JPH02158802A - Stabilizing method for mechanism system - Google Patents

Stabilizing method for mechanism system

Info

Publication number
JPH02158802A
JPH02158802A JP31199088A JP31199088A JPH02158802A JP H02158802 A JPH02158802 A JP H02158802A JP 31199088 A JP31199088 A JP 31199088A JP 31199088 A JP31199088 A JP 31199088A JP H02158802 A JPH02158802 A JP H02158802A
Authority
JP
Japan
Prior art keywords
mechanical system
mechanism system
vibration
control system
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31199088A
Other languages
Japanese (ja)
Inventor
Koji Ohata
浩司 大畑
Hiroshi Hamamatsu
弘 浜松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP31199088A priority Critical patent/JPH02158802A/en
Publication of JPH02158802A publication Critical patent/JPH02158802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To stabilize mechanism system, and to make it of high rigidity by making the vibration characteristic of the mechanism system change freely in appearance by connecting control system in parallel with the mechanism system so that a force command value or a current command value to the mechanism system is made to be its input, and its output is added together with the output of the mechanism system. CONSTITUTION:The control system (control part A) is connected in parallel with the mechanism system whose elastic modes up to the secondary one are taken into consideration. Then, if constants a1*, a2* are selected so as to satisfy a1*+a1>0, a2*+a2>0, an apparent vibration characteristic 20 log¦y/Fs¦ becomes as shown in a figure. However, Fs is force command, a1, a2 are inherent modes, and (y) is a position in appearance. This shows the characteristic similar to the time of the establishment of collocation, and if it is speed-fed back, since all vibration roots proceed to a stable area, the vibration root is stabilized. Thus, by adding forwarding control system in parallel with the objective mechanism system to be controlled, the vibration characteristic of the mechanism system can be made to change freely in appearance, and the system can be stabilized and can be made to be of high rigidity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多自由度な振動特性を有する機#I系を制御
する際に系を安定化させる制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control method for stabilizing a machine #I system having vibration characteristics with multiple degrees of freedom when controlling the system.

[従来の技術] 従来、多自由度な振動特性を有する機構系の位置決め制
御、速度制御を行なう場合、系の安定化、高剛性化を行
なうために、機構系の振動特性を測定し、このデータに
基づいて、ノツチフィルタ、位相進み補償器等を構成し
ていた。また、機構系の振動特性は、構造、構成により
異なるため、それぞれの特性に適合したノツチフィルタ
、位相進み補償器等の設計がなされていた。
[Prior Art] Conventionally, when performing positioning control and speed control of a mechanical system that has vibration characteristics with multiple degrees of freedom, the vibration characteristics of the mechanical system are measured and the vibration characteristics are measured in order to stabilize and increase the rigidity of the system. Based on the data, notch filters, phase lead compensators, etc. were configured. Furthermore, since the vibration characteristics of a mechanical system vary depending on the structure and configuration, notch filters, phase lead compensators, etc. have been designed to suit each characteristic.

第5図はノツチフィルタによる安定化方法を示す従来例
のブロック図、第6図(a) 、 (b)はそれぞれ機
構系の振動特性、ノツチフィルタの特性を示す図である
FIG. 5 is a block diagram of a conventional example showing a stabilization method using a notch filter, and FIGS. 6(a) and 6(b) are diagrams showing the vibration characteristics of the mechanical system and the characteristics of the notch filter, respectively.

第5図中、χrefは位置指令、Fは制御作用力、χは
位置である。第6図(a)の場合、機構系の振動特性を
3次の弾性モードまで考慮しているため、ノツチフィル
タは3個必要であり、非常に複雑な回路構成となる。
In FIG. 5, χref is a position command, F is a control force, and χ is a position. In the case of FIG. 6(a), since the vibration characteristics of the mechanical system are taken into consideration up to the third-order elastic mode, three notch filters are required, resulting in a very complicated circuit configuration.

[発明が解決しようとする課題] 上述した従来の方法は、次のような欠点がある。[Problem to be solved by the invention] The conventional methods described above have the following drawbacks.

