JPH02159079A - Piezo-electric material for actuator and laminated displacement element thereof - Google Patents

Piezo-electric material for actuator and laminated displacement element thereof

Info

Publication number
JPH02159079A
JPH02159079A JP63313621A JP31362188A JPH02159079A JP H02159079 A JPH02159079 A JP H02159079A JP 63313621 A JP63313621 A JP 63313621A JP 31362188 A JP31362188 A JP 31362188A JP H02159079 A JPH02159079 A JP H02159079A
Authority
JP
Japan
Prior art keywords
piezo
electric
piezoelectric material
electric material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63313621A
Other languages
Japanese (ja)
Inventor
Yuji Isotani
祐二 磯谷
Katsunori Kanbe
神戸 克典
Yasunobu Kawakami
川上 泰伸
Masami Ogura
小椋 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP63313621A priority Critical patent/JPH02159079A/en
Publication of JPH02159079A publication Critical patent/JPH02159079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To increase the distortion amount at the practical actuation temperature by substituting barium in barium titanate with predetermined proportion of strontium to lower the Curie point. CONSTITUTION:A piezo-electric material for an actuator has the composition denoted by a formula: (Ba1-XSrX)TiO3 (where X=0.1-0.5). This piezo-electric material is prepared by firstly mixing barium carbonate powder, strontium carbonate powder, and titanium oxide powder at the predetermined ratio, and then after calicining at 900-1200 deg.C for 1-5 hours, grinding to obtain the piezo-electric material powder. After this powder is molded into a predetermined shape, it is sintered at 1350-1500 deg.C for 1-5 hours to obtain piezo-electric ceramics. Positive electrode plates 2 and negative electrode plates 3 are alternately arranged between the piezo-electric material members 1 in a displacement element using this piezo-electric material, and the positive electrode plates 2 are connected to an electric conductor 4 and the negative electrode plate 3 to an electric conductor 5. When a voltage is applied between the electric conductors 4, 5, each thin member is distorted so that the distortion amount of the whole element will be n times that of the single member.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自動車のブレーキ装置等に使用するアクチュエ
ータ用の圧電材料、及びそれを用いた積層型変位素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a piezoelectric material for actuators used in automobile brake systems and the like, and a laminated displacement element using the piezoelectric material.

〔従来の技術〕[Conventional technology]

電界を加えると機械的な歪みを生じる性質を有する物質
は一般に圧電材料と呼ばれ、電気機械変換素子としてバ
イモルフ、圧電火花素子、超音波振動子、圧電ブザー、
セラミックフィルター等に広く利用されている。またこ
のような用途に使用し得る圧電材料として、3aT+0
3、Pb(Zr、 T+)Otし+NbO3,1iTa
oi等が知られている。
Substances that have the property of causing mechanical distortion when an electric field is applied are generally called piezoelectric materials, and are used as electromechanical transducers such as bimorphs, piezoelectric spark elements, ultrasonic vibrators, piezoelectric buzzers,
Widely used in ceramic filters, etc. In addition, 3aT+0 is a piezoelectric material that can be used for such purposes.
3, Pb(Zr, T+)Ot+NbO3,1iTa
oi etc. are known.

一般に圧電材料に電界をかけるとその結晶構造が変化し
、その結晶変態点において極大の歪量(電気機械結合定
数)を示す。結晶変態点は各圧電材料により異なるので
、目的の作動温度に応じ、適当な圧電材料を選択して用
いている。
Generally, when an electric field is applied to a piezoelectric material, its crystal structure changes and exhibits maximum strain (electromechanical coupling constant) at its crystal transformation point. Since the crystal transformation point differs depending on each piezoelectric material, an appropriate piezoelectric material is selected and used depending on the intended operating temperature.

最近、精密工作機械における位置決め、流体量制御バル
ブ、あるいは光学装置の光路長制御などの駆動源として
使用されるアクチュエータ用圧電材料にBaTiO3系
磁器を使用することが提案されたく特開昭62−154
680 号)。
Recently, it has been proposed to use BaTiO3-based porcelain as a piezoelectric material for actuators used as drive sources for positioning in precision machine tools, fluid volume control valves, and optical path length control in optical devices.
No. 680).

