JPH02159439A - Vibration suppression method - Google Patents

Vibration suppression method

Info

Publication number
JPH02159439A
JPH02159439A JP30980188A JP30980188A JPH02159439A JP H02159439 A JPH02159439 A JP H02159439A JP 30980188 A JP30980188 A JP 30980188A JP 30980188 A JP30980188 A JP 30980188A JP H02159439 A JPH02159439 A JP H02159439A
Authority
JP
Japan
Prior art keywords
vibration
wave form
foundation
actuator
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30980188A
Other languages
Japanese (ja)
Inventor
Yoshinori Kasashima
笠島 善憲
Masahiro Tsuruta
政博 鶴田
Minoru Harada
実 原田
Hisashi Sato
寿 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP30980188A priority Critical patent/JPH02159439A/en
Publication of JPH02159439A publication Critical patent/JPH02159439A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1005Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass
    • F16F7/1011Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass by electromagnetic means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Floor Finish (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To secure antiphase relation between the vibration of a foundation and the output of an actuator by transporting the vibration wave form of a foundation to a step wave form by an wave form transformercircuit, driving the actuator with an antiphase signal to which the step wave form is transported by an antiphase amplifier circuit, and applying the output to the vibration suppression bench on the foundation. CONSTITUTION:When vibration data of a foundation 2 detected by a sensor 4 are single frequency only and their wave form at an output point P1 are sine wave as V1, and a sine wave as V2 is given at an output point P2 of a vibrometer 5, the wave form V2 is transformed into a step wave form S1 at an output point P3 by an wave form transformer circuit 6 and the wave form at the output point P4 is transformed into the antiphase of the step wave form S2 by an antiphase amplifier circuit 7. When the wave form S2 is applied to an actuator 8, braking force F opposite in phase substantially and correctly to the vibration wave form V1 of the foundation 2 is generated. Also, braking force F opposite in phase substantially and correctly can be obtained by using the above method for transforming to the step wave form for various vibrations with different frequencies.

Description

【発明の詳細な説明】 −の1 本発明は振動抑制方法に関し、特にVLSI製造工場そ
の他においてミクロン又はサブミクロンのオーダーの超
高精度加工用の機器が据え付けられる床又は台(以下制
振台という)等の振動障害防止を目的とする振動抑制方
法に関する。本発明の振動抑制方法によれば、制振台を
支承する基礎の振動を検出し、リアルタイムでその振動
に応じた制動力を制振台に加えて能動的に振動を打消す
ことにより超微小振動環境を作ることができる。
Detailed Description of the Invention - No. 1 The present invention relates to a method of suppressing vibrations, particularly on a floor or stand (hereinafter referred to as a vibration suppressing stand) on which equipment for ultra-high precision machining on the order of microns or submicrons is installed in VLSI manufacturing factories and other places. ) and other vibration suppression methods for the purpose of preventing vibration disturbances. According to the vibration suppression method of the present invention, ultra-fine vibrations are detected by detecting the vibrations of the foundation that supports the vibration damping table, and applying braking force corresponding to the vibration to the vibration damping table in real time to actively cancel the vibrations. Can create a small vibration environment.

良λ二韮」 第1図を参照するに、精密機器設置などに用いられる制
振台1は基礎2上にばね材、ゴム材等からなる支承部材
3によって取付けられる。基礎2は建物の床構造体であ
ってもよい。基礎2の振動をセンサ4及び振動計5で検
出し、振動計5の出力と逆位相の制御信号を適当な制御
装置(図示せず)によって発生させ、その制御信号をも
ってリニアモータ等のアクチュエータ8を駆動し、基礎
振動を打消すような制動力Fを制振台1に加えることに
より、基礎2に振動が生じた時にも制振台1を振動させ
ないようにする振動抑制方法が知られている。ここに「
逆位相」とは大きさが等しく向き又は極性が逆であるこ
とをいい、正弦波における位相差 180度に相当する
Referring to FIG. 1, a vibration damping table 1 used for installing precision equipment, etc. is mounted on a foundation 2 by a support member 3 made of a spring material, a rubber material, or the like. The foundation 2 may be a floor structure of a building. The vibration of the foundation 2 is detected by the sensor 4 and the vibration meter 5, and a control signal having a phase opposite to the output of the vibration meter 5 is generated by an appropriate control device (not shown), and the control signal is used to drive an actuator 8 such as a linear motor. There is a known vibration suppression method that prevents the vibration damping table 1 from vibrating even when vibration occurs in the foundation 2 by driving the vibration damping table 1 and applying a braking force F to the vibration damping table 1 to cancel out the foundation vibration. There is. Here"
"Opposite phase" refers to equal magnitude and opposite direction or polarity, and corresponds to a phase difference of 180 degrees in a sine wave.

