JPH06222176A - Core of fast reactor - Google Patents

Core of fast reactor

Info

Publication number
JPH06222176A
JPH06222176A JP5009298A JP929893A JPH06222176A JP H06222176 A JPH06222176 A JP H06222176A JP 5009298 A JP5009298 A JP 5009298A JP 929893 A JP929893 A JP 929893A JP H06222176 A JPH06222176 A JP H06222176A
Authority
JP
Japan
Prior art keywords
core
gas
coolant
filled
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5009298A
Other languages
Japanese (ja)
Inventor
Tsugio Yokoyama
次男 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5009298A priority Critical patent/JPH06222176A/en
Publication of JPH06222176A publication Critical patent/JPH06222176A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To provide greater outputs with a negative temperature coefficient of coolant. CONSTITUTION:A number of reactor core fuel assemblies 1, each loaded with a fissionable material, are arranged in a honeycomb and a plurality of gas-sealed assemblies 2 are disposed among the core fuel assemblies 1. Blanket fuel assemblies 3 and neutron shields 4 are arranged outside the honeycomb-shaped core fuel assemblies 1. Each of the gas-sealed assemblies 2 is blocked at its upper end with gas sealed therein and has a coolant inlet through its lower portion to allow coolant therein. As the temperature of the coolant varies, the level of the coolant varies in the vertical direction. As a result, neutron leakage increases in the direction of the axis of the core and negative reactivity is increased so that the characteristic safety of the core in the case of accidents is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液体金属冷却高速増殖炉
(以下、高速炉と記す)における炉心構成要素の構成、
配置を改良した高速炉の炉心に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of core components in a liquid metal cooled fast breeder reactor (hereinafter referred to as "fast reactor"),
The present invention relates to a fast reactor core with an improved arrangement.

【0002】[0002]

【従来の技術】一般に高速炉の炉心は、核分裂性物質を
装荷した多数の燃料集合体がハニカム状に配列され、ハ
ニカム状に配列された燃料集合体の外側にはブランケッ
ト燃料集合体および中性子しゃへい体が配列されて構成
されている。また、高速炉は一般に炉心からの熱除去の
ための冷却材として主にナトリウムが使用されている。
2. Description of the Related Art Generally, in a core of a fast reactor, a large number of fuel assemblies loaded with fissile materials are arranged in a honeycomb shape, and a blanket fuel assembly and a neutron shield are arranged outside the honeycomb-shaped fuel assemblies. The body is arranged and configured. Further, in a fast reactor, generally sodium is mainly used as a coolant for removing heat from the core.

【0003】通常、ナトリウムは異常な温度上昇を生じ
ることはないが、万一の事故を想定して、ナトリウムが
定められた温度以上に上昇した場合でも炉心が安全に停
止することを確認している。
Normally, sodium does not cause an abnormal temperature rise, but in the unlikely event of an accident, it has been confirmed that the core will safely shut down even if sodium rises above a prescribed temperature. There is.

【0004】ナトリウムが高温になり、密度が低下した
時の応答としては、炉心が小型の場合には中性子の炉心
からの漏れが大きいため、負の反応度が入り、炉心は安
全に停止する。
As for the response when the temperature of sodium becomes high and the density becomes low, when the core is small, a large amount of neutron leaks from the core, so that a negative reactivity is introduced and the core is safely stopped.

【0005】しかし、炉心が大型化した場合には、中性
子の漏れが少なくなり、ナトリウムが高温になったとき
の反応度は正となる。炉心が安全に停止するか否かに関
しては、他の反応度要因も含めた詳細な解析を行い、そ
の安全性を確認する必要が生じる。
However, when the core becomes large, the leakage of neutrons decreases, and the reactivity becomes positive when the temperature of sodium becomes high. As to whether or not the core will be safely shut down, it is necessary to perform a detailed analysis including other reactivity factors to confirm the safety.

