JP2708237B2 - Neutron absorbing element - Google Patents

Neutron absorbing element

Info

Publication number
JP2708237B2
JP2708237B2 JP1205635A JP20563589A JP2708237B2 JP 2708237 B2 JP2708237 B2 JP 2708237B2 JP 1205635 A JP1205635 A JP 1205635A JP 20563589 A JP20563589 A JP 20563589A JP 2708237 B2 JP2708237 B2 JP 2708237B2
Authority
JP
Japan
Prior art keywords
end plug
plug
chamber
neutron absorbing
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1205635A
Other languages
Japanese (ja)
Other versions
JPH0371090A (en
Inventor
重夫 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1205635A priority Critical patent/JP2708237B2/en
Publication of JPH0371090A publication Critical patent/JPH0371090A/en
Application granted granted Critical
Publication of JP2708237B2 publication Critical patent/JP2708237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Particle Accelerators (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は液体金属冷却型の高速増殖炉に用いられる中
性子遮蔽体の中性子吸収要素に係り、特に長寿命化およ
び短尺化を図ることができる高速増殖炉用中性子吸収要
素に関する。
The present invention relates to a neutron absorbing element for a neutron shield used in a liquid metal-cooled fast breeder reactor, and more particularly to a longer life and a shorter length. The present invention relates to a neutron absorption element for a fast breeder reactor capable of achieving the following.

(従来の技術) 第5図および第6図は液体金属冷却型高速増殖炉に用
いられる従来の中性子吸収要素をそれぞれ示すもので、
中性子吸収材としてB4Cペレット1が冷却材の液体金属
と直接接することのない構造となっている。
(Prior Art) FIGS. 5 and 6 show a conventional neutron absorbing element used in a liquid metal cooled fast breeder reactor, respectively.
The structure is such that the B 4 C pellet 1 as a neutron absorber does not directly contact the liquid metal as the coolant.

すなわち、第5図に示す従来高速増殖炉用中性子吸収
要素は、被覆管2をその上下両端部に上部端栓3および
下部端栓4を溶接して封止構造とし、その内部に中性子
吸収材としてB4Cペレット1を収容するとともにヘリウ
ム(He)ガスを充填した構造になっている。
That is, in the conventional neutron absorbing element for a fast breeder reactor shown in FIG. 5, the cladding tube 2 has a sealed structure by welding upper and lower end plugs 3 and 4 to upper and lower ends thereof, and a neutron absorbing material therein. And a structure in which a B 4 C pellet 1 is housed and filled with helium (He) gas.

また、第6図に示す従来の高速増殖炉用中性子吸収要
素は次のような構造になっている。すなわち、上下両端
部に上部端栓3および下部端栓4が溶接された被覆管2
内を中間端栓5によって上部室aと下部室bとに区分し
ている。これら両室a,bは中間端栓5に取着した連通管
8によって連通され、その被覆管2の内部にはHeガスを
充填している。さらに下部室b内にはB4Cペレット1を
収容し、また中間端栓5の上端面から周壁にわたって連
通し、周壁面が高温ハンダ6でシールされる放出孔7を
設けている。
The conventional neutron absorbing element for a fast breeder reactor shown in FIG. 6 has the following structure. That is, the cladding tube 2 having the upper end plug 3 and the lower end plug 4 welded to both upper and lower ends.
The inside is divided into an upper chamber a and a lower chamber b by an intermediate end plug 5. These two chambers a and b are communicated by a communication pipe 8 attached to the intermediate end plug 5, and the inside of the coating pipe 2 is filled with He gas. Further, a discharge hole 7 is provided in the lower chamber b for accommodating the B 4 C pellet 1 and communicating from the upper end surface of the intermediate end plug 5 to the peripheral wall, and the peripheral wall surface is sealed by high-temperature solder 6.