が ・ しよう  る しかし、アクチュエータ8はコイル9によって可動片1
0を駆動する方式のものが多く、コイル9固有のインダ
クタンスLによってコイル9を流れる電流には上記制御
信号との間に位相差が生じ、たとえ上記制御信号が基礎
2の振動と逆位相であっても、コイル′屯流と同相であ
る制動力Fと上記制御信号との間に位相差が生ずる。こ
のため従来の振動抑制方法には、基礎振動と逆位相であ
ってこれを打消すような制動力Fを発生させるのが困難
である問題点があった。
However, the actuator 8 is connected to the movable piece 1 by the coil 9.
0, and the current flowing through the coil 9 has a phase difference between it and the control signal due to the inductance L inherent in the coil 9. Even if the control signal is in opposite phase to the vibration of the foundation 2. However, a phase difference occurs between the braking force F, which is in phase with the coil's flow, and the control signal. For this reason, the conventional vibration suppression method has a problem in that it is difficult to generate a braking force F that is in opposite phase to the fundamental vibration and cancels it.

インダクタンスLのないアクチュエータを使えばこの問
題は解決されるが、入力電圧の変化に応じて時間遅れな
く変位を生ずるアクチュエータ素子1例えば圧電材料は
上記の基礎2の振動を打消すに十分な大きさの変位を与
えることができないので、制振台1の振動抑制には適し
ない。
This problem can be solved by using an actuator without inductance L, but the actuator element 1, which produces displacement without time delay in response to changes in input voltage. For example, the piezoelectric material is large enough to cancel the vibration of the base 2 mentioned above. It is not suitable for suppressing the vibration of the vibration damping table 1 because it cannot give a displacement of .

従って、本発明の目的は、基礎の振動とアクチュエータ
の出力との間の逆位相関係を確保した振動抑制方法を提
供するにある。
Therefore, an object of the present invention is to provide a vibration suppression method that ensures an antiphase relationship between the vibration of the foundation and the output of the actuator.

。 占  ・  るための 且 第1図の実施例を参照するに、本発明の振動抑制方法は
、基礎2の振動波形を波形変換回路6で階段状波形に変
換し、基礎振動の波形をパルスの列即ち、階段状波形で
表す、この階段状波形を逆位相増幅回路7において逆位
相とした信号でアクチュエータ8を駆動し、アクチュエ
ータ8の出力である制動力Fを上記基礎2上の制振台1
等の被支承体に加えてなる構成を用いる。
. Referring to the embodiment shown in FIG. 1, the vibration suppression method of the present invention converts the vibration waveform of the foundation 2 into a stepped waveform in the waveform conversion circuit 6, and converts the waveform of the foundation vibration into a pulsed waveform. The actuator 8 is driven by a signal whose phase is reversed in the reverse phase amplifier circuit 7, and the braking force F, which is the output of the actuator 8, is applied to the damping table on the foundation 2. 1
A configuration in addition to the supported body is used.

1月 まず、基礎振動の波形を階段状波形に変換する理由を説
明する。第1図のセンサ4及び振動計5により検出され
る基礎2の振動が単一周波数fのみからなりV。sin
 (2πft)で表せるものとする。
January First, I will explain the reason for converting the basic vibration waveform into a step-like waveform. The vibration of the foundation 2 detected by the sensor 4 and the vibration meter 5 in FIG. 1 consists of only a single frequency f, V. sin
(2πft).

この場合に、アクチュエータ8に対して基礎2の振動と
逆位相の入力信号S =−3osin(2πft)を加
え、位相遅れのない制動力F =−Vosin(2πf
t)を発生しこれを制振台1等の被支承体に加えれば被
支承体の振動を抑制することができる。しかし、現実の
アクチュエータにはインダクタンスLがあり、その見か
けのインピーダンスはZ=R+j 2πfLとなるので
上記入力信号に対するアクチュエータの電流に位相遅れ
が生ずる。ここに、Rはアクチュエータの見かけの抵抗
である。このため、アクチュエータ出力はF =−Vo
sin(2πft−θ)となり、上記基礎振動との間に
Q=jan−(2πfL/R)の位相差が生じ効果的な
振動抑制をすることができない。
In this case, an input signal S = -3osin (2πft) with a phase opposite to that of the vibration of the foundation 2 is applied to the actuator 8, and a braking force F = -Vosin (2πf
t) is generated and applied to a supported object such as the vibration damping table 1, the vibration of the supported object can be suppressed. However, an actual actuator has an inductance L, and its apparent impedance is Z=R+j 2πfL, so a phase lag occurs in the actuator current with respect to the input signal. Here, R is the apparent resistance of the actuator. Therefore, the actuator output is F = -Vo
sin(2πft-θ), and a phase difference of Q=jan-(2πfL/R) occurs between the vibration and the fundamental vibration, making it impossible to effectively suppress vibration.

