JPH02160550A - Manufacture of metal and ceramic laminated body - Google Patents
Manufacture of metal and ceramic laminated bodyInfo
- Publication number
- JPH02160550A JPH02160550A JP4676788A JP4676788A JPH02160550A JP H02160550 A JPH02160550 A JP H02160550A JP 4676788 A JP4676788 A JP 4676788A JP 4676788 A JP4676788 A JP 4676788A JP H02160550 A JPH02160550 A JP H02160550A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- metal
- molded body
- ceramic
- ceramics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 41
- 239000002184 metal Substances 0.000 title claims abstract description 41
- 239000000919 ceramic Substances 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000005245 sintering Methods 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 150000002739 metals Chemical class 0.000 abstract description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract description 4
- 230000008646 thermal stress Effects 0.000 abstract description 4
- 230000035882 stress Effects 0.000 abstract description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 2
- 239000000112 cooling gas Substances 0.000 abstract description 2
- 239000000498 cooling water Substances 0.000 abstract description 2
- 229910052593 corundum Inorganic materials 0.000 abstract description 2
- 229910052742 iron Inorganic materials 0.000 abstract description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 229910052782 aluminium Inorganic materials 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 238000010276 construction Methods 0.000 abstract 1
- 229910052802 copper Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 230000002349 favourable effect Effects 0.000 abstract 1
- 229910052759 nickel Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 238000010304 firing Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 235000015842 Hesperis Nutrition 0.000 description 2
- 235000012633 Iberis amara Nutrition 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 101150000971 SUS3 gene Proteins 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、例えば、ロケット等の外壁材等に用いる金
属及びセラミックス積層体に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a metal and ceramic laminate used, for example, as an outer wall material of a rocket or the like.
[従来の技術]
ロケット及び航空機の外壁材、エンジン部材等、耐熱性
と放熱性とを兼備しなければならない用途へ適用される
材料として金属及びセラミックス積層体が考えられてい
る。[Prior Art] Metal and ceramic laminates are considered as materials to be applied to applications that require both heat resistance and heat dissipation, such as outer wall materials and engine components for rockets and aircraft.
従来行われている金属及びセラミックス積層体の製造方
法として、金属部材の上にCVD、P、 V D又はプ
ラズマコーティング等によりセラミックス層を形成する
方法、又はセラミックス部材の上にメタライズする方法
がある。Conventional methods for manufacturing metal and ceramic laminates include a method of forming a ceramic layer on a metal member by CVD, P, VD, or plasma coating, or a method of metallizing the ceramic member.
[発明が解決しようとする課題]
しかしながら、前者の場合には、厚い層を形成する際に
内部に高い残留応力が発生してしまい、また、後者の場
合には、メタライズすることができる金属がCu%Fe
、、N1等に限定されてしまうという不都合がある。[Problem to be solved by the invention] However, in the former case, high residual stress occurs internally when forming a thick layer, and in the latter case, the metal that can be metallized is Cu%Fe
, , N1, etc., which is disadvantageous.
この発明はかかる事情に鑑みてなされたものであって、
厚みが大きい場合にも残留応力が少なく、材料にかかわ
らず形成可能な金属及びセラミックス積層体の製造方法
を提供することを目的とする。This invention was made in view of such circumstances, and
It is an object of the present invention to provide a method for manufacturing a metal and ceramic laminate that has little residual stress even when the thickness is large and can be formed regardless of the material.
[課題を解決するための手段]
この発明に係る金属及びセラミックス積層体の製造方法
は、一方の表面側に形成されたセラミックス又はセラミ
ックスを主体とする第1の層と、他方の表面側に形成さ
れた金属又は金属を主体とする第2の層と、これらの間
に介装される1又は2以上の金属及びセラミックスの混
合体層とを有する積層体を製造する積層体の製造方法で
あって、前記各層の金属量が第1の層から第2の層まで
順次増加するように各層を積層した成形体を形成する工
程と、成形体の各表面側を夫々第1の層及び第2の層の
適正焼結温度に設定して成形体を焼結する工程とを具備
することを特徴とする。この場合に、焼結工程は、成形
体を加圧しながら行われることが好ましい。[Means for Solving the Problems] The method for manufacturing a metal and ceramic laminate according to the present invention includes a first layer formed on one surface of a ceramic or a first layer mainly composed of ceramic, and a first layer formed on the other surface. A method for manufacturing a laminate comprising a second layer mainly made of a metal or a metal, and one or more metal and ceramic mixture layers interposed between the two layers. a step of forming a molded body in which each layer is laminated such that the amount of metal in each layer increases sequentially from the first layer to the second layer; and sintering the molded body by setting an appropriate sintering temperature for the layer. In this case, the sintering step is preferably performed while pressurizing the molded body.