この高速増殖炉用中性子吸収要素は、原子炉への装荷
により所定の温度まで上昇すると、高温ハンダ6が溶け
て、放出孔7から上部室a内に一次冷却材である液体金
属が流入することになるが、液体金属が連通管8の上端
よりも上昇しないように構成してあるため、B4Cペレッ
ト1と液体金属とが直接接触することはない。
When the neutron absorbing element for the fast breeder reactor rises to a predetermined temperature by loading the reactor, the high-temperature solder 6 is melted, and the liquid metal as the primary coolant flows into the upper chamber a from the discharge hole 7. However, since the configuration is such that the liquid metal does not rise above the upper end of the communication tube 8, the B 4 C pellet 1 and the liquid metal do not come into direct contact.

(発明が解決しようとする課題) 従来の各高速増殖炉用中性子吸収要素において、B4C
ペレット1は中性子吸収の10B(n,α)7Li反応によりHe
ガスを生成する。第5図の例では被覆管2,上部端栓3お
よび下部端栓4に囲まれた空間に上記Heガスを封じ込め
ておく構成である。しかしながら、被覆管2内の内圧を
低減するためには、Heガスを封じ込める空間を大きくす
る必要があり、結果的に中性子吸収要素の長さが長大に
なる課題がある。第6図は第5図の例を改良したもの
で、原子炉内で運転中に高温ハンダ6が溶融した後、被
覆管2内のHeガスを外部へ放出する構成である。したが
って、被覆管2内の圧力は外部の圧力とバランスするた
め被覆管2にはガス圧による力は加わらない。しかしな
がら、原子炉運転中の過渡時における内圧または外圧の
変動によって放出孔7から冷却材が被覆管2内に浸入す
ることが考えられる。この圧力変動に対して浸入する冷
却材の高さは連通管8の高さを超えないように構成する
必要があり、中性子吸収要素の長さはその相当分長くな
る課題がある。
(Problems to be solved by the invention) In conventional neutron absorption elements for fast breeder reactors, B 4 C
Pellets 1 were converted to He by the neutron absorption 10 B (n, α) 7 Li reaction.
Generate gas. In the example of FIG. 5, the He gas is sealed in a space surrounded by the cladding tube 2, the upper end plug 3 and the lower end plug 4. However, in order to reduce the internal pressure in the cladding tube 2, it is necessary to increase the space for containing the He gas, and as a result, there is a problem that the length of the neutron absorbing element becomes long. FIG. 6 is an improvement of the example of FIG. 5, in which the He gas in the cladding tube 2 is released to the outside after the high-temperature solder 6 melts during operation in the reactor. Therefore, since the pressure in the cladding tube 2 is balanced with the external pressure, no force due to gas pressure is applied to the cladding tube 2. However, it is conceivable that the coolant may enter the cladding tube 2 from the discharge holes 7 due to the fluctuation of the internal pressure or the external pressure during the transient operation of the reactor. It is necessary to configure the height of the coolant that intrudes against the pressure fluctuation so as not to exceed the height of the communication pipe 8, and there is a problem that the length of the neutron absorbing element becomes considerably longer.

従来の中性子吸収要素において、その全長を短くする
ためには第6図に示した放出孔7または連通管8に例え
ば冷却材の浸入を防止しかつHeガスを通過するポーラス
プラグを設ける中性子吸収要素が考えられる。しかしな
がら、ポーラスプラグによって冷却材浸入防止の信頼性
を得るためにはポーラスプラグを冷却材で濡らす必要が
あることおよび複数のポーラスプラグを組み合わせるこ
とが課題になる。
In the conventional neutron absorbing element, in order to shorten the total length, a neutron absorbing element is provided in which a porous plug for preventing, for example, coolant from infiltrating and for passing He gas is provided in the discharge hole 7 or the communication pipe 8 shown in FIG. Can be considered. However, it is necessary to wet the porous plug with the coolant and to combine a plurality of porous plugs in order to obtain the reliability of preventing the coolant from entering by the porous plug.