このBaTi0.系磁器は5in2及びi、O,、さら
に必要に応じ、Y、La、Ce等の希土類元素を添加し
たもので、磁器中に空間電荷を有し、この空間電荷とB
aTi0.の強誘電性とがあいまって、電界の印加に伴
う歪量が分極方向に依存せず、高い負電圧を印加しても
分極反転が起こらない等の特徴を有する。
This BaTi0. 5in2 and i, O, and if necessary, rare earth elements such as Y, La, and Ce are added to the porcelain, and the porcelain has a space charge, and this space charge and B
aTi0. Combined with its ferroelectric property, it has the characteristics that the amount of strain accompanying the application of an electric field does not depend on the polarization direction, and polarization reversal does not occur even when a high negative voltage is applied.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このBaT+Oz系磁器からなる圧電材
料は、Pb(Zr、 Ti)Os のように例えば菱面
体晶系強誘電相と正方晶系強誘電相の結晶変態点が実際
の作動温度において得られず、実際の作動温度(約−3
0℃〜約+70℃)の範囲においては十分に大きな歪量
が得られないという問題がある。
However, piezoelectric materials made of BaT+Oz ceramics cannot achieve the crystal transformation points of rhombohedral ferroelectric phase and tetragonal ferroelectric phase at actual operating temperatures, for example, unlike Pb(Zr, Ti)Os. , the actual operating temperature (approximately -3
There is a problem that a sufficiently large amount of strain cannot be obtained in the range of 0°C to about +70°C.

従って、本発明の目的は実際の作動温度において大きな
歪量を示すアクチュエータ用圧電材料を提供することで
ある。
Therefore, an object of the present invention is to provide a piezoelectric material for actuators that exhibits a large amount of strain at actual operating temperatures.

本発明のもう1つの目的は、かかる圧電材料からなる薄
膜を電極技と交互に積層してなる積層型変位素子を提供
することである。
Another object of the present invention is to provide a laminated displacement element in which thin films made of such piezoelectric material are laminated alternately with electrodes.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的に鑑み鋭意研究の結果、本発明者等はBaTi
O3中の8aを所定の割合のSrで置換することにより
キュリー点を低下することができ、もって実際の作動温
度における歪量を大きくすることができることを発見し
、本発明に想到した。
As a result of intensive research in view of the above purpose, the present inventors have discovered that BaTi
It was discovered that by replacing 8a in O3 with a predetermined proportion of Sr, the Curie point could be lowered, thereby increasing the amount of strain at actual operating temperatures, and the present invention was conceived.

すなわち、本発明のアクチュエータ用圧電材料は下記一
般式: %式%) (ただしX=0.1〜0.5) により表される組成を有することを特徴とする。
That is, the piezoelectric material for actuators of the present invention is characterized by having a composition represented by the following general formula: % formula %) (where X=0.1 to 0.5).

また本発明のアクチュエータ用積層型変位素子は、下記
一般式: %式%) (ただしX=0.1〜0.5) により表される組成を有する圧電材料からなる複数の薄
板と、電極板とを交互に積層したことを特徴とする。
Further, the laminated displacement element for an actuator of the present invention includes a plurality of thin plates made of a piezoelectric material having a composition expressed by the following general formula: % formula %) (where X = 0.1 to 0.5), and an electrode plate. It is characterized by being alternately laminated.

本発明を以下詳細に説明する。The present invention will be explained in detail below.

本発明の圧電材料は下記一般式により表される組成を有
する。
The piezoelectric material of the present invention has a composition represented by the following general formula.

