JPH021586A - Gas purge mechanism for fuel aggregate of nuclear reactor - Google Patents

Gas purge mechanism for fuel aggregate of nuclear reactor

Info

Publication number
JPH021586A
JPH021586A JP63143175A JP14317588A JPH021586A JP H021586 A JPH021586 A JP H021586A JP 63143175 A JP63143175 A JP 63143175A JP 14317588 A JP14317588 A JP 14317588A JP H021586 A JPH021586 A JP H021586A
Authority
JP
Japan
Prior art keywords
pipe
tube
fuel
grid plate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63143175A
Other languages
Japanese (ja)
Other versions
JP2622269B2 (en
Inventor
Atsushi Sako
迫 淳
Toru Hiraoka
徹 平岡
Takeshi Ishii
武 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Mitsubishi Atomic Power Industries Inc filed Critical Japan Atomic Energy Research Institute
Priority to JP63143175A priority Critical patent/JP2622269B2/en
Publication of JPH021586A publication Critical patent/JPH021586A/en
Application granted granted Critical
Publication of JP2622269B2 publication Critical patent/JP2622269B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To eliminate a load in the axial direction for buckling a cooling pipe by constituting the cooling pipe of the inside of a guide pipe so that its upper end part becomes a double structure in which it has been turned back to the outside in a position where it has crossed over the upper end of the guide pipe and forming a bend path between said cooling pipe and the guide pipe. CONSTITUTION:A space to which a fuel body 4 is loaded is filled wit a liquid metal 5 for quickening a heat transfer at the time of transferring heat from the fuel body 4 to a coolant flowing through the inside of a cooling pipe. As for the upper supporting grid plate 8, its periphery is joined airtightly to the inside surface of a shell pipe 2, and this plate is provided with many cooling pipe through-holes 18 which have been pierced like a perforated plate in the same way as the lower supporting grid plate. The cooling pipe 3 passes through the inside of a guide pipe 10 and extends to the upper part, and its upper end becomes a double pipe structure in which it has been turned back to the outside in a position where it has crossed over the upper end of the guide pipe 10. That is, a bend path is formed by an outside pipe 3b and the guide pipe 10, and this part forms a gas purge part gas plenum 15.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、液体金属冷却型原子炉に用いられるチュー
ブインシェル型燃料集合体に関するもので、特に、シェ
ル管と冷却管間或いは冷却管相互間に熱膨脹による軸方
向伸び差が生じても、冷却管の座屈等損傷を来すことな
く変位を吸収できるガスパージ機構に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a tube-in-shell type fuel assembly used in a liquid metal cooled nuclear reactor, and particularly relates to a tube-in-shell type fuel assembly used in a liquid metal cooled nuclear reactor. This invention relates to a gas purge mechanism that can absorb displacement without causing damage such as buckling of cooling pipes even if a difference in axial elongation occurs due to thermal expansion.

[従来の技術] 液体金属冷却型原子炉に用いる燃料集合体で、燃料物質
が被覆管に収納されたビン状燃料において、その内部の
FPガス(核分裂生成ガス)を放出する構造は、−膜内
にベント型燃料として知られている。例えば、特開昭4
9−109792や特開昭50−5797に詳述されて
いるが、その典型例を示せば第3図の通りである。
[Prior art] In a fuel assembly used in a liquid metal cooled nuclear reactor, in a bottle-shaped fuel in which fuel material is housed in a cladding tube, the structure for releasing FP gas (fission product gas) inside the fuel assembly is a - membrane Also known as vented fuel. For example,
9-109792 and Japanese Unexamined Patent Publication No. 50-5797, a typical example thereof is shown in FIG.

すなわち、第3図において符号30はビン状燃料である
。ビン状燃料30は燃料被覆管21の下端に下部端栓2
2を上端に上部端栓23が溶接ざれている。燃料被m管
21の内部には円柱状の核燃料ペレット25が軸方向に
積層し装填されている。また、この核燃料ペレット25
は内部充填液体金属(例えばナトリウム)5中に浸され
ている。
That is, in FIG. 3, reference numeral 30 indicates bottle-shaped fuel. A bottle-shaped fuel 30 is provided with a lower end plug 2 at the lower end of the fuel cladding tube 21.
An upper end plug 23 is welded to the upper end of 2. Inside the fuel tube 21, cylindrical nuclear fuel pellets 25 are stacked and loaded in the axial direction. In addition, this nuclear fuel pellet 25
is immersed in an internal filling liquid metal (e.g. sodium) 5.