アクチュエータ8の出力である制動力Fにおける上記位
相遅れを防止するため、その入力信号Sに予め位相調整
をしておくことも考えられる。しかし、現実の地震等に
よる基礎2の振動は単一周波数からなるものではなく複
雑な波形のものであり、しかもその周波数分布を予測す
ることは現状ではできないのであるから予め行なうべき
位相調整の大きさを算定することが困難である。
In order to prevent the above-mentioned phase delay in the braking force F that is the output of the actuator 8, it is conceivable to adjust the phase of the input signal S in advance. However, the vibration of the foundation 2 due to actual earthquakes does not consist of a single frequency but a complex waveform, and it is currently impossible to predict the frequency distribution, so the magnitude of the phase adjustment that should be done in advance is It is difficult to calculate the

本発明者等は、アクチュエータ8の入力信号Sを不連続
な階段状波形とすることにより、アクチュエータ8の電
流を過渡現象的な立上りのあるパルス電流の集合とする
ことにより、上記定常電流における位相遅れを除くこと
に成功した。電流の過渡現象的な立上りにも、アクチュ
エータのインダクタンスLによる遅れはあるが、この遅
れは実用上支障がないことを実験的に確認した。
The present inventors made the input signal S of the actuator 8 a discontinuous step-like waveform, and by making the current of the actuator 8 a collection of pulse currents with a transient rise, the phase in the steady current We succeeded in eliminating the delay. Although there is a delay due to the inductance L of the actuator in the transient rise of the current, it has been experimentally confirmed that this delay does not pose a practical problem.

即ち、センサ4によって検出される基礎2の振動が単一
周波数のみからなり、その出力点p1の波形が第4図に
示されるvlのような正弦波形であって振動計5の出力
点P2にも第5図のv2のような正弦波形が与えられる
場合に、波形変換回路6により上記波形v2をその出力
点p3 (第1図)における第5図の階段状波形S1に
変換した。さらに、逆位相増幅回路7によってその出力
点p4における波形を第6図の階段状波形S2のように
逆位相とし、これをアクチュエータ8に加えたところ、
基礎2の上記振動波形v1に対して実質上正確に逆位相
である第6図の制動力Fを発生させることができた。
That is, the vibration of the foundation 2 detected by the sensor 4 has only a single frequency, and the waveform at the output point p1 is a sine waveform like vl shown in FIG. When a sinusoidal waveform such as v2 in FIG. 5 is given, the waveform conversion circuit 6 converts the waveform v2 into the stepped waveform S1 in FIG. 5 at its output point p3 (FIG. 1). Furthermore, when the waveform at the output point p4 is made to have an inverse phase as shown in the stepped waveform S2 in FIG. 6 by the inverse phase amplifier circuit 7, and this is applied to the actuator 8,
It was possible to generate the braking force F shown in FIG. 6, which is substantially exactly in opposite phase to the vibration waveform v1 of the foundation 2.

また、本発明者等は、各種の異なる周波数の振動に対し
て、上記階段状波形への変換手法を用いることにより上
記の実質上正確に逆位相である制動力Fが得られること
を実験的に確認した。
In addition, the present inventors have experimentally demonstrated that the braking force F, which is substantially exactly in opposite phase, can be obtained by using the step-like waveform conversion method for various vibrations with different frequencies. confirmed.

こうして、本発明の目的、即ち基礎の振動とアクチュエ
ータの出力との間の逆位相関係を確保した振動抑制方法
の提供が達成された。
Thus, the object of the present invention has been achieved, namely to provide a vibration suppression method that ensures an anti-phase relationship between the vibration of the foundation and the output of the actuator.