(Ba+−x Sr、t )Tin3 (ただしx=0.1〜0.5) BaT+Oz自身は120 ℃のキュリー点(Tc)を
有するが、Srの量が増大するにつれてキュリー点が低
下する。一般に作動温度において常誘電相(立方晶)と
強誘電相(正方晶)との共存状態にある場合、外部電場
の印加により常誘電相から強誘電相への相変化が起こり
、結晶の格子定数が大きく変化することにより大きな歪
みが発生する。この相転移歪が通常のBaTlOsの圧
電歪に加わることにより、全体として大きな歪量が得ら
れる。
(Ba+-xSr,t)Tin3 (where x=0.1 to 0.5) BaT+Oz itself has a Curie point (Tc) of 120°C, but as the amount of Sr increases, the Curie point decreases. Generally, when a paraelectric phase (cubic crystal) and a ferroelectric phase (tetragonal crystal) coexist at the operating temperature, a phase change from the paraelectric phase to the ferroelectric phase occurs when an external electric field is applied, and the lattice constant of the crystal A large change in will cause large distortion. By adding this phase transition strain to the piezoelectric strain of normal BaTlOs, a large amount of strain can be obtained as a whole.

大きな歪量を得るためにはキ、 IJ−点は作動温度に
近いことが必要である。例えば作動温度が室温(24℃
)の場合、圧電材料のキュリー点は24℃に対して一1
O℃〜+15℃の範囲(14〜39℃の範囲)である必
要がある。この場合Srの量Xは0.24〜0.34の
範囲であり、このときの歪量はBaTi0.と比べて平
均で20%、最大では40%以上向上している。
In order to obtain a large amount of strain, the IJ point must be close to the operating temperature. For example, if the operating temperature is room temperature (24℃)
), the Curie point of the piezoelectric material is -1 at 24°C.
It needs to be in the range of 0°C to +15°C (range of 14 to 39°C). In this case, the amount X of Sr is in the range of 0.24 to 0.34, and the amount of strain at this time is BaTi0. This is an average improvement of 20% and a maximum of over 40%.

次に、作動温度が70℃と比較的高い場合、キュリー点
は70℃に対して一20℃〜+23℃の範囲であり、こ
のときのSrの量Xは0.1〜0.25の範囲である。
Next, when the operating temperature is relatively high at 70°C, the Curie point is in the range of -20°C to +23°C with respect to 70°C, and the amount of Sr at this time is in the range of 0.1 to 0.25. It is.

逆に作動温度が一30℃と低い場合、キュリー点は一3
0℃に対して一5℃〜+7℃の範囲であり、このときの
Srの量は0.45〜0.5 の範囲である。
Conversely, if the operating temperature is as low as 130°C, the Curie point is 13°C.
The temperature ranges from -5°C to +7°C with respect to 0°C, and the amount of Sr at this time ranges from 0.45 to 0.5°C.

一般に自動車等のアクチユエータとしては、作動温度は
一30℃〜+70℃の範囲であるので、Srの量Xは0
.1〜0.5 の範囲にあればよい。
Generally, the operating temperature of actuators for automobiles etc. is in the range of -30°C to +70°C, so the amount of Sr X is 0.
.. It is sufficient if it is in the range of 1 to 0.5.

本発明の(Ba、−、Srx )Ti口、系圧電材料は
次のようにして製造することができる。まず炭酸バリウ
ム粉末と炭酸ストロンチウム粉末と酸化チタン粉末とを
所定の割合で混合し、900〜1200℃で1〜5時間
仮焼した後粉砕することにより所望の組成の圧電材料粉
末を得る。この粉末を金型プレス、冷間静水圧プレス等
により所望の形状に成形した後、1350〜1500℃
で1〜5時間焼結することにより圧電セラミックスとす
る。これを必要に応じ所望の厚さにスライスして使用す
る。
The (Ba,-,Srx) Ti-based piezoelectric material of the present invention can be manufactured as follows. First, barium carbonate powder, strontium carbonate powder, and titanium oxide powder are mixed in a predetermined ratio, calcined at 900 to 1200°C for 1 to 5 hours, and then pulverized to obtain piezoelectric material powder with a desired composition. After molding this powder into a desired shape using a mold press, cold isostatic press, etc.,
Piezoelectric ceramics are obtained by sintering for 1 to 5 hours. Slice this to the desired thickness as needed.