積層された核燃料ペレットの上方には燃料ビン内ガスプ
レナム26があり、ベント機構部ガスプレナム27とを
仕切る仕切栓40を備えている。
There is a gas plenum 26 in the fuel bottle above the stacked nuclear fuel pellets, and a partition plug 40 is provided to separate the gas plenum 26 from the gas plenum 27 in the vent mechanism.

また、仕切栓40にはベント機構部ガスプレナムに向か
って延びるガス導出管29が設けられており、一方、上
部端栓23の側からはガス外部導出管28がベント機構
部ガスプレナムに向かって伸びている。
Further, the partition plug 40 is provided with a gas outlet pipe 29 that extends toward the gas plenum of the vent mechanism section, while an external gas outlet tube 28 extends from the upper end plug 23 side toward the gas plenum of the vent mechanism section. There is.

前述のように構成されたビン状燃料30はその複数本を
バンドルとして図示していないラッパ管(六角筒状のシ
ェル)に収納されて炉心に装荷される。従って、炉心に
装荷された状態は、ビン状燃料30の周囲は原子炉冷却
材(例えばナトリウム)17によって満たされている。
A plurality of bottle-shaped fuels 30 configured as described above are stored as a bundle in a wrapper tube (hexagonal cylindrical shell), not shown, and loaded into the reactor core. Therefore, when loaded in the reactor core, the area around the bottle-shaped fuel 30 is filled with reactor coolant (for example, sodium) 17.

このため、ガス外部導出管28の開口部から冷却材17
がベント機構部ガスプレナム27内に侵入し、圧力バラ
ンスしたところに液面17aが形成される。
Therefore, the coolant 17 is
enters the vent mechanism gas plenum 27, and a liquid level 17a is formed where the pressure is balanced.

このような、従来のビン状燃料におけるガスバージ鏝構
では、中性子照射によって燃料部位で発生したFPガス
はビン内ガスプレナム26の内圧を高めるので、発生し
たFPガスはガス導出管29を通してベント機構部ガス
プレナム27に押し出され、やがては、ガス外部導出管
28の下端まで液面17aを押し下げたところでガス外
部導出管28を通して原子炉冷却材17中に放出される
In such a conventional gas barge structure for bottle-shaped fuel, the FP gas generated in the fuel part by neutron irradiation increases the internal pressure of the gas plenum 26 in the bottle, so the generated FP gas passes through the gas outlet pipe 29 to the vent mechanism gas plenum. 27, and eventually, when the liquid level 17a is pushed down to the lower end of the gas external discharge pipe 28, it is discharged into the reactor coolant 17 through the gas external discharge pipe 28.

[発明が解決しようとする課題] 燃料要素を外部から冷却する従来のビン状燃料に対し、
燃料体内に冷却材流路を備えた新たな概念からなるいわ
ゆるチューブインシェル型燃料集合体では、冷却管及び
シェル管が熱膨脹や中性子照射による成長で軸方向に延
びるが、多数本の冷却管相互間及び冷却管とシェル管の
間に伸び量に差があって、その差を吸収する構造を採ら
ないと冷却管に圧縮力が掛かり冷却管を座屈変形させる
おそれがある。一方、シェル管内部のFPガスを集合体
外部に放出させる構造においては、内部の液体金属は外
部に放出させないことが必要である。
[Problem to be solved by the invention] In contrast to conventional bottle-shaped fuel in which the fuel element is cooled from the outside,
In so-called tube-in-shell fuel assemblies, which are based on a new concept with a coolant flow path inside the fuel body, the cooling tubes and shell tubes extend in the axial direction by growth due to thermal expansion or neutron irradiation, but many cooling tubes do not interact with each other. There is a difference in the amount of elongation between the cooling pipe and the shell pipe, and unless a structure is adopted to absorb this difference, there is a risk that compressive force will be applied to the cooling pipe and cause the cooling pipe to buckle. On the other hand, in a structure in which the FP gas inside the shell tube is released to the outside of the assembly, it is necessary to prevent the internal liquid metal from being released to the outside.