【0006】したがって、ナトリウムの温度上昇による
反応度効果、即ち冷却材温度係数を負にできれば、安全
設計上非常に価値がある。
Therefore, if the reactivity effect due to the temperature rise of sodium, that is, the temperature coefficient of the coolant can be made negative, it is very valuable in safety design.

【0007】[0007]

【発明が解決しようとする課題】ところで、プラント設
計上、炉心出力を極度に小さくすることは発電コストの
点で好ましくない。一方、ナトリウムが温度上昇した場
合、炉心の反応度を負にするには従来例では炉心出力を
100MWe程度以下にしなければならない。しかしながら、
大出力にすると冷却材温度係数は正になるという課題が
ある。
By the way, in view of plant design, it is not preferable from the viewpoint of power generation cost to make the core output extremely small. On the other hand, when the temperature of sodium rises, in order to make the reactivity of the core negative
It should be less than 100MWe. However,
There is a problem that the coolant temperature coefficient becomes positive when the output is increased.

【0008】本発明は上記課題を解決するためになされ
たもので、冷却材の温度係数が負で、より大きい出力を
有する高速炉の炉心を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a core of a fast reactor having a negative coolant temperature coefficient and a larger output.

【0009】[0009]

【課題を解決するための手段】本発明は核分裂性物質を
装荷した多数の燃料集合体と、これらの燃料集合体間に
配置されたガス封入集合体とを具備し、前記ガス封入集
合体は内部に封入気体および冷却材流入孔を有するほぼ
円筒状の空洞を含み、その空洞における冷却材の液面が
冷却材温度の変化により炉心頂部レベルを含む上部から
下部へ変化するように構成されていることを特徴とす
る。
The present invention comprises a number of fuel assemblies loaded with fissile material and a gas encapsulation assembly disposed between these fuel assemblies, the gas encapsulation assembly comprising: It is configured to include a substantially cylindrical cavity having an enclosed gas and a coolant inflow hole therein, and the liquid level of the coolant in the cavity is changed from the upper part including the core top level to the lower part by the change of the coolant temperature. It is characterized by being

【0010】[0010]

【作用】ナトリウムが異常に温度上昇する原因として、
冷却材流量が減少し、ナトリウム温度が上昇する場合
と、制御棒引抜等による外部反応度挿入により炉出力が
上昇する場合がある。
[Function] As a cause of abnormal temperature rise of sodium,
There are cases where the coolant flow rate decreases and the sodium temperature rises, and where the reactor output rises due to the insertion of external reactivity such as withdrawal of control rods.

【0011】冷却材流量減少の場合、ガス封入集合体周
辺の冷却材温度の上昇により封入気体が熱膨脹し、内部
液面が炉心頂部レベルにより上部から下部に低下し空洞
を形成する。
When the flow rate of the coolant is reduced, the temperature of the coolant around the gas-filled assembly rises, so that the enclosed gas thermally expands, and the internal liquid surface is lowered from the upper portion to the lower portion by the core top level to form a cavity.

【0012】同時に、燃料集合体も冷却材温度も上昇化
するが、ガス封入集合体の内部が炉心高さレベル以下ま
で空洞となっているため、燃料集合体で発生した中性子
はガス封入集合体から主に炉心上方向に漏洩し、負の反
応度となる。炉出力上昇の場合も冷却材温度が上昇する
ため冷却材流量減少の場合と同様の作用となる。
At the same time, both the fuel assembly and the coolant temperature rise, but since the inside of the gas-filled assembly is hollow below the core height level, the neutrons generated in the fuel assembly are gas-filled assemblies. Mainly leaks in the upper direction of the core, resulting in a negative reactivity. Even when the furnace output is increased, the coolant temperature rises, so that the same effect is obtained as when the coolant flow rate is reduced.

【0013】[0013]

【実施例】図1および図2を参照しながら本発明に係る
高速炉の炉心の第1の実施例を説明する。なお、図1は
炉心の平面図で、図2は図1における概略的縦断面図で
ある。
EXAMPLE A first example of the core of a fast reactor according to the present invention will be described with reference to FIGS. 1 and 2. 1 is a plan view of the core, and FIG. 2 is a schematic vertical sectional view of FIG.