[作用]
この発明においては、前述のように、成形体の各表面側
を夫々第1の層及び第2の層の適正焼結温度に設定して
成形体を焼結するので、材料に拘らず容品に積層体を製
造することができる。また、金属含有量の大きさの順に
各層を積層するので、各層間の歪みが少なく、また、各
層間に発生する熱応力が極めて少ない。このため、大き
な厚みの積層体を得ることができる。更に、焼結工程に
おいて成形体を加圧することにより、焼結による変形を
防止することができる。[Function] In this invention, as described above, since the molded body is sintered by setting each surface side of the molded body to the appropriate sintering temperature for the first layer and the second layer, it is possible to sinter the molded body regardless of the material. The laminate can be manufactured into a single container. Furthermore, since each layer is laminated in order of metal content, there is little strain between each layer, and extremely little thermal stress occurs between each layer. Therefore, a laminate with a large thickness can be obtained. Furthermore, by pressurizing the compact during the sintering process, deformation due to sintering can be prevented.
[実施例]
以下、添付図面を参照してこの発明の実施例について具
体的に説明する。第1図はこの実施例の実施状態を説明
するための図である。成形体1において、最上層2は5
i02、AI)zo3、ZrO7、SIC等のセラミッ
クスで形成された層、又はこれらセラミックスを主体と
する層であり、最下層3はpescusl!qNiSW
等の金属で形成された層、又はこれら金属を主体とする
層である。そして、これら最上層2と最下層3との間に
は、複数の金属及びセラミックス混合体層4(第1図中
では3層)が形成されている。この混合体層4は最上層
2を形成しているセラミックスと最下層3を形成してい
る金属との混合体で形成されており、各層は最上層2側
から最下層3側に向けて、金属の含有量が順次増加する
ような組成となっている。このような層が積層されて形
成された成形体1は、焼成炉10にて焼結される。[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a diagram for explaining the implementation state of this embodiment. In the molded body 1, the top layer 2 is 5
i02, AI) A layer formed of ceramics such as zo3, ZrO7, SIC, or a layer mainly composed of these ceramics, and the bottom layer 3 is pescusl! qNiSW
It is a layer formed of metals such as, or a layer mainly composed of these metals. A plurality of metal and ceramic mixture layers 4 (three layers in FIG. 1) are formed between the uppermost layer 2 and the lowermost layer 3. This mixture layer 4 is formed of a mixture of ceramics forming the top layer 2 and metal forming the bottom layer 3, and each layer is arranged from the top layer 2 side to the bottom layer 3 side. The composition is such that the metal content increases sequentially. A molded body 1 formed by laminating such layers is sintered in a firing furnace 10.
焼成炉10の内部には、加圧部材11と台部材12とが
設けられており、焼成においてはこれら加圧部材11と
台部材12との間に成形体1が介装される。台部材12
内には冷却線通流路(図示せず)が設けられており、こ
れに冷却水又は冷却ガスを通流することにより層3側の
温度が層2側の温度よりも低くセットすることができる
。そして、焼成炉10内を例えば1O−1Torr程度
の真空下で最上層2の焼結温度T1にセットすると共に
、層3の部分の温度が適切な温度T2になるように台部
材12の冷却条件を適宜に設定し、更に、加圧部材11
により成形体1を例えば6kgf/C12で加圧しなが
ら成形体1を焼結させる。A pressure member 11 and a base member 12 are provided inside the firing furnace 10, and the molded body 1 is interposed between the pressure member 11 and the base member 12 during firing. Base member 12
A cooling line passageway (not shown) is provided inside, and by passing cooling water or cooling gas through this passage, the temperature on the layer 3 side can be set lower than the temperature on the layer 2 side. can. Then, the inside of the firing furnace 10 is set to the sintering temperature T1 of the uppermost layer 2 under a vacuum of, for example, about 1O-1 Torr, and the cooling conditions of the base member 12 are set such that the temperature of the layer 3 becomes an appropriate temperature T2. is set appropriately, and furthermore, the pressure member 11
The molded body 1 is sintered while pressurizing the molded body 1 at, for example, 6 kgf/C12.
