as low as 1650 kr/- as a necessary and sufficient value, compared to the strength of conventional alumina, which is approximately 2500 kg/cd. From the viewpoint of both airtightness and mechanical strength, the average particle size of alumina powder is set to 2.5n, and the average particle size of borosilicate glass is smaller than that, H.3n. The mixing ratio of the two is preferably 45 to 55% by weight of borosilicate glass, and the remainder is alumina powder. This material is preferably formed into a green sheet by a known method, and further formed.
After debinding at 400℃ for 30 minutes, the temperature increase rate was 1
A good small airtight container can be obtained by rapidly increasing the temperature to 900°C at a rate of 5°C/min or more and sintering at that temperature for 30 minutes.

次に上記複合材と、その焼結方法による具体的な実施例
として試料NO4の素材によるグリーンシートで圧電振
動子の封入容器を作成した。この試料NO4のシートを
平面的に見て第1図9第2図のように打抜き、第1図の
シート1の上にAg/Pdペーストを、第3図に示す導
体部3のようにスクリーン印刷する。そして第3図で示
すシート1の上に第2図の枠2を必要な容積に、つまり
深さ方向に合わせて何枚かをラミネートする。第4図(
alはその状態を示した平面図、第4図fblはta1
図のA−A ’部を断面図で示したものである。そして
この状態のものを前述した試料と同じ焼結条件で焼成し
容器が得られた。この容器の表面に露出した導体部3の
面に第4図(blに示すように約3−〇NiNを下地に
、その上に約2amのAu膜を電解メツキにより電極膜
3′を施す。次に水晶振動子4は第5図+a+の平面図
と、そのA−A ’部の断面を、(blに示すように公
知の方法で接合し、真空あるいは不活性ガスの雰囲気中
でガラス蓋5を低融点ガラス等の融着剤6で封止をする
。この融着封止は双方に設けた金属膜をハンダ材等によ
り封止することが任意であり、いずれの手段によっても
本発明の複合材と、その焼結方法による気密容器の性能
は従来のアルミナセラミックと比較して大差なく、従っ
てこれに収容された水晶振動子の緒特性も充分満足でき
るものであり、また長期間のエージングテストの結果、
容器の気密性も満足出来るものであった。
Next, as a specific example of the composite material and its sintering method, an enclosure for a piezoelectric vibrator was created using a green sheet made of the material of sample NO4. A sheet of sample NO4 is punched out as shown in FIG. 1 and FIG. Print. Then, a number of frames 2 shown in FIG. 2 are laminated on top of the sheet 1 shown in FIG. 3 according to the required volume, that is, in the depth direction. Figure 4 (
al is a plan view showing the state, and Fig. 4 fbl is ta1
It is a sectional view taken along the line AA' in the figure. Then, this state was sintered under the same sintering conditions as the sample described above, and a container was obtained. As shown in FIG. 4 (bl), an electrode film 3' is formed on the surface of the conductor portion 3 exposed on the surface of the container by electrolytically plating an approximately 2 am Au film on a NiN base of approximately 3-0. Next, the crystal resonator 4 is assembled by joining the plan view of FIG. 5 is sealed with a fusing agent 6 such as low melting point glass.This fusing sealing can optionally be done by sealing the metal film provided on both sides with a solder material, etc., and the present invention can be performed by any means. The performance of the airtight container created by the composite material and its sintering method is not much different from that of conventional alumina ceramics, and therefore the characteristics of the crystal resonator housed in it are also fully satisfactory, and the long-term lifespan is also very high. As a result of the aging test,
The airtightness of the container was also satisfactory.

〔発明の効果〕 以上説明したように、本発明によるアルミナガラスより
なる複合材によれば、その焼結温度が低温であっても、
良好な気密性と機械的強度が得られ、特に導電材として
低温処理に見合う一般の厚膜材料が適用でき、さらに特
殊な雰囲気でなく大気中で作業が出来るものであり、そ
の結果、安全性も含めて総合的にコストダウンが実現出
来る等多くの効果を有するものである。
[Effects of the Invention] As explained above, according to the composite material made of alumina glass according to the present invention, even if the sintering temperature is low,
Good airtightness and mechanical strength can be obtained, general thick film materials suitable for low-temperature processing can be applied especially as conductive materials, and furthermore, work can be performed in the atmosphere rather than in special atmospheres, and as a result, safety is improved. This has many effects, including the ability to reduce costs comprehensively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の複合焼結材のグリーンシートを打抜い
た平面図で、第2図は第1図と同一材を打抜いた枠の平
面図である。第3図は第1図のシートに導体部を印刷し
た平面図、第4図+al、 (blは第3図のシート上
に第2図の枠をラミネートした平面図(alと同図のA
−A’部を示す断面図、第5図(5)、(b)は振動子
を接合した平面図+a)と同図のA−A’部とガラス蓋
で封止した断面図が山)図である。第6図は本発明によ
る焼結体の組成の様態を示す研磨面の電子顕微鏡写真で
、(alは試料N04゜(blは試料NO6の写真であ
る。 ・シート ・枠 ・導体部 ・電極膜 ・水晶振動子 ・ガラス蓋 ・封止材 以上 出願人 セイコー電子部品株式会社 代理人 弁理士  林   敬 之 助第 図 男 ? 図 第 図 3′ (α) (b) 躬 マ (α) (b) 括 フ 手 続 、?+1)を 正 り茅 (方式) 2、発明の名称 気密容器用のアルミナ グラス複合材とその焼結方法 3゜
FIG. 1 is a plan view of a green sheet of the composite sintered material of the present invention punched out, and FIG. 2 is a plan view of a frame punched out of the same material as FIG. 1. Figure 3 is a plan view of the conductor part printed on the sheet of Figure 1, Figure 4+al, (bl is a plan view of laminating the frame of Figure 2 on the sheet of Figure 3 (al and A of the same figure).
- A cross-sectional view showing the A' part, Figures 5 (5) and (b) are a plan view of the vibrator joined + a), and a cross-sectional view of the A-A' part of the same figure sealed with a glass lid) It is a diagram. FIG. 6 is an electron micrograph of the polished surface showing the composition of the sintered body according to the present invention (al is a photograph of sample No. 4 (bl is a photograph of sample No. 6). ・Sheet, frame, conductor part, electrode film・Crystal resonator, glass lid, sealing material and above Applicant: Seiko Electronic Components Co., Ltd. Agent Patent attorney: Keisuke Hayashi Figure 3' (α) (b) Tsutomu (α) (b) 2. Name of the invention Alumina glass composite material for airtight containers and its sintering method 3゜