(1)ノツチフィルタを用いる場合、フィルタの中心周
波数は、機構系の共振周波数と一致させるのがほとんど
であり、機構系の共振周波数が何らかの影響で変動した
場合にノツチフィルタはその効果を失う。
(1) When using a notch filter, the center frequency of the filter is almost always made to match the resonant frequency of the mechanical system, and if the resonant frequency of the mechanical system changes for some reason, the notch filter loses its effectiveness.

(2)位相進み補償器は全て微分器を使用しており、完
全な微分器を電子回路で構成することは、ノイズ等を考
えると不可能になる。したがって、通常、微分器はロー
パスフィルタとベアで構成され、このローパスフィルタ
のカット周波数までが微分範囲となる。すなわち、位相
進み補償は、高周波領域での高ゲイン化を避けるために
、特定の周波数範囲に限定されるので、機構系の共振点
が高周波数領域に存在し、系の安定化に対し悪影響を及
ぼす場合、ノツチフィルタを併用する必要があり、(1
)と同様の問題を生じる。
(2) All phase lead compensators use differentiators, and it is impossible to construct a complete differentiator with an electronic circuit, considering noise and the like. Therefore, a differentiator is usually composed of a low-pass filter and a bare circuit, and the range of differentiation is up to the cut frequency of this low-pass filter. In other words, phase lead compensation is limited to a specific frequency range in order to avoid high gain in the high frequency range, so the resonance point of the mechanical system exists in the high frequency range, which has a negative effect on the stability of the system. If this occurs, it is necessary to use a notch filter (1
) causes the same problem.

(3)サーボを取り・扱う場合、「どの程度までループ
ゲインを上げられるか。」というのが問題となる。
(3) When dealing with servos, the question is, "To what extent can the loop gain be increased?"

そこで、制御対象である機構系が振動特性を有している
場合(一般にはほとんどが有している)、この振動特性
(共振)によってサーボ系全体が不安定になりやすくな
り、ループゲインを上げる限界が低くなる。この限界具
りにループゲインを上げたい場合に、必要とする系の特
性を得ることが困難となる。
Therefore, if the mechanical system to be controlled has vibration characteristics (generally, most of them do), this vibration characteristic (resonance) tends to make the entire servo system unstable, increasing the loop gain. The limit is lower. When it is desired to increase the loop gain to within this limit, it becomes difficult to obtain the required system characteristics.

(4)位置ループおよび速度ループの位相補償器によっ
て、機構系の振動機を安定化させるため、それぞれの位
相補償器は複雑な構成になり、しかも、機構系の振動特
性に適合した構成にする必要があり、汎用的でない。
(4) In order to stabilize the vibrator of the mechanical system using the phase compensators of the position loop and velocity loop, each phase compensator has a complicated configuration, and moreover, it must be configured to match the vibration characteristics of the mechanical system. Necessary and not universal.

[課題を解決するための手段] 本発明の機構系の安定化方法は、 該機構系への力指令値あるいは電流指令値を入力とし、
出力が該機構系の出力と加算されるように該機構系と並
列に制御系を接続し、 該制御系の伝達関数の分母の2次の項と0次の項の係数
として該機構系のモード質量、モード剛性の値をそれぞ
れ使用し、該制御系の伝達関数の分子の係数は、該機構
系の各振動モードの固有モード成分を考慮して決定し、
該機構系と該制御系から構成される系の零点の配置を自
由自在に操作することを特徴とする。
[Means for Solving the Problems] The method for stabilizing a mechanical system of the present invention includes inputting a force command value or a current command value to the mechanical system,
A control system is connected in parallel with the mechanical system so that the output is added to the output of the mechanical system, and the coefficients of the second-order term and zero-order term of the denominator of the transfer function of the control system are Using the values of the modal mass and modal stiffness, the coefficient of the numerator of the transfer function of the control system is determined by considering the eigenmode component of each vibration mode of the mechanical system,
It is characterized by freely manipulating the arrangement of zero points of the system composed of the mechanical system and the control system.