見立1 第2図は直交座標軸x、y、zの三軸方向に本発明方法
による第1図の振動抑制装置を設けた実施例の平面図で
あり、第3図はその立面図である。基礎2及び壁11に
取付けた第1図のセンサ4と同様なセンサ(図示せず)
によってX、y、Zの三軸方向の振動を検出しその出力
をそれぞれ三軸方向の振動計5x、5y、5zに加える
。X軸方向振動計5xの出力は、X軸方向の第1図と同
様な波形変換回路6(図示せず)および逆位相増幅回路
7(図示せず)によって処理された後X方向アクチュエ
ータMxに加えられる。
Mitate 1 Fig. 2 is a plan view of an embodiment in which the vibration suppressing device of Fig. 1 according to the method of the present invention is provided in three axial directions of orthogonal coordinate axes x, y, and z, and Fig. 3 is an elevational view thereof. be. A sensor (not shown) similar to sensor 4 in FIG. 1 mounted on foundation 2 and wall 11
Vibration in the three axial directions of X, y, and Z is detected and the output is applied to the three axial vibration meters 5x, 5y, and 5z, respectively. The output of the X-axis vibration meter 5x is processed by a waveform conversion circuit 6 (not shown) and an anti-phase amplifier circuit 7 (not shown) similar to those shown in FIG. Added.

X方向アクチュエータM!が、X軸方向振動計5!の出
力に対して実質上逆位相である制動力を発生しこれを制
振台1に作用させて、X軸方向の振動を抑制することは
、第1図により以上説明した本発明の原理から明らかで
ある。同様にして、y方向アクチュエーフMy及び2方
向アクチユニ一タMzは、X軸方向振動計5!及びX軸
方向振動計52の出力に対して実質上逆位相である制動
力を発生しこれを制振台1に作用させて、それぞれX軸
方向及びX軸方向の振動を抑制する。
X direction actuator M! However, the X-axis vibration meter is 5! It is based on the principle of the present invention explained above with reference to FIG. 1 that a braking force that is substantially in opposite phase to the output of it is obvious. Similarly, the y-direction actuator My and the two-direction actuator Mz are connected to the X-direction vibration meter 5! A braking force that is substantially in opposite phase to the output of the x-axis vibration meter 52 is generated and applied to the vibration damping table 1 to suppress vibrations in the x-axis direction and the x-axis direction, respectively.

従って、第2図及び第3図の実施例は、制振台1等の被
支承体に作用する振動をx、y、zの三軸方向の成分に
分解して検知し、被支承体に対する振動抑制作用を三軸
方向においてそれぞれ独立に行なう。三軸方向の作用は
合成されるので、各軸方向の増減の向きを考慮すれば6
自由度の振動抑制又は振動制御をすることができる。
Therefore, the embodiments shown in FIGS. 2 and 3 detect vibrations acting on a supported object such as the vibration damping table 1 by decomposing them into components in the three axial directions of x, y, and z, and The vibration suppression effect is performed independently in each of the three axial directions. The effects in the three axes are combined, so if we consider the direction of increase and decrease in each axis, we get 6
Vibration suppression or vibration control can be performed with a degree of freedom.

λ乳ユ皇」 以上詳細に説明した如く、本発明による振動抑制方法は
、基礎の振動波形を階段状波形に変換し、その階段状波
形を逆位相とした信号で駆動されるアクチュエータによ
り上記基礎上の被支承体に制動力を加えてなる構成を用
いるので次の効果を奏する。
As explained in detail above, the vibration suppression method according to the present invention converts the vibration waveform of the foundation into a step-like waveform, and converts the vibration waveform of the foundation into a step-like waveform using an actuator driven by a signal with an opposite phase of the step-like waveform. Since a structure in which a braking force is applied to the upper supported body is used, the following effects are achieved.

(イ)センサにより検出された振動波形に対して実質上
逆位相の波形の制動力を被支承体に加えて振動を抑制す
ることができる。
(a) Vibration can be suppressed by applying a braking force with a waveform substantially in opposite phase to the vibration waveform detected by the sensor to the supported body.