【0014】図1中符号1は炉心燃料集合体で無印で示
し、2はガス封入集合体でcを付して示し、3はブラン
ケット燃料集合体でBを付して示し、4は中性子しゃへ
い体で点を付して示し、5は制御棒でPを付して示して
いる。
In FIG. 1, reference numeral 1 is a core fuel assembly without marking, 2 is a gas-filled assembly with c, 3 is a blanket fuel assembly with B, and 4 is neutron shielding. The body is indicated by dots, and 5 is indicated by a control rod with P.

【0015】炉心燃料集合体1は図2に示したように中
央部分に核分裂物質を含んだ炉心部6と、この炉心部6
の上下に親物質からなる軸方向ブランケット部7と、こ
の軸方向ブランケット部7の上下に核分裂ガスを蓄積す
るガスプレナム部8を有しているものからなっている。
As shown in FIG. 2, the core fuel assembly 1 has a core portion 6 containing a fissionable material in the central portion, and this core portion 6
And an axial blanket portion 7 made of a parent substance, and a gas plenum portion 8 for accumulating fission gas above and below the axial blanket portion 7.

【0016】ガス封入集合体2は図2に示したように上
端が封止され内部に封入気体9を有し、下部に冷却材流
入孔10が設けられ、冷却材が流れる内部冷却材11を有し
たものからなっている。なお、符号12は通常時液面レベ
ルを示している。
As shown in FIG. 2, the gas-filled assembly 2 has an upper end sealed with a sealed gas 9 inside, and a coolant inlet hole 10 provided at a lower portion thereof, and an internal coolant 11 through which the coolant flows. It consists of what you have. Note that reference numeral 12 indicates a liquid level at normal times.

【0017】炉心燃料集合体1の間に内部に封入気体9
を含む複数のガス封入集合体2が配置され、また炉心燃
料集合体1の外側に親物質を含むブランケット集合体3
および中性子しゃへい体4が包囲されている。
A gas 9 enclosed inside the core fuel assembly 1
A plurality of gas-filled assemblies 2 each containing Al, and a blanket assembly 3 containing a parent substance outside the core fuel assembly 1.
And the neutron shield 4 is surrounded.

【0018】封入気体9は、不活性のアルゴンガス等が
適当であるが特に制限はない。ただし、冷却材流入孔10
から流入した冷却材の圧力によってその液面の高さは炉
心頂部レベルによりも通常状態では高く、流量低下また
は炉出力上昇等の事故時には封入気体の温度上昇による
体積増加によって低くなるようにその量およびガス封入
集合体2の内部形状を設定する。
The enclosed gas 9 is preferably an inert gas such as argon gas, but is not particularly limited. However, the coolant inlet hole 10
Due to the pressure of the coolant flowing in from the liquid level, it is higher in the normal state than the core apex level, and in the case of an accident such as a decrease in the flow rate or an increase in the reactor output, the amount is reduced by the volume increase due to the temperature rise of the enclosed gas And the internal shape of the gas-filled assembly 2 is set.

【0019】以上の構成により、冷却材流量減少事故の
場合、ガス封入集合体の内部は空洞部分が下方まで拡大
する。同時に、炉心燃料集合体1も冷却材温度が上昇す
るが、ガス封入集合体の内部冷却材11の上部が空洞化し
ているため、炉心燃料集合体1で発生した中性子はガス
封入集合体2から炉心上部方向に漏洩し、負の反応度効
果を与える。
With the above construction, in the event of a coolant flow rate reduction accident, the hollow portion expands downward in the gas-filled assembly. At the same time, the coolant temperature also rises in the core fuel assembly 1, but since the upper part of the internal coolant 11 of the gas-filled assembly is hollow, neutrons generated in the core fuel assembly 1 are emitted from the gas-filled assembly 2. Leaks toward the upper part of the core, giving a negative reactivity effect.