この場合に、通常、上述したセラミックスの焼結温度よ
りも金属の焼結温度の方が低いので、焼成温度をこのよ
うに調節することにより成形体を適正焼結条件で焼成す
ることができる。また、各層の金属含有量が順次増加し
ているので、焼結過程における各層間の歪みが発生難く
、また、焼結後の使用に際して積層体が加熱されても各
層に発生する熱応力が小さい。更に、焼結過程で加圧す
ることにより焼成の際の製品の変形を防止することがで
きる。In this case, since the sintering temperature of metals is usually lower than the sintering temperature of ceramics, the compact can be fired under appropriate sintering conditions by adjusting the firing temperature in this manner. In addition, since the metal content of each layer increases sequentially, distortion between each layer during the sintering process is less likely to occur, and even when the laminate is heated during use after sintering, the thermal stress generated in each layer is small. . Furthermore, by applying pressure during the sintering process, deformation of the product during firing can be prevented.
なお、この実施例における成形体は、ドクタブレード法
等で各層のグリーンシートを形成し、これらを積層密着
して形成することができる。The molded body in this example can be formed by forming green sheets of each layer by a doctor blade method or the like, and then laminating these sheets in close contact with each other.
次に、この発明の具体的な実施例について説明する。こ
こではセラミックスとしてZrO2又はAl2203を
用い、金属としてNL又はオーステナイト鋼(SUS3
04)を用いた場合について示す。最上層及び最下層を
夫々これらのセラミックス及び金属で形成し、最上層の
セラミックスに金属層を形成する金属を10重量%から
90重量%まで10重量%づつ増加させて添加した9層
の混合体層を金属含有量の順に積層した(全体で11層
)。そして、前述したように、最上層側の温度と最下層
側の温度とが両方とも適正焼結温度となるように条件を
設定して焼結し、完成品の外観を観察した。一方、比較
例として同様な成形体を通常の焼成条件で焼成した場合
について試験した。Next, specific embodiments of the present invention will be described. Here, ZrO2 or Al2203 is used as the ceramic, and NL or austenitic steel (SUS3) is used as the metal.
04) is used. A 9-layer mixture in which the top layer and the bottom layer are formed of these ceramics and metals, respectively, and the metal forming the metal layer is added to the top layer ceramic in 10 weight % increments from 10 weight % to 90 weight %. The layers were stacked in order of metal content (11 layers in total). Then, as described above, sintering was performed under conditions such that the temperature of the uppermost layer and the temperature of the lowermost layer were both at appropriate sintering temperatures, and the appearance of the finished product was observed. On the other hand, as a comparative example, a similar molded body was tested under normal firing conditions.
この結果を実施例1乃至5及び比較例1乃至4として試
験第1表に示す。The results are shown in Test Table 1 as Examples 1 to 5 and Comparative Examples 1 to 4.
第1表中、成分とあるのは夫々最上層のセラミックス及
び最下層の金属を示し、Tl及びT2とあるのは夫々最
上層及び最下層の焼結温度を示す。In Table 1, "component" indicates the top layer ceramic and bottom layer metal, respectively, and "T1" and "T2" indicate the sintering temperature of the top layer and bottom layer, respectively.
第1表に示すように実施例1乃至5はいずれも欠陥がな
く良好な外観を示した。これに対し、セラミックスの焼
結温度で焼成した比較例1及び3はNiが昇華してしま
い空孔が多く残存し、極めて脆い状態であった。また、
金属の焼結温度で焼成した比較例2及び4はセラミック
スが焼結しておらず、やはり極めて脆い状態であった。As shown in Table 1, Examples 1 to 5 had no defects and had a good appearance. On the other hand, in Comparative Examples 1 and 3, which were fired at the ceramic sintering temperature, Ni was sublimated and many pores remained, resulting in an extremely brittle state. Also,
In Comparative Examples 2 and 4, which were fired at a metal sintering temperature, the ceramics were not sintered and were still in an extremely brittle state.