(ロ)振動をx、y、zの三座標軸方向の成分に分解し
て検知し、各軸方向の増減の向きを考慮した6自由度の
振動抑制を容易に実現することができる。
(b) It is possible to detect vibrations by decomposing them into components in the directions of the three coordinate axes of x, y, and z, and easily realize vibration suppression with six degrees of freedom in consideration of the direction of increase/decrease in each axis direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明図、第2図及び第3図は本
発明の一実施例の平面図及び立面図、第4図から第6図
までは各種信号及び制動力の波形を示すグラフである。 1・・・制振台、  2・・・基礎、   3・・・支
承部材、4・・・センサ、  5・・・振動計、   
6・・・波形変換回路、  7・・・逆位相増幅回路、
  8・・・アクチュエータ、  9・・・コイル、 
10・・・可動片、 11・・・壁、F・・・制動力、
 Sl・・・階段状波形、 S2・・・アクチュエータ
入力波形、 Vl・・・センサ出力、 v2・・・振動
計出力。
FIG. 1 is a detailed explanatory diagram of the present invention, FIGS. 2 and 3 are a plan view and an elevation view of an embodiment of the present invention, and FIGS. 4 to 6 are waveforms of various signals and braking force. This is a graph showing. 1... Vibration control table, 2... Foundation, 3... Support member, 4... Sensor, 5... Vibration meter,
6... Waveform conversion circuit, 7... Anti-phase amplifier circuit,
8...Actuator, 9...Coil,
10... Movable piece, 11... Wall, F... Braking force,
Sl...step waveform, S2...actuator input waveform, Vl...sensor output, v2...vibration meter output.

Claims (1)

【特許請求の範囲】[Claims] 基礎の振動波形を階段状波形に変換し、その階段状波形
を逆位相とした信号で駆動されるアクチュエータにより
上記基礎上の被支承体に制動力を加えてなる振動抑制方
法。
A vibration suppression method comprising converting the vibration waveform of the foundation into a stepped waveform and applying a braking force to the supported body on the foundation using an actuator driven by a signal with the stepped waveform having an opposite phase.
JP30980188A 1988-12-09 1988-12-09 Vibration suppression method Pending JPH02159439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30980188A JPH02159439A (en) 1988-12-09 1988-12-09 Vibration suppression method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30980188A JPH02159439A (en) 1988-12-09 1988-12-09 Vibration suppression method

Publications (1)

Publication Number Publication Date
JPH02159439A true JPH02159439A (en) 1990-06-19

Family

ID=17997408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30980188A Pending JPH02159439A (en) 1988-12-09 1988-12-09 Vibration suppression method

Country Status (1)

Country Link
JP (1) JPH02159439A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022233110A1 (en) * 2021-05-07 2022-11-10 福建加谱新科科技有限公司 Stepped superposition type fourier transform differential method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235218A (en) * 1985-04-12 1986-10-20 Hitachi Ltd Engine mount device for automobile
JPS61286634A (en) * 1985-06-14 1986-12-17 Meiritsu Seiki Kk Vibration suppressing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235218A (en) * 1985-04-12 1986-10-20 Hitachi Ltd Engine mount device for automobile
JPS61286634A (en) * 1985-06-14 1986-12-17 Meiritsu Seiki Kk Vibration suppressing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022233110A1 (en) * 2021-05-07 2022-11-10 福建加谱新科科技有限公司 Stepped superposition type fourier transform differential method

Similar Documents

Publication Publication Date Title
Mizuno et al. Vibration isolation system using negative stiffness
Zhu et al. Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation
KR101300024B1 (en) Absolute displacement detection method and absolute displacement sensor using the method
JPS61224015A (en) Active vibration isolator
JPS61119835A (en) Dynamic vibration-resistant device
JP2007510865A (en) Test platform for vibration sensitive equipment
JPH02203040A (en) Magnetic vibration isolating device
JPH01252336A (en) Tool fine moving rest
JPH02159439A (en) Vibration suppression method
JPH086642A (en) Device for positioning plane motor
Nguyen et al. Semi-active reaction force compensation for a linear motor motion stage
Hongpan et al. Active vibration control of beam using electro-magnetic constrained layer damping
Bai et al. DSP implementation of an active bearing mount for rotors using hybrid control
JP3899891B2 (en) Absolute velocity / absolute displacement detection method and absolute velocity / absolute displacement sensor using the method
Qian et al. Modeling and analysis of the disturbance about an active vibration isolation system
Kleinwort Methodology for Enabling Active Vibration Control Systems of Machine Tools for Industrial Use
JP3121528B2 (en) Vibration detection device and vibration detection method
Mizuno et al. Self-sensing magnetic suspension using an H-bridge type hysteresis amplifier operating in two quadrants
Yu et al. Controller design and implementation of six-degree-of-freedom magnetically levitated positioning system with high precision
반발력 et al. Input-shaping methods for a linear motor motion stage with a passive RFC (reaction force compensation) mechanism
JPS58221038A (en) Vibration-proof device
JPH0347379A (en) Vibration controller
JP2897416B2 (en) Anti-vibration device
Mizuno et al. Mass Measurement System With Dual Reaction-Mass Type Actuators
Nowak et al. Determining the optimal locations of piezoelectric transducers for vibroacoustic control of structures with general boundary conditions