本発明は上記課題を解決するためになされたもので、
長寿命化および短尺化を図ることができる高速増殖炉用
中性子吸収要素を提供することにある。
The present invention has been made to solve the above problems,
An object of the present invention is to provide a neutron absorbing element for a fast breeder reactor, which can have a longer life and a shorter length.

[発明の構成] (課題を解決するための手段) 本発明は上部端栓および下部端栓によって上下両端が
封止された被覆管内を中間端栓によって上部室と下部室
に区分し、前記両室を前記中間端栓に取着した連通管で
連通し、前記上部室または下部室いずれか一方の室に中
性子吸収材を収容し、他方の室に筒状支持体を前記上部
端栓または前記中間端栓に固定して設け、前記筒状支持
体内に複数のポーラスプラグを直列配置し、前記筒状支
持体の前記上部端栓または前記中間端栓側開口を前記上
部端栓または前記中間端栓に設けたガス放出孔に連通
し、前記放出孔に高速増殖炉の通常運転温度まで上昇し
たときに溶融する金属栓を設け、前記ポーラスプラグは
前記金属栓の溶融により前記高速増殖炉内から前記放出
孔を通して流入する前記高速増殖炉自身の冷却材で濡ら
すものからなることを特徴とする。
[Means for Solving the Problems] According to the present invention, the inside of a cladding tube whose upper and lower ends are sealed by an upper end plug and a lower end plug is divided into an upper chamber and a lower chamber by an intermediate end plug. The chamber is communicated with a communication pipe attached to the intermediate end plug, a neutron absorbing material is accommodated in one of the upper chamber and the lower chamber, and a cylindrical support is provided in the other chamber with the upper end plug or the A plurality of porous plugs are fixedly provided on an intermediate end plug, a plurality of porous plugs are arranged in series in the cylindrical support, and the upper end plug or the intermediate end side opening of the cylindrical support is connected to the upper end plug or the intermediate end. A metal plug that communicates with the gas discharge hole provided in the plug and melts when the discharge hole is heated to the normal operating temperature of the fast breeder reactor is provided, and the porous plug is melted from the metal breeder reactor from within the fast breeder reactor. The high speed flowing through the discharge hole Characterized by comprising the ones wettable 殖炉 own coolant.

(作 用) 原子炉運転中の原子炉起動前の限られた条件でポーラ
スプラグ部へ冷却材を浸入し、ポーラスプラグは冷却材
で濡れ、原子炉起動とともに温度上昇および10B(n,
α)7Li反応によるHeガス生成によりHeガスを放出しよ
うとする。この過程は、まづ、最下段のポーラスプラグ
のHeガス保持差圧以上のガス圧となった場合にHeガスが
最下段のポーラスプラグを通過する。
(Operation) During the operation of the reactor, coolant enters the porous plug under limited conditions before starting the reactor, the porous plug gets wet with the coolant, and the temperature rises and 10 B (n,
α) He gas is released by the generation of He gas by the 7 Li reaction. In this process, first, when the gas pressure becomes equal to or higher than the He gas holding differential pressure of the lowermost porous plug, the He gas passes through the lowermost porous plug.

通過したガスは次の段のポーラスプラグ下面に蓄積さ
れ、やがてそのガス圧力がポーラスプラグの保持差圧以
上のガス圧となった場合にHeガスがそのポーラスプラグ
を通過する。以上の過程を繰り返し連設したそれぞれの
ポーラスプラグの保持差圧の合計の圧力差がB4Cペレッ
ト1の空間と、外部との圧力差となる。
The passed gas is accumulated on the lower surface of the porous plug in the next stage, and when the gas pressure eventually becomes equal to or higher than the holding pressure difference of the porous plug, the He gas passes through the porous plug. The total pressure difference of the holding differential pressures of the respective porous plugs formed by repeating the above process is the pressure difference between the space of the B 4 C pellet 1 and the outside.