本発明において上記圧電材料を単結晶とするのが好まし
い。圧電材料の単結晶化は、例えば所望の組成の圧電材
料の焼結体又は粉末を白金るつぼに入れ、高周波で加熱
溶融した後、チョクラルスキー法で単結晶を育成する方
法や、焼結体の円柱の一部の帯域(ゾーン)に高周波レ
ーザ光又はノ10ゲン光を集中させることにより溶融さ
せ、単結晶する方法(ゾーンメルティング法)等により
行うことができる。単結晶化した(Ba 5r)Tin
、は特定の方向(C軸方向)において、より大きな歪量
を示すので、単結晶の圧電材料をC軸に垂直にスライス
し、それを積層することにより大きな歪量を示す変位素
子を作ることができる。
In the present invention, it is preferable that the piezoelectric material is a single crystal. Single crystallization of piezoelectric materials can be achieved by, for example, placing a sintered body or powder of a piezoelectric material of a desired composition in a platinum crucible, heating and melting it with high frequency, and then growing a single crystal using the Czochralski method, or This can be carried out by a method such as a method (zone melting method) in which high-frequency laser light or high-frequency laser light is focused on a part of a zone of a cylinder to melt and form a single crystal. Single crystallized (Ba 5r)Tin
, shows a larger amount of strain in a specific direction (C-axis direction), so a displacement element that shows a larger amount of strain is created by slicing a single-crystal piezoelectric material perpendicular to the C-axis and stacking them. Can be done.

本発明の圧電材料を用いた変位素子は以下のような構成
である。すなわち、圧電材料の薄板を電極板を介して複
数枚(n枚)積層して、積層体とし、1枚おきの電極板
と接触する導電体を積層体の両側に設けた構造とする。
The displacement element using the piezoelectric material of the present invention has the following configuration. That is, a structure is employed in which a plurality (n) of thin plates of piezoelectric material are laminated with electrode plates interposed therebetween to form a laminate, and conductors in contact with every other electrode plate are provided on both sides of the laminate.

その−例を第1図及び第2図に示す。圧電材料1の間に
は正の電極板2と負の電極板3とが交互に配置されてお
り、正の電極板2は導電体4に、また負の電極板3は導
電体5にそれぞれ接続している。従って、導電体4.5
間に電圧を印加すれば、圧電効果により各薄板が歪み、
素子全体としてはそのn倍の歪量が得られる。各圧電材
料の薄板は0.2〜1mmの厚さを有し、100〜20
0枚程度積層するのが好ましい。
Examples thereof are shown in FIGS. 1 and 2. Positive electrode plates 2 and negative electrode plates 3 are arranged alternately between the piezoelectric materials 1, and the positive electrode plates 2 are connected to the conductor 4, and the negative electrode plates 3 are connected to the conductor 5, respectively. Connected. Therefore, the conductor 4.5
If a voltage is applied between them, each thin plate will be distorted due to the piezoelectric effect.
As a whole of the element, a strain amount n times that amount can be obtained. Each thin plate of piezoelectric material has a thickness of 0.2-1 mm, with a thickness of 100-20 mm.
It is preferable to laminate about 0 sheets.

また電極板は、スクリーン印刷法、蒸着法、メツキ法、
ドクターブレード法等により、圧電材料の薄板上に形成
することができる。
In addition, the electrode plate can be made by screen printing method, vapor deposition method, plating method,
It can be formed on a thin plate of piezoelectric material by a doctor blade method or the like.

圧電材料が単結晶の場合、各薄板をC軸に垂直に形成し
、それを積層する。このような構造とすることにより、
多結晶の圧電材料を使用する場合と比較して約3倍以上
の歪特性が得られる。
When the piezoelectric material is a single crystal, each thin plate is formed perpendicular to the C-axis and stacked. By having such a structure,
Strain characteristics approximately three times or more can be obtained compared to the case where a polycrystalline piezoelectric material is used.

なお本明細書において用悟「圧電材料」は一般に電気既
械変換特性を有する材料を意味し、圧電セラミックスの
みならずいわゆる電歪材料をも包含するものである。
In this specification, the term "piezoelectric material" generally refers to a material having electromechanical conversion characteristics, and includes not only piezoelectric ceramics but also so-called electrostrictive materials.

〔実施例〕〔Example〕

本発明を以下の実施例によりさらに詳細に説明する。 The present invention will be explained in further detail by the following examples.