この両方の問題に応えるには、従来のビン状燃料のガス
放出曙橋では、ビン内部の液体金属の外部放出は防止で
きても、冷却管の伸びを吸収するという必要性がなかっ
たため新たに工夫が必要となった。
In order to solve both of these problems, the conventional gas release Akebonobashi for bottled fuel was able to prevent the liquid metal inside the bottle from being released to the outside, but there was no need to absorb the elongation of the cooling pipe, so we devised a new method. became necessary.

この発明は、前述した問題点を解決することを目的とし
ている。
This invention aims to solve the above-mentioned problems.

[課題を解決するための手段l この目的に対応して、この発明の原子炉燃料集合体のガ
スパージ機構は、軸方向に多数の貫通穴を有する燃料体
をシェル管内に装填し、前記燃料体の下部に下部支持グ
リッド板、上部にFPガスプレナム部を確保するように
軸方向に距離を隔て配置された上部支持グリッド板と、
前記燃料体の貫通穴に挿入され前記下部支持グリッド板
と上部支持グリッド板間に冷却材流路を形成する冷却管
とを備えたデユープインシェル型燃料集合体において、
前記上部支持グリッド板は冷却管の貫通穴に上方に延び
る案内管を備えており、前記案内管の内側に配置された
前記冷却管はその上端部が前記案内管の上端を越えた位
置で外側へ折り返された二重管構造となっており、前記
案内管との間で屈曲路を形成したことを特徴としている
[Means for Solving the Problems l] Corresponding to this object, a gas purge mechanism for a reactor fuel assembly according to the present invention includes loading a fuel body having a large number of through holes in the axial direction into a shell pipe; A lower support grid plate is arranged at a distance in the axial direction so as to secure a lower support grid plate at the bottom and an FP gas plenum section at the upper part;
A dual-in-shell fuel assembly comprising a cooling pipe inserted into a through hole of the fuel body and forming a coolant flow path between the lower support grid plate and the upper support grid plate,
The upper support grid plate is provided with a guide tube extending upwardly in the through hole of the cooling tube, and the cooling tube disposed inside the guide tube has an upper end thereof extending outside at a position beyond the upper end of the guide tube. It has a double-tube structure that is folded back, and is characterized by forming a bending path between it and the guide tube.

[作用] シェル管内部のガスプレナムに貯よっているガスは、屈
曲路を経由し、外側へ折り返された外側管下端を通過し
て原子炉冷却材中に放出される。
[Operation] The gas stored in the gas plenum inside the shell tube passes through the bent path, the lower end of the outer tube that is folded back to the outside, and is discharged into the reactor coolant.

シェル管内ガスプレナムの温度が下がったり、外圧が上
がった場合には、屈曲路に形成された液体金属液面が上
界し、場合によっては原子炉冷却材はシェル管内燃料部
位に侵入する。
When the temperature of the gas plenum in the shell tube decreases or the external pressure increases, the liquid metal level formed in the bend passes upward, and in some cases, the reactor coolant enters the fuel region in the shell tube.

ガスバージ部ガスプレナム(屈曲路内空間)とシェル管
内ガスプレナムの容積比を適当に設定すれば、シェル管
内部に侵入する液体金属の岳を一定量以下に制限するこ
とができる。また、シェル管内ガスプレナムの容積を燃
料体や内部液体金属の膨脹聞以上に確保すれば、シェル
管内の充填液体金属がガスパージ部ガスプレナムを逆流
して外部に漏洩するのを防止できる。
By appropriately setting the volume ratio of the gas plenum in the gas barge section (the space inside the bent path) and the gas plenum in the shell tube, it is possible to limit the amount of liquid metal that enters the inside of the shell tube to a certain amount or less. Further, by ensuring that the volume of the gas plenum in the shell pipe is larger than the expansion capacity of the fuel body and internal liquid metal, it is possible to prevent the liquid metal filled in the shell pipe from flowing backward through the gas purge part gas plenum and leaking to the outside.