【0020】内部冷却材11の液面の高さは、通常時には
軸方向ブランケット部7より上部とし、事故時には炉心
中心部付近となるように封入気体の量およびガス封入集
合体2の内部形状を任意に設定する。これによって負の
反応度効果を大きくできるが、特に封入気体量や形状に
ついて制限はない。
The height of the liquid surface of the internal coolant 11 is usually higher than the axial blanket portion 7, and the amount of filled gas and the internal shape of the gas filled assembly 2 are set so as to be in the vicinity of the center of the core in the event of an accident. Set it arbitrarily. This can increase the negative reactivity effect, but there is no particular limitation on the amount and shape of the enclosed gas.

【0021】例えば炉心の高さが 100cm、炉心の直径が
約 300cmで偏平炉心の場合、ガス封入集合体2が配置さ
れてない場合の 365日燃焼後の冷却材温度係数は約 5.1
×10-6ΔK/K/℃である。これに対して、ガス封入集合体
を図1のように配置した場合の同一サイズの炉心での冷
却材温度係数はガス封入集合体2内の液面レベルが炉心
頂部高さレベルから90℃の温度上昇により封入ガスが膨
脹し炉心頂部から10cm下の高さのレベルまで空洞化した
場合には、約 6.9×10-6ΔK/K/℃の負の反応度係数が得
られる。
For example, in the case of a flat core having a core height of 100 cm and a core diameter of about 300 cm, the coolant temperature coefficient after 365 days of combustion when the gas-filled assembly 2 is not arranged is about 5.1.
× 10 −6 ΔK / K / ° C. On the other hand, when the gas-filled assemblies are arranged as shown in FIG. 1, the coolant temperature coefficient in the cores of the same size is such that the liquid level in the gas-filled assemblies 2 is 90 ° C. from the core top height level. A negative reactivity coefficient of about 6.9 × 10 -6 ΔK / K / ° C is obtained when the enclosed gas expands due to the temperature rise and becomes hollow up to a level 10 cm below the core top.

【0022】次に図3および図4により本発明に係る高
速炉の炉心の第2の実施例を説明する。なお、本実施例
では図1および図2と同一部分には同一符号を付して重
複する部分の説明は省略する。
Next, a second embodiment of the core of the fast reactor according to the present invention will be described with reference to FIGS. 3 and 4. In this embodiment, the same parts as those in FIGS. 1 and 2 are designated by the same reference numerals, and the description of the overlapping parts will be omitted.

【0023】第2の実施例が第1の実施例と異なる点は
図3に示したようにガス封入集合体2を炉心の中心部に
まとめて配置したこと、制御棒5を取り包むようにして
隣接してガス封入集合体2を配置したこと、およびガス
封入集合体を円環状に配置したことにある。
The second embodiment differs from the first embodiment in that the gas-filled assemblies 2 are arranged in the central portion of the core as shown in FIG. 3, and the control rods 5 are arranged adjacent to each other. The gas-filled assembly 2 is then arranged, and the gas-filled assembly is arranged in an annular shape.

【0024】この第2の実施例によれば、炉心中心方向
への事故時の中性子漏洩の効果を助長し、制御棒5方向
への中性子漏洩を利用することができる。
According to the second embodiment, it is possible to promote the effect of neutron leakage toward the center of the core at the time of an accident and utilize the neutron leakage toward the control rod 5.

【0025】この場合、図4に示したように、炉心燃料
集合体1の軸方向ブランケット部7と炉心部6の中間に
ガスプレナム部8を配置するか、または軸方向ブランケ
ット部7を削除することによって、上部方向への漏洩し
た中性子がガスプレナム部8を通してより漏洩しやすく
なる。なお、図中符号13は事故時液面レベルを示してい
る。
In this case, as shown in FIG. 4, a gas plenum portion 8 may be arranged between the axial blanket portion 7 and the core portion 6 of the core fuel assembly 1, or the axial blanket portion 7 may be deleted. This makes it easier for the leaked neutrons in the upper direction to leak through the gas plenum portion 8. In the figure, reference numeral 13 indicates the liquid level at the time of the accident.