[作用コ ト記構成において、制御系の特性(伝達関数の分子の値
)を操作することにより、機構系の振動特性を見かけ上
、自由に変化させることができるため、制御しやすい制
御対象を得ることができ、系の安定化、高剛性化を行な
うことができる。また、ノツチフィルタ等の複雑な回路
構成を必要としないため、制御装置は非常に簡単になる
[Operation Notes] In the configuration, by manipulating the characteristics of the control system (value of the numerator of the transfer function), the vibration characteristics of the mechanical system can be apparently freely changed, resulting in a controlled object that is easy to control. This makes it possible to stabilize the system and increase its rigidity. Furthermore, since a complicated circuit configuration such as a notch filter is not required, the control device becomes extremely simple.

[実施例コ 次に、本発明の実施例について図面を参照して説明する
[Embodiments] Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の安定化方法が適用された制御装置のブ
ロック図、第2図は第1図においてa。
FIG. 1 is a block diagram of a control device to which the stabilization method of the present invention is applied, and FIG. 2 is a block diagram of a control device to which the stabilization method of the present invention is applied.

a2く0のときの機構系だけの振動特性を示す図。A diagram showing the vibration characteristics of only the mechanical system when a2 is 0.

第3図、第4図は第1図においてa♂=−2a、。In FIGS. 3 and 4, a♂=-2a in FIG. 1.

a2°=−2a2を選んだ時の振動特性、根軌跡なそわ
ぞれ示す図である。
FIG. 7 is a diagram showing vibration characteristics and root locus vibrations when a2°=-2a2 is selected.

本実施例は、第1図に示すように、2次弾性モードまで
考慮した機構系に、制御系(図中制御部A)を並列に接
続して構成している。そして、これらの系の外側に速度
ループおよび位置ループ(図中制御部B)が配置されて
いる。第1図中、Sはラプラス演算子、にpは位置ルー
プゲイン、Kvは速度ループゲイン、χrefは位置指
令、Fsは力指令、aI *  a 2は固有モード、
mQ”m2はモード質量、k、、に2はモード剛性、a
 l t 82′は定数、χは位置、yは見かけの位置
である。
In this embodiment, as shown in FIG. 1, a control system (control unit A in the figure) is connected in parallel to a mechanical system that takes even the secondary elastic mode into consideration. A velocity loop and a position loop (control unit B in the figure) are arranged outside these systems. In Figure 1, S is the Laplace operator, p is the position loop gain, Kv is the velocity loop gain, χref is the position command, Fs is the force command, aI * a 2 is the eigenmode,
mQ''m2 is the modal mass, k, 2 is the modal stiffness, a
l t 82' is a constant, χ is a position, and y is an apparent position.

第1図において、a、、a、<Oのときの機構系だけの
振動特性201ogl x/F lは、第2図に示すよ
うに、1次と2次の共振点の間に反共振点が存在してい
ることがわかるが、1次の共振点の前に反共振点は存在
せず、これをそのまま速度フィードバックすると、1次
と2次の振動機は不安定領域に進むことは明らかである
。したがって、第1図に示すように、制御系Aを機構系
に並列に付加し、この時、定数a I * a29をa
 +” + a + > O、a2”+ 82〉0を満
足するように選ぶと、見かけ上の振動特性201og 
Iy/Fs Iは、第3図のようになる(第3図はa、
”=−2a、、a2”=−2a2を選んだ時である)。
In Fig. 1, the vibration characteristic 201ogl x/F l of only the mechanical system when a, , a, < O is the anti-resonance point between the primary and secondary resonance points, as shown in Fig. 2. However, there is no anti-resonance point before the first-order resonance point, and it is clear that if this is fed back with velocity as it is, the first- and second-order vibrators will move into an unstable region. It is. Therefore, as shown in FIG. 1, the control system A is added in parallel to the mechanical system, and at this time, the constant a I * a29 is
+" + a + > O, a2" + 82>0 is selected to satisfy the apparent vibration characteristics of 201og
Iy/Fs I is as shown in Figure 3 (Figure 3 is a,
”=-2a, , a2”=-2a2).