一方、冷却管とシェル管、或いは冷却管相互間の軸方向
伸びの差は、冷却管が上部支持グリッド板に固定されて
いないので、冷却管が自由にスライドすることにより吸
収できる。
On the other hand, the difference in axial elongation between the cooling tube and the shell tube or between the cooling tubes can be absorbed by the cooling tubes sliding freely since the cooling tubes are not fixed to the upper support grid plate.

[実施例] 次に、この発明の好適な実施例を添附図面を参照し詳細
に説明、する。
[Embodiments] Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図はこの発明のガスパージ機構を備えたチューブイ
ンシェル型燃料集合体の外観図、第2図はこの発明のガ
スバージ機構の詳細を説明するための要部断面説明図で
あって、図の簡略化のため冷却管1本に対応する部分を
示している。前記第1図及び第2図において符号1はチ
ューブインシェル型燃料集合体であって、燃料集合体1
は第1図によく示されているように六角形をした筒状の
シェル管2に対し、下部にはエントランスノズル11を
、上部にはハンドリングヘッド12を備えた全体として
外観が六角柱状の燃料集合体であって、ビン状燃料のバ
ンドルを内部に収納した従来の液体金属冷却型原子炉燃
料集合体と外観上はとんど変らない。しかし、シェル管
の内部は前述した通り、新概念のチューブインシェル型
燃料集合体においては燃料体の内に冷却材の流路を備え
ており内側から冷却できる構造となっている。すなわち
、図中の矢印は冷却材17の流れ方向を示している。
FIG. 1 is an external view of a tube-in-shell type fuel assembly equipped with a gas purge mechanism according to the present invention, and FIG. 2 is a cross-sectional explanatory view of a main part for explaining details of the gas purge mechanism according to the present invention. For simplicity, only a portion corresponding to one cooling pipe is shown. In FIGS. 1 and 2, reference numeral 1 indicates a tube-in-shell type fuel assembly.
As clearly shown in FIG. 1, a hexagonal cylindrical shell tube 2 is provided with an entrance nozzle 11 at the bottom and a handling head 12 at the top, and the overall appearance is a hexagonal cylinder. It is a fuel assembly, and its appearance is almost the same as a conventional liquid metal cooled nuclear reactor fuel assembly that houses a bundle of bottle-shaped fuel inside. However, as mentioned above, the new concept tube-in-shell type fuel assembly has a structure in which the inside of the shell tube can be cooled from the inside by providing a coolant flow path within the fuel body. That is, the arrow in the figure indicates the flow direction of the coolant 17.

具体的には、符号4で示されるものが燃料体であり、燃
料体4はシェル管2内に装填しうる寸法で六角柱状に形
成されている。この燃料体4には軸方向に貫通する多数
の貫通穴9が設けられており、この貫通穴9内には冷却
管3が挿入されている。冷却管3はその下端が目皿状の
下部支持グリッド板7の目、すなわち開孔部に気密に溶
接により接合されている。そして、下部支持グリッド板
7の周囲は、もちろん、シェル管2の内面に気密に接合
されている。従って、冷却管とシェル管及び下部支持グ
リッド板により形成される空間には燃料体4が装填され
た形態となる。この燃料体4は練炭のように沢山のタテ
穴のあいた六角柱状のものであるが必ずしも一体型では
なく軸方向に幾つか分割したfaWJタイプが採用され
ることもある。
Specifically, what is indicated by the reference numeral 4 is a fuel body, and the fuel body 4 is formed into a hexagonal column shape with a size that can be loaded into the shell tube 2. This fuel body 4 is provided with a large number of through holes 9 that penetrate in the axial direction, and the cooling pipes 3 are inserted into the through holes 9. The lower ends of the cooling pipes 3 are hermetically welded to the holes, that is, the openings, of the perforated lower support grid plate 7 . The periphery of the lower support grid plate 7 is, of course, hermetically joined to the inner surface of the shell tube 2. Therefore, the fuel body 4 is loaded in the space formed by the cooling pipe, the shell pipe, and the lower support grid plate. The fuel body 4 has a hexagonal columnar shape with many vertical holes like a charcoal briquette, but it is not necessarily an integral type, and an faWJ type in which it is divided into several parts in the axial direction may be adopted.

