JPH02157191A - Production of granular diamond - Google Patents
Production of granular diamondInfo
- Publication number
- JPH02157191A JPH02157191A JP30918888A JP30918888A JPH02157191A JP H02157191 A JPH02157191 A JP H02157191A JP 30918888 A JP30918888 A JP 30918888A JP 30918888 A JP30918888 A JP 30918888A JP H02157191 A JPH02157191 A JP H02157191A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- fiber
- substrate
- reaction
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 43
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000000835 fiber Substances 0.000 claims abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 239000013078 crystal Substances 0.000 claims abstract description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims description 34
- 239000012784 inorganic fiber Substances 0.000 claims description 10
- 150000002894 organic compounds Chemical class 0.000 claims description 9
- 239000012495 reaction gas Substances 0.000 claims description 9
- 238000000354 decomposition reaction Methods 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 2
- 230000003213 activating effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 19
- 239000007789 gas Substances 0.000 description 12
- 238000005229 chemical vapour deposition Methods 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 5
- 229910010271 silicon carbide Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 238000001947 vapour-phase growth Methods 0.000 description 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 238000002065 inelastic X-ray scattering Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 210000001170 unmyelinated nerve fiber Anatomy 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的]
(産業上の利用分野)
本発明は粒状ダイヤモンドの製造方法に関し、特に個々
に独立した結晶をなす粒状ダイヤモンドの製造方法に関
する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for producing granular diamond, and more particularly to a method for producing granular diamond that forms individual independent crystals.
(従来の技術)
現在、工業材料として使用されているダイヤモンド粒子
の9割以上は、高圧合成法によって製造されたものであ
る。(Prior Art) More than 90% of diamond particles currently used as industrial materials are produced by high-pressure synthesis.
これに対して、近年、高圧合成法のように大規模な製造
装置を必要とせす、低圧下において気相からダイヤモン
ドを製造する方法か発表されている。代表的な方法とし
ては、マイクロ波放電を用いた化学気相成長法(M、K
amo、et al、、J、 Cryst。On the other hand, in recent years, methods have been announced for producing diamond from a gas phase under low pressure, which requires large-scale production equipment like the high-pressure synthesis method. A typical method is chemical vapor deposition using microwave discharge (M, K
amo, et al., J. Cryst.
Growth、 Vol、fi2(1983)pp、l
1i42〜844)や電子衝撃を用いた化学気相成長法
(A、Sawabe and T、InuzukaTh
in 5olid Films、Vol、137(19
8B)l)11.89−99)などが知られている。こ
れらの方法では、反応容器中に発生したプラズマを用い
ることにより、原料気体である炭化水素と水素との混合
気体を分解し、加熱された基体表面にダイヤモンドを析
出させている。Growth, Vol, fi2 (1983) pp, l
1i42-844) and chemical vapor deposition using electron impact (A, Sawabe and T, Inuzuka Th
in 5solid Films, Vol, 137 (19
8B)l)11.89-99) and the like are known. In these methods, plasma generated in a reaction vessel is used to decompose a gas mixture of hydrocarbons and hydrogen, which is a raw material gas, and deposit diamond on the surface of a heated substrate.
これらの方法は膜状ダイヤモンドの製造に適した方法と
して注目されている。しかし、これらの方法ではダイヤ
モンドの成長速度か0.1〜5μm/hrと小さいとい
う問題がある。また、これらの方法で膜状ダイヤモンド
を製造する場合、ダイヤモンドの成長に先立ち、基体表
面をダイヤモンドや立方晶窒化ホウ素のような高硬度研
磨粉によって荒らす必要かある点か問題となっていた。These methods are attracting attention as suitable methods for producing diamond film. However, these methods have a problem in that the growth rate of diamond is as low as 0.1 to 5 μm/hr. Furthermore, when producing film-like diamond using these methods, there has been a problem as to whether or not it is necessary to roughen the substrate surface with a high-hardness abrasive powder such as diamond or cubic boron nitride prior to diamond growth.