従って、上記圧力差が原子炉運転中に想定される過渡
時を通じて逆転することがないように設定することによ
って冷却材の逆流は生じなくB4Cペレット1の空間への
冷却材の侵入はない。
Therefore, by setting the pressure difference so as not to be reversed during the transient period assumed during the operation of the reactor, the backflow of the coolant does not occur and the coolant does not enter the space of the B 4 C pellets 1. .

(実施例) 本発明に係る中性子吸収要素の一実施例を第1図から
第3図を参照して説明する。
(Embodiment) An embodiment of a neutron absorbing element according to the present invention will be described with reference to FIG. 1 to FIG.

第1図は本発明に係る高速増殖炉用中性子吸収要素の
一例を示すもので、図中符号1は中性子吸収材としての
B4Cとペレットを示している。このB4Cペレット1は、被
覆管2,下部端栓4,中間端栓5で囲まれている。中間端栓
4の上部には被覆管2および上部端栓3で囲まれた上部
室aを有し、その上部端栓3には放出孔7が設けられ、
外部と連通している。また、中間端栓5には連通管8が
設けられ、B4Cペレット1を収容した下部室bを連通し
ている。
FIG. 1 shows an example of a neutron absorbing element for a fast breeder reactor according to the present invention.
Shows the B 4 C and pellets. The B 4 C pellet 1 is surrounded by a cladding tube 2, a lower end plug 4, and an intermediate end plug 5. The upper end of the intermediate end plug 4 has an upper chamber a surrounded by the cladding tube 2 and the upper end plug 3, and the upper end plug 3 is provided with a discharge hole 7,
Communicates with the outside world. A communication pipe 8 is provided in the intermediate end plug 5 and communicates with the lower chamber b containing the B 4 C pellets 1.

また、上部端栓3に設けた放出孔7の下面には3個の
ポーラスプラグ12を直列配置した筒状支持体11が固定さ
れて設けられている。
On the lower surface of the discharge hole 7 provided in the upper end plug 3, a cylindrical support 11 in which three porous plugs 12 are arranged in series is fixedly provided.

これらポーラスプラグ12によって被覆管2内は気密に
保持される。また放出孔7の端部は高温ハンダ6でシー
ルされ、被覆管2内はHe雰囲気となっており、高温ハン
ダ6は高速増殖炉の通常運転温度まで上昇したときに溶
融する金属栓である。
The inside of the cladding tube 2 is kept airtight by these porous plugs 12. The end of the discharge hole 7 is sealed with a high-temperature solder 6 and the inside of the cladding tube 2 is in a He atmosphere. The high-temperature solder 6 is a metal plug that melts when the temperature rises to the normal operation temperature of the fast breeder reactor.

次に、本実施例の作用について第1図から第3図を参
照して説明する。
Next, the operation of this embodiment will be described with reference to FIGS.

第1図は高速増殖炉(以下、原子炉と記す)へ装荷す
る前の状態を示しており、第2図はこの中性子吸収要素
を原子炉に装荷して所定の温度まで上昇した状態を示し
ており、第3図は最終的なバランス状態を示している。
FIG. 1 shows a state before loading into a fast breeder reactor (hereinafter referred to as a nuclear reactor), and FIG. 2 shows a state in which the neutron absorbing element is loaded into a nuclear reactor and the temperature is raised to a predetermined temperature. FIG. 3 shows the final balance state.

すなわち、第1図の状態から第2図の状態になって、
原子炉内で加熱されて高温ハンダ6が溶けて、冷却材 が浸入すると、ポーラスプラグ12は冷却材により漏れる
こととなる。
That is, from the state of FIG. 1 to the state of FIG.
Heated in the reactor, the high-temperature solder 6 melts, and the coolant , The porous plug 12 leaks due to the coolant.

この場合下部室b内の圧力(図中PB)と外部圧力(図
中P)は等しくなりバランスする(この条件は設計に
よって容易に設定できる)。
In this case the pressure in the lower chamber b (figure P B) and external pressure (figure P ∞) is balanced equal (this condition can be easily set by the design).