【0026】本発明では、ガス封入集合体の配置は上記
実施例に限られるものではなく、また、ガス封入集合体
内の構成は上記の例に限られるものではない。即ち、ガ
ス封入集合体の配置は事故時に冷却材温度係数を負にな
るように配置されればよく、その形状、構成は上記作用
を満足するように設定されていればよい。
In the present invention, the arrangement of the gas-filled aggregate is not limited to the above embodiment, and the structure of the gas-filled aggregate is not limited to the above example. That is, the gas-filled assembly may be arranged so that the temperature coefficient of the coolant becomes negative in the event of an accident, and its shape and configuration may be set so as to satisfy the above-mentioned action.

【0027】例えば、ガス封入集合体の上部空洞内に封
入ガス温度の上昇が促進されるように周辺の外筒金属部
に内側から連結された気体昇温用フィンを配置する。ま
たは、ガス封入集合体の冷却材圧力による浮上りを防ぐ
ためのガス封入集合体内に集合体浮上り防止用錘を配置
する。錘としてはハフニウムを使用する。
For example, in the upper cavity of the gas filled assembly, a gas temperature raising fin connected from the inside to the outer cylindrical metal portion is arranged so as to promote the rise of the temperature of the filled gas. Alternatively, an aggregate lifting preventing weight is arranged in the gas filled assembly for preventing the gas filled assembly from rising due to the pressure of the coolant. Hafnium is used as the weight.

【0028】また、封入ガスの集合体破損による漏洩を
検知するために、従来燃料ピン破損検知に用いられてい
るタグガスを封入する等の構造が考えられる。
Further, in order to detect the leakage of the enclosed gas due to the damage of the aggregate, a structure such as enclosing the tag gas conventionally used for detecting the damage of the fuel pin can be considered.

【0029】[0029]

【発明の効果】本発明によれば炉心の温度上昇に伴い封
入ガスの温度が上昇し、ガス封入集合体内の冷却材の液
面レベルを炉心高さ頂部レベル以下に下げ、その結果軸
方向に中性子漏洩が増大し、負の反応度が挿入される。
よって、炉心の事故時の固有安全性が向上する。
According to the present invention, as the temperature of the core rises, the temperature of the enclosed gas rises, and the liquid level of the coolant in the gas-enclosed assembly is lowered to below the core height top level. Neutron leakage increases and negative reactivity is inserted.
Therefore, the intrinsic safety in case of a core accident is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る高速炉の炉心の第1の実施例を概
略的に示す平面図。
FIG. 1 is a plan view schematically showing a first embodiment of a fast reactor core according to the present invention.

【図2】図1における高速炉の炉心を概略的に示す縦断
面図。
FIG. 2 is a vertical sectional view schematically showing the core of the fast reactor in FIG.

【図3】本発明に係る高速炉の炉心の第2の実施例を概
略的に示す平面図。
FIG. 3 is a plan view schematically showing a second embodiment of the core of the fast reactor according to the present invention.

【図4】図3における高速炉の炉心を概略的に示す縦断
面図。
FIG. 4 is a longitudinal sectional view schematically showing the core of the fast reactor in FIG.

【符号の説明】[Explanation of symbols]