一方、燃料体4が装填される前記空間には燃料体4から
の熱を冷却管3内を流れる冷却材に伝達するにあたって
熱伝達を促進するための液体金属5が充填されており、
燃料体4上方のシェル管内ガスプレナム6に液面5aを
形成している。符号8は上部支持グリッド板であり、上
部支持グリッド板8はその周囲がシェル管2の内面に気
密に接合されており、下部支持グリッド板と同様に目皿
状に穿たれた多数の冷却管貫通穴18を備えている。こ
の貫通穴18には上方に向かって円筒状の案内管10が
気密に固定設置されている。冷却管3は、この案内管1
0内を貫通して上方に延びているが、その上端は、前記
案内管10の上端を越えた位置で外側へ折り返された二
重管構造となっている。すなわち、外側へ折り返された
二重管構造としての外側管3b(これに対し内側となる
冷却管部を便宜上内側管3aと呼ぶ)と前記案内管10
とによって屈曲路となっており、この部分がガスパージ
部ガスプレナム15を形成している。
On the other hand, the space in which the fuel body 4 is loaded is filled with liquid metal 5 for promoting heat transfer when transmitting the heat from the fuel body 4 to the coolant flowing in the cooling pipe 3.
A liquid level 5a is formed in the gas plenum 6 in the shell pipe above the fuel body 4. Reference numeral 8 denotes an upper support grid plate, and the upper support grid plate 8 has its periphery airtightly joined to the inner surface of the shell tube 2, and similarly to the lower support grid plate, has a large number of cooling pipes perforated in a perforated shape. A through hole 18 is provided. A cylindrical guide tube 10 is airtightly fixed in the through hole 18 upwardly. The cooling pipe 3 is connected to this guide pipe 1.
The guide tube 10 extends upwardly through the guide tube 10, and its upper end is folded back to the outside at a position beyond the upper end of the guide tube 10, forming a double-tube structure. That is, an outer tube 3b having a double-tube structure folded back to the outside (the cooling tube section on the inner side is referred to as an inner tube 3a for convenience) and the guide tube 10.
This section forms a curved path, and this section forms a gas plenum 15 in the gas purge section.

この外側管3bは燃料集合体製作時には、その下端が上
部支持グリッド板8の上面に刻まれた円環状の溝16に
はめ込まれており、低融点合金により開口部がシールさ
れている。このシール部は燃料集合体が原子炉容器内に
装荷されて出力状態になったときは、融解して開口状態
となり、冷却管と上部支持グリッド板の接合状態は解放
される。
When the fuel assembly is manufactured, the outer tube 3b has its lower end fitted into an annular groove 16 cut into the upper surface of the upper support grid plate 8, and the opening is sealed with a low melting point alloy. When the fuel assembly is loaded into the reactor vessel and the reactor is in an output state, this seal portion melts into an open state, and the state of connection between the cooling pipe and the upper support grid plate is released.

第2図における二重管部の仮想線は熱膨脹による冷却管
3の変位(軸方向の伸び)を示している。
The imaginary line of the double pipe section in FIG. 2 indicates the displacement (axial extension) of the cooling pipe 3 due to thermal expansion.

この図からも明らかなように冷却管3は上部支持グリッ
ド板8には固定されておらず案内管10内を軸方向に自
由にスライド出来る。また、第2図でのガスパージ部ガ
スプレナム15内の冷却材液面17aは燃料の出力状態
における液位を示しており、FPガスが定常的に原子炉
冷却材17中に放出されている時液面は間口部まで下が
っている。
As is clear from this figure, the cooling pipe 3 is not fixed to the upper support grid plate 8 and can freely slide in the guide pipe 10 in the axial direction. In addition, the coolant liquid level 17a in the gas purge part gas plenum 15 in FIG. The surface is lowered to the frontage.