その後、原子炉運転を開始すると温度上昇と10B(n,
α)7Li反応によるB4CHeガス生成により第2図の圧力PB
は上昇し浸入した冷却材 を押し出し第3図に示すような状態となる。第3図は最
終的なバランス状態であるが、ポーラプラグ12の上に冷
却材が存在し下にHeガス空間が生じる。この状態はB4C
ペレット1から生じるHeガスは連通管8を通り、筒状支
持体11の下端で気泡となり、筒状支持体11内を上昇し下
端のポーラスプラグ12の下に至る。ここで、図中の圧力
PB=PV1の関係にある。前記Heガスはポーラスプラグの
保持差圧△PP(これはポーラスプラグ12の内部空隙をHe
ガスが通過する場合、ポーラスフラグ12の上の冷却材の
表面張力に打ち勝つ力に相当し、ポーラスプラグの特性
により決まる)を維持し、B4Cペレット1から発生するH
eガスが筒状支持体11内に順次供給されてポーラスプラ
グ12を通過し、ポーラスプラグ12の下にHeガス層が、上
に冷却材層が形成される。この状態では次の関係式が成
立している。
After that, when the reactor operation starts, the temperature rise and 10 B (n,
α) Pressure P B shown in Fig. 2 due to B 4 CHe gas generation by 7 Li reaction
Is the coolant that has risen and entered Is extruded to obtain a state as shown in FIG. FIG. 3 shows a final balance state, in which a coolant is present above the polar plug 12 and a He gas space is created below. This state is B 4 C
The He gas generated from the pellet 1 passes through the communication pipe 8 and becomes bubbles at the lower end of the cylindrical support 11, rises in the cylindrical support 11, and reaches below the porous plug 12 at the lower end. Where the pressure in the figure
P B = P V1 . The He gas is a porous plug holding differential pressure 差 P P (this causes He
If gas passes, H which corresponds to the force to overcome the surface tension of the coolant on the porous flag 12, to maintain a determined by the characteristics of the porous plug), generated from the B 4 C pellet 1
The e gas is sequentially supplied into the cylindrical support 11 and passes through the porous plug 12, and a He gas layer is formed below the porous plug 12, and a coolant layer is formed thereon. In this state, the following relational expression holds.

PV1−PV2=△PP PV2−PV3=△PP PVn−P=△PP 従って、 PB=PV1=P+n△P ところで、原子炉のあらゆる想定される過渡状態に対し
て、 P′=P′V1=(P+n△P)′>P′ を満すことで冷却材の浸入はなく、この条件は(n△
P)項をポーラスプラグ段数nとポーラスプラグ差圧
(△P)を適切に選択することで容易に決めることがで
きる。
P V1 -P V2 = △ P P P V2 -P V3 = △ P P P Vn -P ∞ = △ P P Thus, P B = P V1 = P ∞ + n △ P Incidentally, transients are all contemplated reactor against states, P 'B = P' V1 = (P ∞ + n △ P) '> P ∞' no ingress of coolant by Mitsurusu and this condition (n △
The term P) can be easily determined by appropriately selecting the number n of the porous plug stages and the porous plug differential pressure (△ P).

このように複数個のポーラスプラグ12を放出孔の下
(重力方向)にシリーズに適当な間隔で設置することで
ポーラスプラグ12を原子炉装荷時における通常運転温度
の原子炉自身の冷却材で濡らすことができかつ原子炉運
転後複数のポーラスプラグ12上面に冷却材を保持し表面
張力による大きな保持差圧を得ることができる。
By arranging a plurality of porous plugs 12 at appropriate intervals below the discharge holes (in the direction of gravity) in the series in this manner, the porous plugs 12 are wetted by the coolant of the reactor itself at the normal operating temperature when the reactor is loaded. After the operation of the reactor, the coolant is held on the upper surfaces of the plurality of porous plugs 12, and a large holding pressure difference due to surface tension can be obtained.