1…炉心燃料集合体、2…ガス封入集合体、3…ブラン
ケット燃料集合体、4…中性子しゃへい体、5…制御
棒、6…炉心部、7…軸方向ブランケット部、8…ガス
プレナム部、9…封入気体、10…冷却材流入孔、11…内
部冷却材、12…通常時液面レベル、13…事故時液面レベ
ル。
DESCRIPTION OF SYMBOLS 1 ... Core fuel assembly, 2 ... Gas encapsulation assembly, 3 ... Blanket fuel assembly, 4 ... Neutron shield body, 5 ... Control rod, 6 ... Core part, 7 ... Axial blanket part, 8 ... Gas plenum part, 9 … Enclosed gas, 10… Coolant inflow hole, 11… Internal coolant, 12… Liquid level at normal time, 13… Liquid level at accident.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 核分裂性物質を装荷した多数の燃料集合
体と、これらの燃料集合体間に配置されたガス封入集合
体とを具備し、前記ガス封入集合体は内部に封入気体お
よび冷却材流入孔を有するほぼ円筒状の空洞を含み、そ
の空洞における冷却材の液面が冷却材温度の変化により
炉心頂部レベルを含む上部から下部へ変化するように構
成されていることを特徴とする高速炉の炉心。
1. A multiplicity of fuel assemblies loaded with fissile material, and a gas-filled assembly disposed between these fuel assemblies, wherein the gas-filled assembly has a sealed gas and a coolant therein. A high speed characterized by including a substantially cylindrical cavity having an inflow hole, in which the liquid level of the coolant changes from the upper part including the core top level to the lower part due to the change of the coolant temperature The core of the furnace.
JP5009298A 1993-01-22 1993-01-22 Core of fast reactor Pending JPH06222176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5009298A JPH06222176A (en) 1993-01-22 1993-01-22 Core of fast reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5009298A JPH06222176A (en) 1993-01-22 1993-01-22 Core of fast reactor

Publications (1)

Publication Number Publication Date
JPH06222176A true JPH06222176A (en) 1994-08-12

Family

ID=11716570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5009298A Pending JPH06222176A (en) 1993-01-22 1993-01-22 Core of fast reactor

Country Status (1)

Country Link
JP (1) JPH06222176A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2709858A1 (en) * 1993-09-08 1995-03-17 Toshiba Kk Fast neutron reactor core with gas-sealed assemblies
FR2763167A1 (en) * 1997-05-09 1998-11-13 Toshiba Kk Nuclear reactor core comprising fuel assemblies
CN103474097A (en) * 2012-06-06 2013-12-25 中国核动力研究设计院 Reactor core with high fast neutron fluence

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2709858A1 (en) * 1993-09-08 1995-03-17 Toshiba Kk Fast neutron reactor core with gas-sealed assemblies
FR2763167A1 (en) * 1997-05-09 1998-11-13 Toshiba Kk Nuclear reactor core comprising fuel assemblies
CN103474097A (en) * 2012-06-06 2013-12-25 中国核动力研究设计院 Reactor core with high fast neutron fluence

Similar Documents

Publication Publication Date Title
JPH06222176A (en) Core of fast reactor
JPS58135989A (en) Fuel assembly for bwr type reactor
JP2551892B2 (en) Hollow core of fast reactor
JP2020003244A (en) Fast reactor core
JP3221989B2 (en) Fast reactor core
US4372911A (en) Method for flattening the curve of evolution of heat in a fast reactor core
JP2002006074A (en) Sodium cooling fast reactor
US11398315B2 (en) Fuel element, fuel assembly, and core
US20230071843A1 (en) Fuel assembly and core of fast reactor
JPH08201562A (en) Control rod assembly
JP3884192B2 (en) MOX fuel assembly, reactor core, and operating method of reactor
RU2178595C2 (en) Nuclear reactor fuel element
JPH0821889A (en) Fuel assembly for fast breeder reactor
JP3964489B2 (en) Gas filled assembly
JPH04335190A (en) Fast breeder reactor
JPS63234192A (en) Fuel aggregate for nuclear reactor
JPH07318680A (en) Gas encapsulated assembly for fast reactor
JPS63182594A (en) Heterogeneous type reactor
JPS63293487A (en) Fuel assembly
JPS61162790A (en) Fast breeder reactor
JPH08211175A (en) Fuel assembly and reactor using it
GB1265964A (en)
JPH05297170A (en) Fuel assembly for fast breeder
JPS61281993A (en) Fuel assembly
JPH04110696A (en) Control rods assembly

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050119

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A02 Decision of refusal

Effective date: 20050524

Free format text: JAPANESE INTERMEDIATE CODE: A02