第3図はコロケーション成立時(センサの位置とアクチ
ュエータの位置が一致する)と同様の特性を示しており
、これを速度フィードバックすると、全ての振動機が安
定領域に進むため全ての振動機が安定化する。この時の
根軌跡は第4図に示すようになる。コロケーションが成
立している時の固有モードは全て正の数である。al”
 =”−2al +a2”=−2a2であるので、機構
系と制御部Aと加えたFからyの特性における固有モー
ドはa、+a、”=a、+ (−2a、)=−a。
Figure 3 shows the same characteristics as when colocation is established (the sensor position and the actuator position match), and when this is speed fed back, all the vibrators move into the stable region and become stable. become The root locus at this time is as shown in FIG. The eigenmodes when collocation is established are all positive numbers. al”
= "-2al +a2" = -2a2, so the eigenmode in the characteristic from F to y, including the mechanical system and control unit A, is a, +a, "=a, + (-2a,) = -a.

a2 +a2”=−82 となり、正の数となる。a2+a2”=-82 Therefore, it becomes a positive number.

上述の例では、見かけ上の振動特性なコロケーション成
立時と同様にするために、al+82”をal”=−2
8+ * 82”=−2azに選んだが、a l + 
821は制御部Aで自由に選択することができるため、
見かけ上の振動特性において、反共振を作ったり、消去
したり、あるいは反共垢点の周波数を変化させることが
できる。
In the above example, al+82" is changed to al"=-2 in order to make it similar to when the collocation with apparent vibration characteristics is established.
I chose 8+ * 82”=-2az, but a l +
Since 821 can be freely selected by the control unit A,
In the apparent vibration characteristics, it is possible to create or eliminate anti-resonance, or change the frequency of the anti-resonance point.

[発明の効果] 以ト説明したように本発明は、制御対象である機構系に
前向きの制御系を並列に付加することにより、機構系の
振動特性を見かけ上自由に変化させることができるため
、制御しやすい制御対象を得ることができ、系の安定化
、高剛性化を行なうことができ、またノツチフィルタ等
の複雑な回路構成を必要としないため、制御装置が非常
に簡単になるという効果がある。
[Effects of the Invention] As explained above, the present invention has the advantage that by adding a forward-facing control system in parallel to the mechanical system to be controlled, the vibration characteristics of the mechanical system can be apparently freely changed. , it is possible to obtain a controlled object that is easy to control, stabilize the system and increase rigidity, and because it does not require complicated circuit configurations such as a notch filter, the control device becomes extremely simple. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の安定化方法が適用された制御装置のブ
ロック図、第2図は第1図においてa。 a2く0のときの機構系だけの振動特性を示す図、第3
図、第4図は第1図においてa 、”= −2aa2”
=−2a2を選んだ時の振動特性、根軌跡をそれぞれ示
す図、第5図はノツチフィルタによる安定化方法の従来
例のブロック図、第6図は機構系の振動特性とノツチフ
ィルタの特性を示す図である。 特許出願人 株式会社安川電機製作所
FIG. 1 is a block diagram of a control device to which the stabilization method of the present invention is applied, and FIG. 2 is a block diagram of a control device to which the stabilization method of the present invention is applied. Diagram showing the vibration characteristics of only the mechanical system when a2 is 0, Part 3
Figure 4 is a, "= -2aa2" in Figure 1.
Fig. 5 is a block diagram of a conventional stabilization method using a notch filter, and Fig. 6 shows the vibration characteristics of the mechanical system and the characteristics of the notch filter. FIG. Patent applicant: Yaskawa Electric Manufacturing Co., Ltd.