第4図は第2の実施例を示したもので、第1図と同一
部分には同一符号で示す。この実施例では前記ポーラス
プラグ12および筒状支持筒11を中間端栓5の下面に設け
たものである。
FIG. 4 shows the second embodiment, and the same parts as those in FIG. 1 are denoted by the same reference numerals. In this embodiment, the porous plug 12 and the cylindrical support cylinder 11 are provided on the lower surface of the intermediate end plug 5.

中間端栓5には高温ハンダ6からなる金属栓を設けた
放出孔7と、上部室aと下部室bを連通する連通管8が
設けられている。
The intermediate end plug 5 is provided with a discharge hole 7 provided with a metal plug made of a high-temperature solder 6, and a communication pipe 8 communicating the upper chamber a and the lower chamber b.

この実施例における作用効果は第1図の実施例とほぼ
同様なので、その説明を省略する。
Since the operation and effect of this embodiment are almost the same as those of the embodiment of FIG. 1, the description thereof will be omitted.

なお、上記各実施例においてB4Cペレット1はB4C粉末
でも本発明の主旨は変るものでない。
In each of the above embodiments, even if the B 4 C pellet 1 is B 4 C powder, the gist of the present invention is not changed.

[発明の効果] 本発明によれば被覆管内のB4Cから発生するHeガスを
外部に放出しながらポーラスプラグの保持差圧を大きく
とれ、冷却材のB4C空間への浸入防止に対する余裕が大
きく、かつ、確実にポーラスプラグを冷却材で濡れさせ
ることができる。
[Effects of the Invention] According to the present invention, the holding pressure difference of the porous plug can be increased while discharging the He gas generated from B 4 C in the cladding tube to the outside, and there is a margin for preventing the coolant from entering the B 4 C space. And the porous plug can be reliably wetted with the coolant.

従って、信頼性の高い中性子吸収要素を提供すること
ができる。
Therefore, a highly reliable neutron absorbing element can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る中性子吸収要素の第1の実施例を
示す縦断面図、第2図および第3図は第1図における中
性子吸収要素の作用を説明するための縦断面図、第4図
は本発明に係る中性子吸収要素の第2の実施例を示す縦
断面図、第5図および第6図は従来の中性子吸収要素を
示す縦断面図である。 1……B4Cペレット 2……被覆管 3……上部端栓 4……下部端栓 5……中間端栓 6……高温ハンダ 7……放出孔 8……連通管 11……筒状支持体 12……ポーラスプラグ
FIG. 1 is a longitudinal sectional view showing a first embodiment of a neutron absorbing element according to the present invention. FIGS. 2 and 3 are longitudinal sectional views for explaining the operation of the neutron absorbing element in FIG. FIG. 4 is a longitudinal sectional view showing a second embodiment of the neutron absorbing element according to the present invention, and FIGS. 5 and 6 are longitudinal sectional views showing a conventional neutron absorbing element. 1 ...... B 4 C pellet 2 ...... cladding tube 3 ...... upper end plug 4 ...... lower end plug 5 ...... intermediate end plug 6 ...... high temperature solder 7 ...... discharge holes 8 ...... communicating pipe 11 ...... tubular Support 12: Porous plug