以」二のような問題を解決する方法として、直流放電を
用いた化学気相成長法(K、5uzuki 、A、Sa
wabeet al、、Appl、Phys、1.et
t、、Vol、50(1987)pp、728−729
)が知られている。この方法によれば、aSpolis
hedの基体表面に何ら処理を施すことなく、膜状ダイ
ヤモンドを50〜100庫/hrの成長速度で製造可能
である。As a method to solve the above-mentioned problems, chemical vapor deposition using direct current discharge (K, 5uzuki, A, Sa
waveet al,, Appl, Phys, 1. et
t,, Vol, 50 (1987) pp, 728-729
)It has been known. According to this method, aSpolis
Film-like diamond can be produced at a growth rate of 50 to 100 cells/hr without performing any treatment on the surface of the hed substrate.
しかし、この方法では直流放電を用いているため、ダイ
ヤモンドが陽極表面に成長すると、放電が不安定となり
、放電が停止した場合の再起動が困難である。However, since this method uses direct current discharge, if diamond grows on the anode surface, the discharge becomes unstable and it is difficult to restart the discharge if it stops.
また、前述した従来の気相成長法はいずれも膜状ダイヤ
モンドを製造するには適した方法であるが、粒状ダイヤ
モンドを選択的に成長させることは困難であり、たとえ
基体としてダイヤモンド粒子を用いたとしても、その全
面にダイヤモンドを成長させることは不可能である。In addition, although the conventional vapor phase growth methods mentioned above are all suitable for producing film-like diamond, it is difficult to selectively grow granular diamond, and even if diamond particles are used as the substrate, it is difficult to grow granular diamond selectively. However, it is impossible to grow diamonds on the entire surface.
(発明が解決しようとする課題)
本発明は以上のような問題点を解決するためになされた
ものであり、単結晶からなる均一な粒状ダイヤモンドを
製造し得る方法を提供することを目的とする。(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for producing uniform granular diamond made of a single crystal. .
[発明の構成]
(課題を解決するための手段)
本発明の粒状ダイヤモンドの製造方法は、反応容器中に
基体を設置し、反応容器内に有機化合物を含有する反応
ガスを導入し、該反応ガスの分解及び分解によって生じ
た炭素の活性化により前記基体表面にダイヤモンドを成
長させるにあたり、前記基体として無機質の繊維を用い
、該繊維端面にダイヤモンド結晶の核を発生させること
を特徴とするものである。[Structure of the Invention] (Means for Solving the Problems) In the method for producing granular diamond of the present invention, a substrate is placed in a reaction vessel, a reaction gas containing an organic compound is introduced into the reaction vessel, and the reaction is carried out by introducing a reaction gas containing an organic compound into the reaction vessel. In growing diamond on the surface of the substrate by decomposition of gas and activation of carbon produced by the decomposition, an inorganic fiber is used as the substrate, and diamond crystal nuclei are generated on the end face of the fiber. be.
以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.
本発明においては、例えば通常の気相成長法で用いられ
る反応容器が用いられ、この反応容器内に無機質の繊維
からなる基体が設置される。In the present invention, for example, a reaction vessel used in a normal vapor phase growth method is used, and a substrate made of inorganic fibers is placed inside this reaction vessel.
本発明において、基体となる無機質の繊維としては、炭
素繊維、ガラス繊維、炭化ケイ素繊維、金属繊維なとか
挙げられる。無機質の繊維としては、これらのうちでも
炭化物、又は炭化物を形成しやすい材質であることが望
ましい。例えば前述した各種繊維のうち金属繊維に関し
ては、炭化物を形成しやすい材質として、W、Mo、T
a。In the present invention, examples of the inorganic fiber serving as the base include carbon fiber, glass fiber, silicon carbide fiber, and metal fiber. Among these, the inorganic fibers are preferably carbide or materials that easily form carbides. For example, among the various fibers mentioned above, metal fibers are materials that easily form carbides, such as W, Mo, and T.
a.
Tiなどの繊維を挙げることができる。また、これらの
金属繊維の炭化物であるWC,MoCなどの繊維を用い
てもよい。これらの無機質繊維は直径か10μm以下で
あることが望ましく、通常このような細い繊維を束状に
して、その端面にダイヤモンドが析出するように反応容
器内に設置する。なお、無機質繊維として光ファイバー
などの透光性繊維を用いれば、繊維端面における過熱を
防止することかでき、最適条件でダイヤモンドを析出さ
ぜることかできる。Fibers such as Ti can be mentioned. Furthermore, fibers such as WC and MoC, which are carbides of these metal fibers, may be used. It is desirable that these inorganic fibers have a diameter of 10 μm or less, and such thin fibers are usually bundled and placed in a reaction vessel so that diamonds are deposited on the end faces of the bundle. Note that if a translucent fiber such as an optical fiber is used as the inorganic fiber, overheating at the end face of the fiber can be prevented, and diamond can be precipitated under optimal conditions.