実施例1 出発原料として炭酸バリウム、炭酸ストロンチウム及び
酸化チタンを用い、一般式: (Ba、 X 5rx)
Tie、においてx=Q〜0.4の範囲内の各種の割合
で出発原料を配合した。得られた各混合物を500kg
/cI11の圧力で金型成形し、1450℃で2時間焼
結した。焼結体を厚さQ、5mmにスライスし、薄板と
した。これに金からなる電極板をスパッタ法により形成
し、全体として10cmの高さとなるように積層した。
Example 1 Using barium carbonate, strontium carbonate and titanium oxide as starting materials, general formula: (Ba, X 5rx)
Starting materials were blended in various ratios within the range of x=Q~0.4 in Tie. 500 kg of each mixture obtained
It was molded at a pressure of /cI11 and sintered at 1450°C for 2 hours. The sintered body was sliced into a thickness Q of 5 mm to form a thin plate. Electrode plates made of gold were formed on this by sputtering and laminated to a total height of 10 cm.

このようにして得られた積層型の変位素子に、24℃に
おいて3.2にV/mmの電界強度となるように電圧を
かけ、変位素子の歪量を測定した。これにより、圧電材
料中のSrの量Xと歪量(△1/l)との関係を求めた
。結果を第3図に示す。
A voltage was applied to the thus obtained laminated displacement element at 24° C. so that the electric field strength was 3.2 V/mm, and the amount of strain in the displacement element was measured. Thereby, the relationship between the amount X of Sr in the piezoelectric material and the amount of strain (Δ1/l) was determined. The results are shown in Figure 3.

第3図から明らかな通り、24℃の作動温度の場合x=
0.24〜0.34の範囲において大きな歪量が得られ
ることがわかる。特に好ましいSrの割合は、x=0.
27〜0.33である。
As is clear from Figure 3, for an operating temperature of 24°C, x =
It can be seen that a large amount of strain can be obtained in the range of 0.24 to 0.34. A particularly preferable proportion of Sr is x=0.
27 to 0.33.

実施例2 実施例1と同様にして、x=Q〜0.5 となるように
(Bal−x Sr、)Tins 圧電セラミックスを
製造し、各Sr量におけるキュリー点(Tc)を測定し
た。結果を第4図に示す。
Example 2 In the same manner as in Example 1, (Bal-x Sr,) Tins piezoelectric ceramics were manufactured so that x=Q~0.5, and the Curie point (Tc) at each Sr amount was measured. The results are shown in Figure 4.

第4図から明らかな通り、Sr量Xが増大するにつれて
キュリー点が低下する。
As is clear from FIG. 4, as the Sr amount X increases, the Curie point decreases.

実施例3 実施例1と同様にして、(Ba、−x Sr、)TiO
a においてx=Q〜0.5 となるように圧電材料を
製造し、それから第1図に示す構造の変位素子を形成し
た。
Example 3 In the same manner as in Example 1, (Ba, -x Sr,)TiO
A piezoelectric material was manufactured so that x=Q~0.5 at a, and then a displacement element having the structure shown in FIG. 1 was formed.

得られた変位素子に一30℃、+24℃及び+70℃の
作動温度において、3.2にv/ff1m2 の電界強
度となるように電圧をかけ、歪量(ΔI!/l>を測定
した。
A voltage was applied to the obtained displacement element at operating temperatures of -30°C, +24°C, and +70°C so that the electric field strength was 3.2 v/ff1m2, and the amount of strain (ΔI!/l>) was measured.

各作動温度における歪量が0.6X10−3以上となる
Sr量を求めた。結果を第5図に示す。
The amount of Sr at which the amount of strain at each operating temperature was 0.6×10 −3 or more was determined. The results are shown in Figure 5.

第5図から明らかなように、良好な歪特性を示す組成範
囲は作動温度により異なり、一般に作動温度が高くなる
に従ってXが小さくなる。本実施例においては作動温度
とXとは以下の関係がある。
As is clear from FIG. 5, the composition range exhibiting good strain characteristics varies depending on the operating temperature, and in general, the higher the operating temperature, the smaller X becomes. In this embodiment, the operating temperature and X have the following relationship.