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】上部端栓および下部端栓によって上下両端
が封止された被覆管内を中間端栓によって上部室と下部
室に区分し、前記両室を前記中間端栓に取着した連通管
で連通し、前記上部室または下部室いずれか一方の室に
中性子吸収材を収容し、他方の室に筒状支持体を前記上
部端栓または前記中間端栓に固定して設け、前記筒状支
持体内に複数のポーラスプラグを直列配置し、前記筒状
支持体の前記上部端栓または前記中間端栓側開口を前記
上部端栓または前記中間端栓に設けたガス放出孔に連通
し、前記放出孔に高速増殖炉の通常運転温度まで上昇し
たときに溶融する金属栓を設け、前記ポーラスプラグは
前記金属栓の溶融により前記高速増殖炉内から前記放出
孔を通して流入する前記高速増殖炉自身の冷却材で濡ら
すものからなることを特徴とする中性子吸収要素。
1. A communication pipe in which the inside of a cladding tube whose upper and lower ends are sealed by an upper end plug and a lower end plug is divided into an upper chamber and a lower chamber by an intermediate end plug, and both chambers are attached to the intermediate end plug. The upper chamber or the lower chamber accommodates a neutron absorbing material in one of the upper chamber and the lower chamber, and a cylindrical support is fixed to the upper end plug or the intermediate end plug in the other chamber, and the cylindrical support is provided. A plurality of porous plugs are arranged in series in the support, and the upper end plug or the intermediate end plug side opening of the cylindrical support communicates with a gas discharge hole provided in the upper end plug or the intermediate end plug, The discharge hole is provided with a metal plug that melts when the temperature rises to the normal operating temperature of the fast breeder reactor, and the porous plug is provided with the fast breeder reactor itself flowing through the discharge hole from inside the fast breeder reactor due to melting of the metal plug. It consists of something wetting with coolant Neutron absorbing elements characterized by.
JP1205635A 1989-08-10 1989-08-10 Neutron absorbing element Expired - Lifetime JP2708237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1205635A JP2708237B2 (en) 1989-08-10 1989-08-10 Neutron absorbing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1205635A JP2708237B2 (en) 1989-08-10 1989-08-10 Neutron absorbing element

Publications (2)

Publication Number Publication Date
JPH0371090A JPH0371090A (en) 1991-03-26
JP2708237B2 true JP2708237B2 (en) 1998-02-04

Family

ID=16510156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1205635A Expired - Lifetime JP2708237B2 (en) 1989-08-10 1989-08-10 Neutron absorbing element

Country Status (1)

Country Link
JP (1) JP2708237B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3077100B2 (en) * 1995-05-16 2000-08-14 核燃料サイクル開発機構 Diving bell type control rod with Na inflow hole

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125994A (en) * 1976-04-16 1977-10-22 Hitachi Ltd Vent type control rod

Also Published As

Publication number Publication date
JPH0371090A (en) 1991-03-26

Similar Documents

Publication Publication Date Title
US8711997B2 (en) Reactor core of liquid metal cooled reactor
US5219519A (en) Increased fuel column height for boiling water reactor fuel rods
US3459636A (en) Vented fuel pin
US6516043B1 (en) Fuel assembly and reactor core and fuel spacer and channel box
EP0212920A2 (en) Full length control rod employing axially inhomogeneous absorber materials for zero reactivity redistribution factor
JPS637353B2 (en)
JP2708237B2 (en) Neutron absorbing element
US3647623A (en) Fuel element for a nuclear reactor
GB2163888A (en) Fission gas plenum chamber for nuclear fuel element sub-assembly
JPH11183674A (en) Liquid metal bond-type fuel rod for reactor
JP3077100B2 (en) Diving bell type control rod with Na inflow hole
JPH04320992A (en) Neutron absorber
JPH0584876B2 (en)
JP2622269B2 (en) Gas purge mechanism for reactor fuel assemblies
US3989590A (en) Pressurized fuel elements for nuclear reactors
JPH03269397A (en) Self-operation type liquid-state absorber control rod
JP3065533B2 (en) Reactor fuel rods
JPH08201562A (en) Control rod assembly
JPH0799398B2 (en) Nuclear fuel element
JPH06222176A (en) Core of fast reactor
JPH07117594B2 (en) Control rod for fast breeder reactor
JPS6168589A (en) Control rod for fast breeder reactor
CN117334358A (en) Accident-resistant fuel rod
JPH09211167A (en) Gas charged assembly
JPH03199996A (en) Fuel assembly for bwr