本発明において、反応ガスとしては、ダイヤモンドの原
料となり得る炭素を生じるような有機化合物を含むもの
であればよい。有機化合物としては、具体的にはメタン
、エタン、プロパン、エチレン、アセチレンなどの炭化
水素や、アセトン、メタノール、エタノール、ブタノー
ル、アセトアルデヒドなどを挙げることができる。なお
、化学気相成長法によってダイヤモンドを製造する場合
、反応ガス中に水素を所定量混入させることか必要とな
る。ただし、反応ガス中に混入させる水素の適量は他の
反応条件によっても左右されるため特に限定されないが
、化学気相成長法における有機化合物と水素との混合比
は、(有機化合物)/(水素) =0.001〜1.0
の範囲とすることが好ましい。In the present invention, any reactive gas may be used as long as it contains an organic compound that produces carbon that can be used as a raw material for diamond. Specific examples of the organic compound include hydrocarbons such as methane, ethane, propane, ethylene, and acetylene, acetone, methanol, ethanol, butanol, and acetaldehyde. Note that when producing diamond by chemical vapor deposition, it is necessary to mix a predetermined amount of hydrogen into the reaction gas. However, the appropriate amount of hydrogen to be mixed into the reaction gas is not particularly limited as it also depends on other reaction conditions, but the mixing ratio of organic compound and hydrogen in chemical vapor deposition is (organic compound)/(hydrogen). ) =0.001~1.0
It is preferable to set it as the range of.
ガス圧については、例えば後述する直流放電を用いた化
学気相成長法の場合、1〜1000Torrの範囲が好
ましい。また、ガス流量は反応容器の容積によって決ま
るため特に限定されず、反応によって消費されたガスを
補充できれば充分である。Regarding the gas pressure, for example, in the case of a chemical vapor deposition method using direct current discharge described below, a range of 1 to 1000 Torr is preferable. Further, the gas flow rate is not particularly limited as it is determined by the volume of the reaction container, and it is sufficient that the gas consumed by the reaction can be replenished.
本発明に係るダイヤモンドの気相成長法においでは、放
電又は熱分解によって原料の有機化合物を分解し、反応
容器中に個々に分離した炭素を生成させる。その具体的
な方法は特に限定されず、マイクロ波放電を用いた化学
気相成長法、電子衝撃を用いた化学気相成長法、直流放
電を用いた化学気相成長法などいずれの方法でもよい。In the diamond vapor phase growth method according to the present invention, an organic compound as a raw material is decomposed by electric discharge or thermal decomposition, and individual carbon is produced in a reaction vessel. The specific method is not particularly limited, and any method such as chemical vapor deposition using microwave discharge, chemical vapor deposition using electron impact, or chemical vapor deposition using direct current discharge may be used. .
このうち直流放電を用いた化学気相成長法では、放電と
しては正規グロー放電よりもアーク放電側の領域を必要
とする。代表的な放電の性質としては、■両極間の電位
勾配がほぼ一定であり、顕著な陽極降下、陰極降下か見
られない、■電流密度は0.1〜IOA/cm2程度で
ある、という2項目にまとめられる。直流印加電圧は、
両極間距離及び反応圧カ一定の条件下における正規グロ
ー放電時の両極間電圧と同等か又は高い値であればよい
。Among these, the chemical vapor deposition method using direct current discharge requires a region closer to the arc discharge side than the regular glow discharge. Typical discharge characteristics include: ■ The potential gradient between the two electrodes is almost constant, with no noticeable anode drop or cathode drop; ■ The current density is approximately 0.1 to IOA/cm2. It can be summarized into items. The DC applied voltage is
The voltage between the electrodes may be equal to or higher than the voltage between the electrodes during normal glow discharge under conditions where the distance between the electrodes and the reaction pressure are constant.