30℃:  x=0.45〜0.50 +24℃:  x=0.24〜0.34+70℃:  
x=0.10〜0.25〔発明の効果〕 以上に詳述した通り、本発明の圧電材料は(Ba。
30℃: x=0.45~0.50 +24℃: x=0.24~0.34+70℃:
x=0.10 to 0.25 [Effects of the Invention] As detailed above, the piezoelectric material of the present invention has (Ba).

X Sr、)Ti03 系圧電セラミックスにおいてX
=0.1〜0.5 の範囲にあるので、実際の作動温度
(−30℃〜+70℃)において大きな歪量を示す。
X Sr, ) In Ti03-based piezoelectric ceramics
=0.1 to 0.5, it exhibits a large amount of strain at actual operating temperatures (-30°C to +70°C).

このような圧電材料からなる積層型変位素子は、自動車
のプレーキー装置におけるアクチュエータや、精密機械
のアクチュエータ等に使用するのに適する。特に自動車
のブレーキ装置に用いる場合、車輪のブレーキによるロ
ックを防止する装置(アンチロックブレーキ装置)用の
アクチュエータとして使用するのに好適である。
Such a laminated displacement element made of a piezoelectric material is suitable for use in an actuator in an automobile brake key device, an actuator in a precision machine, and the like. In particular, when used in an automobile brake system, it is suitable for use as an actuator for a device (anti-lock brake device) that prevents wheels from being locked by brakes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の圧電材料からなる積層型変位素子の一
例を示す斜視図であり、 第2図は第1図の積層型変位素子の拡大部分断面図であ
り、 第3図は本発明の(Ba+−11Sr、)T+0.系圧
電材料における5rlxと歪量との関係を示すグラフで
あり、 第4図は本発明の(Ba+−11SrM)TsO3系圧
電材料におけるSr量Xとキs ’)−点(Tc)との
関係を示すグラフであり、 第5図は本発明の(Ba+−n SrM)TtOt系圧
電材料が大きな歪量を示すときの5rllと作動温度と
の関係を示すグラフである。 1 ・・・・圧電材料薄板 2.3  ・・・電極板 4.5  ・・・外部導電体
FIG. 1 is a perspective view showing an example of a laminated displacement element made of a piezoelectric material of the present invention, FIG. 2 is an enlarged partial cross-sectional view of the laminated displacement element of FIG. 1, and FIG. (Ba+-11Sr,)T+0. FIG. 4 is a graph showing the relationship between 5rlx and the amount of strain in the piezoelectric material based on the (Ba+-11SrM)TsO3 system of the present invention. FIG. FIG. 5 is a graph showing the relationship between 5rll and operating temperature when the (Ba+-n SrM)TtOt-based piezoelectric material of the present invention exhibits a large amount of strain. 1... Piezoelectric material thin plate 2.3... Electrode plate 4.5... External conductor

Claims (3)

【特許請求の範囲】[Claims] (1)下記一般式: (Ba_1_−_xSr_x)TiO_3 (ただしx=0.1〜0.5) により表される組成を有することを特徴とするアクチュ
エータ用圧電材料。
(1) A piezoelectric material for actuators characterized by having a composition represented by the following general formula: (Ba_1_-_xSr_x)TiO_3 (where x=0.1 to 0.5).
(2)下記一般式: (Ba_1_−_xSr_x)TiO_3 (ただしx=0.1−0.5) により表される組成を有する圧電材料からなる複数の薄
板と、電極板とを交互に積層したことを特徴とするアク
チュエータ用積層型変位素子。
(2) A plurality of thin plates made of a piezoelectric material having a composition represented by the following general formula: (Ba_1_−_xSr_x)TiO_3 (where x=0.1-0.5) and electrode plates are alternately laminated. A laminated displacement element for actuators characterized by:
(3)請求項2に記載の積層型変位素子において、前記
圧電材料が単結晶であり、かつ前記薄板の結晶軸が一致
していることを特徴とする積層型変位素子。
(3) The laminated displacement element according to claim 2, wherein the piezoelectric material is a single crystal, and the crystal axes of the thin plates coincide with each other.
JP63313621A 1988-12-12 1988-12-12 Piezo-electric material for actuator and laminated displacement element thereof Pending JPH02159079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63313621A JPH02159079A (en) 1988-12-12 1988-12-12 Piezo-electric material for actuator and laminated displacement element thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63313621A JPH02159079A (en) 1988-12-12 1988-12-12 Piezo-electric material for actuator and laminated displacement element thereof