この液面は、燃料の出力停止状態においては燃料体4部
の湿度が下がり、シェル管内ガスプレナム6の圧力減少
く温度降下によるガスの収縮等)により冷却材17がガ
スバージ部ガスプレナム(屈曲路空間)15に一部侵入
して液面が上昇し、例えば符号178′で示す位置に液
面が形成される。
When the fuel output is stopped, the humidity in the fuel body 4 decreases, the pressure in the gas plenum 6 in the shell pipe decreases, the gas contracts due to a drop in temperature, etc.), and the coolant 17 flows into the gas plenum (bent passage space) in the gas barge. 15, the liquid level rises, and a liquid level is formed, for example, at a position indicated by reference numeral 178'.

なお、図中符号13はストレーナ−14は冷却材流入口
、19は上部スペーサパッド、20は中間スペーサパッ
ドである。
In the figure, reference numeral 13 indicates a strainer 14, a coolant inlet, 19, an upper spacer pad, and 20, an intermediate spacer pad.

[発明の効果] 以上の説明から明らかなように、この発明によれば冷却
管とシェル管、或いは冷却管相互間に軸方向伸びの差を
生じても、これを拘束することなく変位を吸収でき、冷
却管を座屈させる軸方向荷重が負荷されることがない。
[Effects of the Invention] As is clear from the above description, according to the present invention, even if there is a difference in axial elongation between the cooling pipe and the shell pipe or between the cooling pipes, the displacement can be absorbed without restraining it. axial loads that would cause the cooling pipes to buckle are not applied.

また、シェル管内ガスプレナムとガスパージ部ガスプレ
ナムの容積比を適当に設定することによって原子炉冷却
材のシェル管内燃料部位への流入量を一定限度内に留め
、かつ、内部の充填液体金属の外部(冷却中)への漏洩
を防止しうる原子炉燃料集合体のガスバージ機構を提供
することができる。
In addition, by appropriately setting the volume ratio of the gas plenum in the shell pipe and the gas plenum in the gas purge section, the amount of reactor coolant flowing into the fuel part in the shell pipe can be kept within a certain limit, and the liquid metal filled inside can be It is possible to provide a gas barge mechanism for a reactor fuel assembly that can prevent leakage to (inside) the reactor fuel assembly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のガスバージ機構を備えたチューブイン
シェル型燃料集合体の外観図、第2図はこの発明のガス
バージ機構の詳細を説明するための要部断面説明図、及
び第3図は従来のビン状燃料におけるFPガスベント機
構の一例を示す図である。 1・・・チューブインシェル型燃料集合体2・・・シェ
ル管 3・・・冷却管 3a・・・二重管部の内側管 3b・・・二重管部の外側管 4・・・燃料体 5・・・内部充填液体金属 6・・・シェル管内ガスプレナム 7・・・下部支持グリッド板 8・・・上部支持グリッド板 9・・・異通穴 10・・・案内管 15・・・ガスパージ部ガスプレナム 16・・・円環状の溝 17・・・原子炉冷却材 17a・・・液面 18・・・冷却管d過大 第1図
Fig. 1 is an external view of a tube-in-shell type fuel assembly equipped with a gas barge mechanism of the present invention, Fig. 2 is a cross-sectional explanatory view of main parts for explaining details of the gas barge mechanism of the present invention, and Fig. 3 is a It is a figure which shows an example of the FP gas vent mechanism in the conventional bottle-shaped fuel. 1...Tube-in-shell type fuel assembly 2...Shell pipe 3...Cooling pipe 3a...Inner tube 3b of double tube section...Outer tube 4 of double tube section...Fuel Body 5...Internal filling liquid metal 6...Gas plenum in shell pipe 7...Lower support grid plate 8...Upper support grid plate 9...Different hole 10...Guide tube 15...Gas purge Gas plenum 16...Annular groove 17...Reactor coolant 17a...Liquid level 18...Cooling pipe d Excessive Figure 1

Claims (1)