以上の結果より、この発明の効果を確認することができ
た。From the above results, it was possible to confirm the effects of this invention.
なお、これらとは別に、セラミックスとしてA II
203 、金属としてWを用いて同様の成形体を作成し
、焼結試験を行なった結果、Al2O3及びWは双方と
も適正焼結温度が1600℃付近であり、この発明の方
法を用いるまでもなく、従来の焼成方法で焼結させるこ
とができた。In addition, apart from these, A II as a ceramic
203, a similar molded body was made using W as the metal, and a sintering test was conducted. As a result, the appropriate sintering temperature for both Al2O3 and W was around 1600°C, and there was no need to use the method of this invention. , could be sintered using conventional firing methods.
なお、この実施例においては、両表面側の層がセラミッ
クス及び金属の場合について説明したが、100%これ
らの場合に限らず、これらを主体とするものであっても
同様な効果が得られる。また、金属のほうがセラミック
スよりも焼成温度が高い場合について説明したが、セラ
ミックスのほうが焼結温度が低い場合にも適用すること
ができるのは勿論である。In this embodiment, the case where the layers on both surfaces are made of ceramics and metal has been described, but the layer is not limited to 100% of these, and the same effect can be obtained even if the layers are made mainly of these. Moreover, although the case where the sintering temperature of metal is higher than that of ceramics has been described, it goes without saying that the present invention can also be applied to the case where the sintering temperature of ceramics is lower.
[発明の効果]
この発明によれば、成形体の各表面側を夫々第1の層及
び第2の層の適正焼結温度に設定して成形体を焼結する
ので、材料に拘らず容易に良好な積層体を製造すること
ができる。また、金属含有量の大きさの順に各層を積層
するので、各層間の歪みが少なく、また、各層間に発生
する熱応力が極めて少ない。このため、大きな厚みの積
層体を得ることができる。更に、焼結工程において成形
体を加圧することにより、焼結による変形を防止するこ
とができる。[Effects of the Invention] According to the present invention, since the molded body is sintered by setting each surface side of the molded body to an appropriate sintering temperature for the first layer and the second layer, it is easy to sinter the molded body regardless of the material. It is possible to produce a good laminate. Furthermore, since each layer is laminated in order of metal content, there is little strain between each layer, and extremely little thermal stress occurs between each layer. Therefore, a laminate with a large thickness can be obtained. Furthermore, by pressurizing the compact during the sintering process, deformation due to sintering can be prevented.
このようにして形成される金属セラミックス積層体は、
ロケット及び航空機の外壁、エンジン部材のみならず、
核融合炉の第1壁用部材、及び人工関節等の生体材料に
適用することもできる。The metal-ceramic laminate formed in this way is
In addition to the outer walls and engine parts of rockets and aircraft,
It can also be applied to biomaterials such as first wall members of nuclear fusion reactors and artificial joints.
第1図はこの発明に係る実施例の実施状態を示す図であ
る。
1;成形体、2;最上層、3;最下層、4;混合体層、
10;焼成炉、11;加圧部材、12;台部材。FIG. 1 is a diagram showing an implementation state of an embodiment according to the present invention. 1; molded body, 2; top layer, 3; bottom layer, 4; mixture layer,
10; firing furnace; 11; pressure member; 12; stand member.