また、この反応時に基板支持体の上面全体が放電によっ
て覆われることか望ましいので、基板支持体の近傍に陽
極となる電極を設ける場合には、電極の形状は例えば基
板支持体を囲むリング状とする。基板支持体の近傍に陽
極となる電極を設ける場合、基板支持体の電位は陽極と
等電位か、又は浮動電位とすることか望ましい。これら
基板支持体及び電極は、反応時にイオン、電子、エネル
ギーを持った中性気体粒子の衝突によって800〜11
00℃程度まで昇温するので、モリブデンなどの高融点
金属なとて作製する。一方、陰極には、放電開始時のイ
グナイター、又は反応中の放電維持用として作用するフ
ィラメントを内蔵させることか望ましい。このフィラメ
ントの材質は、熱電子を放出しやすいものであればよい
が、有機化合物を含有する反応ガスの反応の結果、その
表面に炭化物が生成して化学的に安定となる物質である
ことが好ましい。このような材質としては、例えばタン
グステンか挙げられる。Additionally, it is desirable that the entire upper surface of the substrate support be covered by the discharge during this reaction, so if an electrode is provided as an anode near the substrate support, the shape of the electrode may be, for example, a ring shape surrounding the substrate support. do. When an electrode serving as an anode is provided near the substrate support, it is preferable that the potential of the substrate support is equal to that of the anode or a floating potential. These substrate supports and electrodes are formed by collisions of ions, electrons, and energetic neutral gas particles during the reaction.
Since the temperature rises to about 00°C, it is made of a high melting point metal such as molybdenum. On the other hand, it is desirable that the cathode has a built-in filament that acts as an igniter at the start of discharge or for sustaining the discharge during the reaction. The material of this filament may be any material as long as it easily emits thermoelectrons, but it must be made of a material that becomes chemically stable by forming carbide on its surface as a result of the reaction of the reaction gas containing organic compounds. preferable. An example of such a material is tungsten.
(作用)
本発明方法によれば、基体として無機質の細い繊維を用
い、この繊維の端面にダイヤモンドの核を発生させるた
め、ダイヤモンドは個々の繊維の端面で成長し、独立し
た単結晶の粒状ダイヤモンドを得ることができる。(Function) According to the method of the present invention, a thin inorganic fiber is used as a base material, and diamond nuclei are generated on the end face of this fiber, so that diamond grows on the end face of each fiber, and becomes an independent single crystal granular diamond. can be obtained.
(実施例)
以下、本発明の実施例を図面を参照して説明する。なお
、以下の実施例は好適な例であり、本発明はこれに限定
されるものでないことは勿論である。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. Note that the following examples are preferred examples, and it goes without saying that the present invention is not limited thereto.
第1図は本発明の実施例において用いられた反応装置の
概略構成図である。第2図は本発明の実施例において用
いられた5iCi維の束からなる基体の模式図である。FIG. 1 is a schematic diagram of a reaction apparatus used in an example of the present invention. FIG. 2 is a schematic diagram of a substrate made of a bundle of 5iCi fibers used in an example of the present invention.
第1図において、反応容器1には反応ガス導入口2と真
空排気口3が設けられている。反応容器1内の下部には
、接地されたモリブデン製のリング状陽極4か設置され
、その内部に第2図に示すように無機質繊維の束からな
る基体5が設置される。反応容器1内の上部には基体5
に対向してモリブデン製の陰極6が設けられており、そ
の内部にはタングステン製のフィラメント7が設置され
ている。陰極6は反応容器]に対してはシールドされて
おり、高圧発生用の直流電源8及びフィラメント加熱用
の交流電源9に接続されている。In FIG. 1, a reaction vessel 1 is provided with a reaction gas inlet 2 and a vacuum exhaust port 3. A grounded ring-shaped anode 4 made of molybdenum is installed in the lower part of the reaction vessel 1, and a base 5 made of a bundle of inorganic fibers is installed inside the anode 4 as shown in FIG. A substrate 5 is placed in the upper part of the reaction vessel 1.
A cathode 6 made of molybdenum is provided opposite to the cathode 6, and a filament 7 made of tungsten is installed inside the cathode 6. The cathode 6 is shielded from the reaction vessel and is connected to a DC power source 8 for generating high pressure and an AC power source 9 for heating the filament.