Claims (1)

【特許請求の範囲】 1、多自由度の振動特性を有する機構系を制御する制御
装置において、 該機構系への力指令値あるいは電流指令値を入力とし、
出力が該機構系の出力と加算されるように該機構系と並
列に制御系を接続し、 該制御系の伝達関数の分母の2次の項と0次の項の係数
として該機構系のモード質量、モード剛性の値をそれぞ
れ使用し、該制御系の伝達関数の分子の係数は、該機構
系の各振動モードの固有モード成分を考慮して決定し、
該機構系と該制御系から構成される系の零点の配置を自
由自在に操作することを特徴とする、機構系の安定化方
法。
[Claims] 1. In a control device for controlling a mechanical system having vibration characteristics with multiple degrees of freedom, a force command value or a current command value to the mechanical system is input,
A control system is connected in parallel with the mechanical system so that the output is added to the output of the mechanical system, and the coefficients of the second-order term and zero-order term of the denominator of the transfer function of the control system are Using the values of the modal mass and modal stiffness, the coefficient of the numerator of the transfer function of the control system is determined by considering the eigenmode component of each vibration mode of the mechanical system,
A method for stabilizing a mechanical system, characterized by freely manipulating the arrangement of zero points of a system constituted by the mechanical system and the control system.
JP31199088A 1988-12-12 1988-12-12 Stabilizing method for mechanism system Pending JPH02158802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31199088A JPH02158802A (en) 1988-12-12 1988-12-12 Stabilizing method for mechanism system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31199088A JPH02158802A (en) 1988-12-12 1988-12-12 Stabilizing method for mechanism system

Publications (1)

Publication Number Publication Date
JPH02158802A true JPH02158802A (en) 1990-06-19

Family

ID=18023875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31199088A Pending JPH02158802A (en) 1988-12-12 1988-12-12 Stabilizing method for mechanism system

Country Status (1)

Country Link
JP (1) JPH02158802A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602670A (en) * 1994-10-26 1997-02-11 Rheem Manufacturing Company Optical data receiver employing a solar cell resonant circuit and method for remote optical data communication
CN109562518A (en) * 2016-08-08 2019-04-02 三菱电机株式会社 The control device of link mechanism in parallel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602670A (en) * 1994-10-26 1997-02-11 Rheem Manufacturing Company Optical data receiver employing a solar cell resonant circuit and method for remote optical data communication
CN109562518A (en) * 2016-08-08 2019-04-02 三菱电机株式会社 The control device of link mechanism in parallel
CN109562518B (en) * 2016-08-08 2021-07-30 三菱电机株式会社 Control device of parallel link mechanism

Similar Documents

Publication Publication Date Title
JP4879173B2 (en) Electric motor control device
JP4391218B2 (en) Servo control device
KR20030090663A (en) Anti-sway control of a crane under operator&#39;s command
KR100545035B1 (en) Motor speed controller and gain setting method of the controller
JPH04255007A (en) Damping control system
US8872683B2 (en) Electronic compensation of capacitive micro-machined sensors parasitic modes in force-feedback interface systems
Hwang et al. Plate with piezoelectric actuators/sensors
JPH02158802A (en) Stabilizing method for mechanism system
JP2002325473A (en) Vibration suppressor
JP3144638B2 (en) Control method of robot having compliance mechanism
JP4420158B2 (en) Motor speed control device
EP1521147B1 (en) Servo loop PID compensator with embedded rate limit
EP1164448A2 (en) Control apparatus
Antoniadis et al. Robust residual vibration suppression for linear time invariant systems by digital filtering of the guidance function
Brogliato et al. Positive real systems
JPH10323071A (en) Coefficient determining method for secondary serial compensator for two-inertia resonance system velocity control
Jiří et al. All-Pass filters in the systems of active vibration control of weakly-damped systems
JPH0324341A (en) Control method for active system dynamic vibration reducer
KR0166055B1 (en) Displacement control system
JP2629900B2 (en) Control method of position servo system
Eloundou et al. Saturation compensating input shapers for reducing vibration
JP2004272749A (en) Positioning control device
JPH03282032A (en) Active vibration control method and control device thereof
JPH04141391A (en) Compliance control method
JPS63257487A (en) Controlling method for servo-motor