Claims (2)
ミックスを主体とする第1の層と、他方の表面側に形成
された金属又は金属を主体とする第2の層と、これらの
間に介装される1又は2以上の金属及びセラミックスの
混合体層とを有する積層体を製造する積層体の製造方法
であって、前記各層の金属量が第1の層から第2の層ま
で順次増加するように各層を積層した成形体を形成する
工程と、成形体の各表面側を夫々第1の層及び第2の層
の適正焼結温度に設定して成形体を焼結する工程とを具
備することを特徴とする金属及びセラミックス積層体の
製造方法。(1) A ceramic or a first layer mainly made of ceramics formed on one surface side, a second layer formed on the other surface side of metal or mainly made of metal, and an intervening layer between them. A method for manufacturing a laminate, the method comprising: manufacturing a laminate having one or more metal and ceramic mixture layers, wherein the amount of metal in each layer increases sequentially from the first layer to the second layer. a step of forming a molded body in which each layer is laminated in such a manner, and a step of sintering the molded body by setting each surface side of the molded body to an appropriate sintering temperature for the first layer and the second layer, respectively. A method for manufacturing a metal and ceramic laminate, comprising:
ことを特徴とする請求項1に記載の金属及びセラミック
ス積層体の製造方法。(2) The method for manufacturing a metal and ceramic laminate according to claim 1, wherein the sintering step is performed while pressurizing the compact.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4676788A JPH02160550A (en) | 1988-02-29 | 1988-02-29 | Manufacture of metal and ceramic laminated body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4676788A JPH02160550A (en) | 1988-02-29 | 1988-02-29 | Manufacture of metal and ceramic laminated body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02160550A true JPH02160550A (en) | 1990-06-20 |
Family
ID=12756481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4676788A Pending JPH02160550A (en) | 1988-02-29 | 1988-02-29 | Manufacture of metal and ceramic laminated body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02160550A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105189820A (en) * | 2013-05-28 | 2015-12-23 | 西屋电气有限责任公司 | A kinetically applied gradated Zr-Al-C ceramic or Ti-Al-C ceramic or amorphous or semi-amorphous stainless steel with nuclear grade zirconium alloy metal structure |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5382815A (en) * | 1976-12-27 | 1978-07-21 | United Technologies Corp | Method of removing stress from metall ceramic seal for gas turbine |
JPS5911056A (en) * | 1982-07-09 | 1984-01-20 | Nec Corp | Start-stop synchronism type communication system |
-
1988
- 1988-02-29 JP JP4676788A patent/JPH02160550A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5382815A (en) * | 1976-12-27 | 1978-07-21 | United Technologies Corp | Method of removing stress from metall ceramic seal for gas turbine |
JPS5911056A (en) * | 1982-07-09 | 1984-01-20 | Nec Corp | Start-stop synchronism type communication system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105189820A (en) * | 2013-05-28 | 2015-12-23 | 西屋电气有限责任公司 | A kinetically applied gradated Zr-Al-C ceramic or Ti-Al-C ceramic or amorphous or semi-amorphous stainless steel with nuclear grade zirconium alloy metal structure |
US10060018B2 (en) | 2013-05-28 | 2018-08-28 | Westinghouse Electric Company Llc | Kinetically applied gradated Zr-Al-C ceramic or Ti-Al-C ceramic or amorphous or semi-amorphous stainless steel with nuclear grade zirconium alloy metal structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4778649A (en) | Method of producing composite materials | |
JP2023159368A5 (en) | ||
US3419404A (en) | Partially nitrided aluminum refractory material | |
US4723862A (en) | Ceramic-metal joint structure | |
JPH01279781A (en) | Ceramic coated heat resistant member | |
JP7337987B2 (en) | Method for manufacturing semi-finished metal products and method for manufacturing metal-ceramic substrates | |
GB2110582A (en) | Ceramic composite tube | |
KR20200105930A (en) | Firing jig | |
GB2096925A (en) | Manufacture of tubular coupling elements | |
JPH02160550A (en) | Manufacture of metal and ceramic laminated body | |
US3214833A (en) | Ceramic to metal bonding process | |
US5250130A (en) | Replica hot pressing technique | |
JPS61159566A (en) | Coating method of metallic or ceramic base material | |
US5080981A (en) | Nickel-containing alloys as an adhesive layer bonding metal substrates to ceramics | |
JPS623798B2 (en) | ||
JPS6270041A (en) | Manufacture of compounded ceramics | |
JPH0911005A (en) | Laminated structure sintered body and manufacture thereof | |
JP3035230B2 (en) | Manufacturing method of multilayer ceramics | |
JPH05270957A (en) | Ceramic sintered product | |
JP3487886B2 (en) | Laminated structure sintered body and method of manufacturing the same | |
JP3084081B2 (en) | Laminated sintered body | |
JP2825098B2 (en) | Manufacturing method of composite sintered material | |
EP3995234B1 (en) | Method for producing oxidation-resistant alloy | |
JP2828582B2 (en) | Surface-coated silicon nitride heat-resistant member | |
SU843730A3 (en) | Lamellar article |