なお、反応容器]内の配置か第1図に示すようなもので
ある場合、陰極6に負の電位が印加されるか、これとは
異なり、陰極6を接地して陽極4に正の電位を印加して
も原理的に等しいことは勿論である。Note that if the arrangement inside the reaction vessel is as shown in FIG. Of course, it is the same in principle even if .
基体5として直径5部のSiC繊維の束を用い、第1図
に示すように反応容器1内の所定の位置に設置し、反応
容器1内を1O−7Torrまで予備排気した。次に、
反応容器1内に原料ガスとしてメタンと水素との混合ガ
スを反応時の圧力である200Torrまで導入した。A bundle of SiC fibers having a diameter of 5 parts was used as the substrate 5, and as shown in FIG. 1, it was placed at a predetermined position in the reaction vessel 1, and the inside of the reaction vessel 1 was preliminarily evacuated to 10-7 Torr. next,
A mixed gas of methane and hydrogen was introduced into the reaction vessel 1 as a raw material gas up to a pressure of 200 Torr during the reaction.
なお、メタンと水素との体積比は1 : tooに設定
した。つづいて、陰極6内部に設置されているフィラメ
ント7に通電して、フィラメント温度を2000℃とし
、陰極6に高電圧を印加して放電を開始した。両電極間
距離は]、5cm。Note that the volume ratio of methane and hydrogen was set to 1:too. Subsequently, the filament 7 installed inside the cathode 6 was energized to raise the filament temperature to 2000° C., and a high voltage was applied to the cathode 6 to start discharge. The distance between both electrodes is 5 cm.
放電電圧800V、放電電流500mAの条件下で、陽
極4及び基体5の温度は約1000°Cまて上昇した。Under the conditions of a discharge voltage of 800 V and a discharge current of 500 mA, the temperatures of the anode 4 and the substrate 5 rose to about 1000°C.
反応中は原料ガスを400 SCCMの流量て流した。During the reaction, the raw material gas was flowed at a flow rate of 400 SCCM.
また、反応中に陽極4及び基体5の直上には陽光柱か観
察された。Further, a positive column was observed directly above the anode 4 and the substrate 5 during the reaction.
2時間の反応後に走査電子顕微鏡(SEM)によって観
察したところ、SiC繊維の端面に粒径的20μmの粒
子か成長していた。X線回折及びラマン分光の結果、こ
の粒子はダイヤモンドであることが確認された。After 2 hours of reaction, observation using a scanning electron microscope (SEM) revealed that particles with a diameter of 20 μm had grown on the end faces of the SiC fibers. As a result of X-ray diffraction and Raman spectroscopy, this particle was confirmed to be diamond.
なお、基体5となる無機質繊維として前述したSiC繊
維の代わりに、炭素繊維、WSMo。Note that, instead of the SiC fiber described above as the inorganic fiber serving as the base body 5, carbon fiber or WSMo is used.
Ta又はT1からなる金属繊維、WC又はM o Cか
らなる金属炭化物の繊維を用いた場合にも、前記実施例
と同様に繊維の端面にダイヤモンドを成長させ得ること
か確認された。It was confirmed that even when metal fibers made of Ta or T1 and metal carbide fibers made of WC or MoC were used, it was possible to grow diamonds on the end faces of the fibers in the same way as in the previous example.
[発明の効果]
以上詳述したように本発明によれば、極めて簡便な方法
で個々に独立した単結晶の粒状ダイヤモンドを得ること
ができ、ダイヤモンドバイト、不純物ドープによる半導
体ダイヤモンド、宝石用ダイヤモンドなどに用いること
が可能となり、その工業的価値は極めて大きい。[Effects of the Invention] As detailed above, according to the present invention, individually independent single-crystal granular diamonds can be obtained by an extremely simple method, and diamond bites, semiconductor diamonds doped with impurities, jewelry diamonds, etc. It has become possible to use it for many purposes, and its industrial value is extremely large.