Publications (1)

Publication Number Publication Date
JPH02159079A true JPH02159079A (en) 1990-06-19

Family

ID=18043523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63313621A Pending JPH02159079A (en) 1988-12-12 1988-12-12 Piezo-electric material for actuator and laminated displacement element thereof

Country Status (1)

Country Link
JP (1) JPH02159079A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309450B2 (en) 2001-06-15 2007-12-18 Tdk Corporation Piezoelectric porcelain and method for preparation thereof
EP2113952A2 (en) 2008-03-31 2009-11-04 TDK Corporation Piezoelectric ceramic and piezoelectric element employing it
JP4748291B2 (en) * 2001-01-10 2011-08-17 Tdk株式会社 Laminate displacement element
US8231803B2 (en) 2008-03-26 2012-07-31 Tdk Corporation Piezoelectric ceramic and piezoelectric ceramic composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748291B2 (en) * 2001-01-10 2011-08-17 Tdk株式会社 Laminate displacement element
US7309450B2 (en) 2001-06-15 2007-12-18 Tdk Corporation Piezoelectric porcelain and method for preparation thereof
US8231803B2 (en) 2008-03-26 2012-07-31 Tdk Corporation Piezoelectric ceramic and piezoelectric ceramic composition
EP2113952A2 (en) 2008-03-31 2009-11-04 TDK Corporation Piezoelectric ceramic and piezoelectric element employing it

Similar Documents

Publication Publication Date Title
EP2255397B1 (en) Piezoelectric material
US9543501B2 (en) Metal oxide
US20020193237A1 (en) Method for fabrication of lead-based perovskite materials
JP2010150126A (en) Piezoelectric/electrostrictive ceramic composition, piezoelectric/electro-stric sintered compact, piezoelectric/electrostrictive element, method for producing piezoelectric/electrostrictive composition, and method for producing piezoelectric/electrostrictive element
JP2518703B2 (en) Laminated composite piezoelectric body and manufacturing method thereof
KR0147245B1 (en) Fero electric thin film and manufacture thereof
KR101779899B1 (en) Piezoelectric multilayer actuator with piezoelectric single crystal
WO2005037508A2 (en) Compositions for high power piezoelectric ceramics
JP3260116B2 (en) Piezoelectric material, manufacturing method thereof, piezoelectric vibrator and piezoelectric sounding body using the same
JP2009256182A (en) Piezoelectric/electrostrictive ceramic composition manufacturing method
WO2017203211A1 (en) Temperature stable lead-free piezoelectric/electrostrictive materials with enhanced fatigue resistance
Ha et al. Effects of ZnO on piezoelectric properties of 0.01 PMW–0.41 PNN–0.35 PT–0.23 PZ ceramics
US5788876A (en) Complex substituted lanthanum-lead-zirconium-titanium perovskite, ceramic composition and actuator
KR930002641B1 (en) Ferroelectric ceramics
Gaskey et al. “Square” hysteresis loops in phase-switching Nb-doped lead zirconate stannate titanate thin films
JPH02159079A (en) Piezo-electric material for actuator and laminated displacement element thereof
JP2003277143A (en) Piezoelectric ceramics
JP2002265262A (en) Piezoelectric ceramic
Okazaki Recent developments in piezoelectric ceramics in japan
JP3125624B2 (en) Piezoelectric ceramic
Li et al. A new Pb (Lu1/2Nb1/2) O3–PbZrO3–PbTiO3 ternary solid solution with morphotropic region and high Curie temperature
JPH0516380B2 (en)
JPH11100265A (en) Piezoelectric ceramic composition
JP3080277B2 (en) Method for producing bismuth layered compound
JPH07315926A (en) Piezoelectric porcelain composition for ceramic filter device excellent in moisture resistance