【特許請求の範囲】[Claims] 軸方向に多数の貫通穴を有する燃料体をシェル管内に装
填し、前記燃料体の下部に下部支持グリッド板、上部に
FPガスプレナム部を確保するように軸方向に距離を隔
て配置された上部支持グリッド板と、前記燃料体の貫通
穴に挿入され前記下部支持グリッド板と上部支持グリッ
ド板間に冷却材流路を形成する冷却管とを備えたチュー
ブインシェル型燃料集合体において、前記上部支持グリ
ッド板は冷却管の貫通穴に上方に延びる案内管を備えて
おり、前記案内管の内側に配置された前記冷却管はその
上端部が前記案内管の上端を越えた位置で外側へ折り返
された二重管構造となっており、前記案内管との間で屈
曲路を形成したことを特徴とする原子炉燃料集合体のガ
スパージ機構
A fuel body having a large number of through holes in the axial direction is loaded into a shell pipe, and an upper support is arranged at a distance in the axial direction so as to secure a lower support grid plate at the bottom of the fuel body and an FP gas plenum section at the top. In a tube-in-shell type fuel assembly comprising a grid plate and a cooling pipe inserted into a through hole of the fuel body and forming a coolant flow path between the lower support grid plate and the upper support grid plate, the upper support The grid plate is provided with a guide tube extending upward in the through hole of the cooling tube, and the cooling tube arranged inside the guide tube is folded back to the outside at a position where the upper end thereof exceeds the upper end of the guide tube. A gas purge mechanism for a nuclear reactor fuel assembly, characterized in that the gas purge mechanism has a double pipe structure, and a bent path is formed between the guide pipe and the guide pipe.
JP63143175A 1988-06-10 1988-06-10 Gas purge mechanism for reactor fuel assemblies Expired - Lifetime JP2622269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63143175A JP2622269B2 (en) 1988-06-10 1988-06-10 Gas purge mechanism for reactor fuel assemblies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63143175A JP2622269B2 (en) 1988-06-10 1988-06-10 Gas purge mechanism for reactor fuel assemblies

Publications (2)

Publication Number Publication Date
JPH021586A true JPH021586A (en) 1990-01-05
JP2622269B2 JP2622269B2 (en) 1997-06-18

Family

ID=15332655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63143175A Expired - Lifetime JP2622269B2 (en) 1988-06-10 1988-06-10 Gas purge mechanism for reactor fuel assemblies

Country Status (1)

Country Link
JP (1) JP2622269B2 (en)

Also Published As

Publication number Publication date
JP2622269B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
US5219519A (en) Increased fuel column height for boiling water reactor fuel rods
US3967591A (en) Steam generator for fast breeder reactor
US3459636A (en) Vented fuel pin
US2983660A (en) Fabrication of tube type fuel element for nuclear reactors
US11881324B2 (en) Storage system for radioactive nuclear waste with pressure surge protection
JP4825763B2 (en) Reflector-controlled fast reactor
US4557892A (en) Nuclear fuel element
GB2163888A (en) Fission gas plenum chamber for nuclear fuel element sub-assembly
US3079321A (en) Sodium deuterium reactor
JPH021586A (en) Gas purge mechanism for fuel aggregate of nuclear reactor
EP0514121B1 (en) Nuclear fuel assembly comprising two-diameter fuel rods
KR940002988B1 (en) Displacer rod for use in a mechanical spectral shift ractor
JPH0321878B2 (en)
JP3077100B2 (en) Diving bell type control rod with Na inflow hole
JP2000046979A (en) Control rod for reactor
JP2708237B2 (en) Neutron absorbing element
US4587091A (en) Nuclear fuel assembly
JPH0248878B2 (en)
JPH09105794A (en) Control rod for nuclear reactor
JPH04286996A (en) Device for removing impurity
JPS59131801A (en) Secondary heat transmission circuit for liquid metal nuclearreactor
CN1272674A (en) Modular fuel element applicable to different nuclear power station with cooling pipeline
JP3964489B2 (en) Gas filled assembly
KR20220003016A (en) Common plenum fuel assembly design for compact vessel, long life core and easy refueling in full-type reactors
JPS58171694A (en) Hollow pellet nuclear fuel rod