第1図は本発明の実施例において用いられた反応装置の
概略構成図、第2図は本発明の実施例において用いられ
たSiC繊維の束からなる基体の模式図である。
1 ]
1・・・反応容器、2・・・反応ガス導入口、3・・・
真空排気口、4・・・リング状陽極、5基体(S i
C繊維の束) 6・・陰極、7フイラメント、8・・直
流電源、9・・交流電源。
出願人代理人 弁理士 鈴江武彦
\FIG. 1 is a schematic diagram of a reaction apparatus used in an example of the present invention, and FIG. 2 is a schematic diagram of a substrate made of a bundle of SiC fibers used in an example of the present invention. 1 ] 1... Reaction container, 2... Reaction gas inlet, 3...
Vacuum exhaust port, 4... ring-shaped anode, 5 substrate (S i
C fiber bundle) 6. Cathode, 7 filament, 8. DC power supply, 9. AC power supply. Applicant's agent Patent attorney Takehiko Suzue\
Claims (1)
含有する反応ガスを導入し、該反応ガスの分解及び分解
によって生じた炭素の活性化により前記基体表面にダイ
ヤモンドを成長させるにあたり、前記基体として無機質
の繊維を用い、該繊維端面にダイヤモンド結晶の核を発
生させることを特徴とする粒状ダイヤモンドの製造方法
。A substrate is placed in a reaction vessel, a reaction gas containing an organic compound is introduced into the reaction vessel, and diamond is grown on the surface of the substrate by decomposition of the reaction gas and activation of carbon produced by the decomposition. A method for producing granular diamond, which comprises using inorganic fibers as a substrate and generating diamond crystal nuclei on the end faces of the fibers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30918888A JPH02157191A (en) | 1988-12-07 | 1988-12-07 | Production of granular diamond |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30918888A JPH02157191A (en) | 1988-12-07 | 1988-12-07 | Production of granular diamond |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02157191A true JPH02157191A (en) | 1990-06-15 |
Family
ID=17989989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30918888A Pending JPH02157191A (en) | 1988-12-07 | 1988-12-07 | Production of granular diamond |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02157191A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100411710B1 (en) * | 2001-06-28 | 2003-12-18 | 한국과학기술연구원 | Apparatus and method for the synthesis of the diamond with powder shape by chemical vapor deposition (cvd) method |
-
1988
- 1988-12-07 JP JP30918888A patent/JPH02157191A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100411710B1 (en) * | 2001-06-28 | 2003-12-18 | 한국과학기술연구원 | Apparatus and method for the synthesis of the diamond with powder shape by chemical vapor deposition (cvd) method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ferro | Synthesis of diamond | |
US4434188A (en) | Method for synthesizing diamond | |
US5368897A (en) | Method for arc discharge plasma vapor deposition of diamond | |
US5087434A (en) | Synthesis of diamond powders in the gas phase | |
US4859490A (en) | Method for synthesizing diamond | |
JPS5927753B2 (en) | Diamond synthesis method | |
WO1987003307A1 (en) | Process for synthesizing diamond | |
JP2002506786A (en) | Apparatus and method for diamond nucleation and deposition using hot filament DC plasma | |
US5110405A (en) | Method of manufacturing single-crystal diamond particles | |
JPH0346437B2 (en) | ||
JPH05109625A (en) | Polycrystalline cvd diamond substrate for epitaxially growing semiconductor single crystal | |
JPS5927754B2 (en) | Diamond synthesis method | |
JP2584805B2 (en) | Method for synthesizing diamond particles | |
Spitsyn et al. | Origin, state of the art and some prospects of the diamond CVD | |
JPS62202897A (en) | Production of diamond | |
US6558742B1 (en) | Method of hot-filament chemical vapor deposition of diamond | |
Jung et al. | Controlling growth of carbon microtrees | |
JPH02157191A (en) | Production of granular diamond | |
EP1456436B1 (en) | Method for producing particles with diamond structure | |
JP2501589B2 (en) | Vapor-phase synthetic diamond and its synthesis method | |
JPS62158195A (en) | Synthesizing method of diamond | |
Nakamura et al. | High quality chemical vapor deposition diamond growth on iron and stainless steel substrates | |
JPS60122794A (en) | Low pressure vapor phase synthesis method of diamond | |
JPH02155226A (en) | Manufacture of granular semiconductor diamond | |
EP0413974B1 (en) | Method of making a single crystal CVD diamond |