Claims (2)

【特許請求の範囲】[Claims] (1)アルミナ−ガラス複合材のアルミナ粉末とホウ珪
酸ガラスの配合がホウ珪酸ガラスを45〜55重量%含
有し、残りをアルミナ粉末にし、前記アルミナ粉末の平
均粒径を2.5μm以下とし、前記ホウ珪酸ガラス粉末
の平均粒径が前記アルミナ粉末の平均粒径以下にするこ
とを特徴とする気密容器用のアルミナ−ガラス複合焼成
材。
(1) The blend of alumina powder and borosilicate glass of the alumina-glass composite material contains 45 to 55% by weight of borosilicate glass, the remainder is alumina powder, and the average particle size of the alumina powder is 2.5 μm or less, An alumina-glass composite fired material for an airtight container, characterized in that the average particle size of the borosilicate glass powder is equal to or less than the average particle size of the alumina powder.
(2)請求項1記載の焼成材よりなるグリーンシートを
所定の形状に形成し、脱脂工程の後、昇温速度を15℃
/分以上の速さで850〜950℃にて焼結することを
特徴とする気密容器用のアルミナ−ガラス複合材の焼結
方法。
(2) A green sheet made of the fired material according to claim 1 is formed into a predetermined shape, and after a degreasing process, the temperature is increased at a rate of 15°C.
1. A method for sintering an alumina-glass composite material for an airtight container, the method comprising sintering at 850 to 950°C at a speed of 1/min or more.
JP21392589A 1988-09-06 1989-08-18 Alumina-glass composite material for airtight vessel and sintering thereof Pending JPH02160640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21392589A JPH02160640A (en) 1988-09-06 1989-08-18 Alumina-glass composite material for airtight vessel and sintering thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP22315788 1988-09-06
JP63-223157 1988-09-06
JP63-223158 1988-09-06
JP21392589A JPH02160640A (en) 1988-09-06 1989-08-18 Alumina-glass composite material for airtight vessel and sintering thereof

Publications (1)

Publication Number Publication Date
JPH02160640A true JPH02160640A (en) 1990-06-20

Family

ID=26520048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21392589A Pending JPH02160640A (en) 1988-09-06 1989-08-18 Alumina-glass composite material for airtight vessel and sintering thereof

Country Status (1)

Country Link
JP (1) JPH02160640A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595644A1 (en) * 1992-10-29 1994-05-04 Nec Corporation Flat packaged piezoelectric device using glass-ceramic composite material comprising forsterite

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316719A (en) * 1976-07-31 1978-02-16 Matsushita Electric Works Ltd Method of manufacturing inorganic moulding materials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316719A (en) * 1976-07-31 1978-02-16 Matsushita Electric Works Ltd Method of manufacturing inorganic moulding materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595644A1 (en) * 1992-10-29 1994-05-04 Nec Corporation Flat packaged piezoelectric device using glass-ceramic composite material comprising forsterite

Similar Documents

Publication Publication Date Title
EP0237047A2 (en) Cermet substrate with glass adhesion component
JP4245924B2 (en) Electronic component package and manufacturing method thereof
US4859531A (en) Method for bonding a cubic boron nitride sintered compact
US4748136A (en) Ceramic-glass-metal composite
US4793967A (en) Cermet substrate with spinel adhesion component
US5043139A (en) Amalgam preform, method of forming the preform and method of bonding therewith
US4743299A (en) Cermet substrate with spinel adhesion component
EP1610380B1 (en) Hermetic seal cover and manufacturing method thereof
JPH02160640A (en) Alumina-glass composite material for airtight vessel and sintering thereof
JPS61132580A (en) Metallization of nitride ceramic body
JP3911470B2 (en) Ceramic package and manufacturing method thereof
JP4220869B2 (en) Manufacturing method of ceramic package
JPH0378307A (en) Vessel for surface mounted type piezoelectric vibrator
JP4413223B2 (en) Ceramic package
KR100453518B1 (en) Method for fabrication of si-al alloy structural material
US6465733B1 (en) Electronic package structure utilizing aluminum nitride/aluminum composite material
JP2014189450A (en) Ceramic-metal joined body and method for manufacturing the same
JPH0749152B2 (en) Method for manufacturing envelope of rectifying element
JP4413224B2 (en) Ceramic package
JPS6228067A (en) Joining method for ceramics
JPS61183178A (en) Method of joining silicon nitride ceramic to metal
JP2004228533A (en) Ceramic package
JP2003142620A (en) Electronic apparatus
JPH0348253B2 (en)
JPH0240028B2 (en) SERAMITSUKUSUTOKINZOKU * DOSHUSERAMITSUKUSUDOSHIMATAHAISHUSERAMITSUKUSUKANNOSETSUGOHOHO